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In this paper, we study ergodic properties of α-stable autoregressive fractionally integrated moving average
(ARFIMA) processes which form a large class of anomalous diffusions. A crucial practical question is how long
trajectories one needs to observe in an experiment in order to claim that the analyzed data are ergodic or not. This
will be solved by checking the asymptotic convergence to 0 of the empirical estimator F (n) for the dynamical
functional D(n) defined as a Fourier transform of the n-lag increments of the ARFIMA process. Moreover, we
introduce more flexible concept of the ε-ergodicity.
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I. INTRODUCTION

Recently, the careful data analysis helped to identify
various physical origins of the anomalous diffusion with the
mean-squared displacement being nonlinear in time, [1–4].
Especially, the field of life sciences has lately seen an immense
increase in single-particle tracking (SPT) techniques and
experimental results [5–8].

Modern fluorescence microscopy that probes the stochastic
motion of individual labeled tracer particles shows some
significant, uncovered deviations from the laws of Brownian
motion in a variety of physical and biological systems [1,9,10].
In SPT experiments, the tracer’s position is tracked over time
and the corresponding dependence x(t) is then treated as
a random process [11–13]. The advantage of SPT is that
it provides the full information about the tracer’s motion.
Unfortunately, in many cases the data acquisition procedure
is complicated, so that only few trajectories of considerable
length are available [2,9].

From one side, fractional diffusion is traditionally related
to the concept of fractional dynamic equations, especially the
fractional Fokker-Planck equation (FFPE) and the popular
continuous time random walk (CTRW) model [10]. This is
a very active field of study in physics, mechanics, chemistry,
and biology. From the other side, there has been a great
interest in long-range dependent and self-similar processes,
in particular, fractional Brownian motion (FBM) [14] and
autoregressive fractionally integrated moving average time
series, called ARFIMA processes [15,16]. These processes,
originally introduced in econometrics, have been recently
effectively used to describe fractional anomalous diffusion
in physical and biological systems [17,18]. From the physical
point of view, it is known that ARFIMA(p,d,q) is a discrete
time representation of the fractional Langevin equation (FLE)
that takes into account the memory parameter d. It also
includes other popular models of fractional dynamics such
as FBM, which is the limiting case of aggregated ARFIMA
process. Modeling physical or biological phenomena with
ARFIMA process has promising potential [14,17,19–25].

In many practical applications of the ARFIMA(p,d,q)
model it is sufficient to describe data with p and q equal
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to 0 or 1 [26,27]. ARFIMA(1,d,1) can be considered as first
order approximation of the arbitrary model taking into account
only the first lag.

The problem of ergodicity of the process is an essential
issue for the real-life processes. Verification of the Boltzmann
ergodic hypothesis for a given system, i.e., asymptotic equality
of time and ensemble averages [20], is one of the most
fundamental problems in statistical mechanics [1,2]. Recently,
ergodicity breaking of systems exhibiting anomalous behavior
has been observed in various fields of physics, biology, and
related sciences [6,22–25,28–33].

The use of highly photostable fluorescent probes, in particu-
lar quantum dots (QDs), has opened the possibility of recording
long single-particle trajectories allowing better detection of
anomalous diffusive behavior and thorough investigation of its
causes [24,25,28,34]. The occurrence of ergodicity breaking
implies that the molecules under investigation, although chem-
ically identical, show somehow different dynamic properties
[35]. The first example of ergodicity breaking on the cell
membrane was provided in [25], where the authors studied
the lateral diffusion of the voltage-gated potassium channel
Kv2.1 on the membrane of human embryonic kidney cells.
A second example by studying the diffusion of the pathogen
recognition receptor DC-SIGN on the plasma membrane of
stably transfected CHO cells was described in [28]. Ergodicity
breaking has been also observed experimentally for the
intracellular diffusion [6,30].

This paper is structured as follows. In Sec. II, our con-
siderations start with a short introduction to the dynamical
functional (DF) approach to ergodicity testing methodology
[36–39]. Basic properties of α-stable ARFIMA processes
and time series description of ARFIMA model are given in
Sec. III. This representation allows us in Sec. IV to present
an analytical form of the important statistic for our study:
dynamical functional D(n) for an ARFIMA(0,d,0) model with
symmetric α-stable noise. Next, we study asymptotic behavior
of the dynamical functional D(n) and the corresponding
test functional F (n), which asymptotic behavior determines
ergodicity of the process. Since exact formula for F (n) of an
ergodic process is only asymptotically equal to 0, we will find
a minimal n0(ε) for which with a given accuracy ε > 0 the
inequality |F (n)| < ε holds. Not fulfilling this condition for
any natural n will indicate the so called ε-ergodicity breaking,
which from the experimental point of view provides a practical
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criterion for minimal sample length of the studied trajectory.
Obtained theoretical and numerical results are illustrated also
by simulations for some special cases. Section V concludes
this work.

II. ERGODICITY TESTING: DYNAMICAL
FUNCTIONAL APPROACH

It is well known that for every stationary and ergodic
process Yk,k ∈ N, the Boltzmann ergodic hypothesis holds,
that is, the temporal and ensemble averages coincide:

lim
n→∞

1

n

n−1∑
k=0

g(Yk) = 〈g(Y0)〉,

where g is an arbitrary integrable function (deterministic)
and 〈·〉 denotes the ensemble average [40]. A straightforward
consequence of ergodicity is that instead of an ensemble
average, which requires repeating an experiment many times,
one can as well analyze a time average of only one long
trajectory. This property is the main reason for considering
ergodicity in the context of real-life stochastic processes [36].

In general, ergodicity of the process can be verified using,
e.g., the dynamical functional, described below (and that
approach will be used further in the paper), or by a comparison
of the time averaged and ensemble averaged mean-square
displacements which is the classical approach [38].

The dynamical functional (DF) D(k) corresponding to the
process Yk was defined by Podgorski and Weron (see [37]) as

D(k) = 〈exp{i[Yk − Y0]}〉, (1)

that is a Fourier transform of Yk − Y0 evaluated for the Fourier-
space variable ω = 1. It describes the dynamical behavior of
the underlying process via observing its increments and can be
used as a measure of the process interdependence, especially
if the correlation function does not exist. Recently, it was used
in empirical data analysis (see, for example, in [36,38,39]).

The DF test for ergodicity was proposed in [36]. This test
is based on the analysis of the asymptotic behavior of the test
functional F (n):

F (n) = 1

n

n−1∑
k=0

D(k) − |〈exp{iY0}〉|2, (2)

and the verification of its convergence to 0, i.e.,

lim
n→∞ F (n) = 0 (3)

for an ergodic process.
Since the convergence in (3) is asymptotic, the crucial

question is how long should trajectories be to claim that the
analyzed data are ergodic or not. This will be analyzed in
details in Sec. IV.

What is very interesting and especially useful in the
empirical data analysis is that the DF test can be also applied to
the only one-trajectory empirical data, provided that data are
observed long enough (see [36] and its modification [39]),
which is also shown as a by-product in this article. The
ensemble average is then exchanged with the time average.
Again, the question of the sufficient trajectory length is crucial
here.

III. ARFIMA MODEL

In this article, we will work on a class of ARFIMA
models [15,16] which encompass discrete time versions of
many celebrated diffusion processes. It can be used for mod-
eling fractional dynamics and long memory by fractionally
integrated (FI) part, but on the other hand also short-time
dependencies by moving average (MA) part and autoregressive
(AR) part. Moreover, when properly scaled and aggregated,
ARFIMA models converge to continuous time anomalous
diffusion processes with such prominent examples as the
fractional Brownian motion [ARFIMA(0,d,0) with Gaussian
(or α-stable) noise] and the Ornstein-Uhlenbeck process
[ARFIMA(1,0,0)]. Since the experimental data are usually
recorded in discrete time, the ARFIMA process seems to be
a natural tool for modeling anomalous dynamics. Moreover,
it was recently shown that the MA part of the ARFIMA
model can be successfully used for modeling data with
measurement errors [41]. We focus our interests on processes
ARFIMA(0,d,0) and ARFIMA(1,d,1), as they are commonly
fitted to empirical data [41].

The ARFIMA(p,d,q) model, originally introduced by
Grander and Joyeux in [15] and Hosking in [16], is defined as
a discrete time process {Yt }, t = 0,1,2, . . ., that satisfies the
equation

�(B)(1 − B)dYt = �(B)εt , (4)

where �(z) = 1 − φ1z − φ2z
2 − · · · − φpzp and �(z) = 1 +

θ1z + θ2z
2 + · · · + θqz

q are polynomials of, respectively, au-
toregressive and moving average parts, B is the backward shift
operator (BYt = Yt−1), d is the fractional differencing order,
and εt is the noise process. In the classical definition εt is a
Gaussian noise process, however, in this work we consider a
more general case with εt ’s being i.i.d. symmetric α-stable
random variables (with 0 < α < 2) (see [42–44]) defined by
the characteristic function

ϕεt
(s) = exp(−|σs|α), (5)

where σ is a scaling parameter. The ARFIMA(p,d,q) model
is fractionally integrated of order d with

(1 − B)d =
∞∑

k=0

(
d

k

)
(−B)k.

When d is a positive noninteger, such operation introduces
long memory, or long-range dependence, of the process,
used, e.g., for modeling superdiffusion [42]. Hence, the
ARFIMA(p,d,q) process is a composition of the fractional
part FI(d) and ARMA(p,q) model.

IV. MINIMAL TRAJECTORY LENGTH

A. Analytical results

For α-stable ARFIMA process, it was shown recently in
[45] that

D(n) = exp

⎛
⎝σα

∞∑
j=0

|cj+n|α − |cj |α − |cj − cj+n|α
⎞
⎠, (6)

052136-2



IDENTIFYING ERGODICITY BREAKING FOR . . . PHYSICAL REVIEW E 94, 052136 (2016)

where the coefficients cj come from the moving average
representation of the ARFIMA model:

Yt =
∞∑

j=0

cj εt−j . (7)

The explicit form of the cj coefficients of moving averages
can be calculated explicitly via simple series transformations
(see, e.g., [42]), for example, for FI(d), i.e., ARFIMA(0,d,0),
the coefficients are

c0 = 1, cj = �(j + d)

�(d)�(j + 1)
for j �= 0 (8)

and for ARFIMA(1,d,1)

c0 =
(

φ − 1

φ

)−d

− �(1 + d)

φ�(2)�(d)
2F1(1 + d,1,2,1/φ),

cj =
(

φ − 1

φ

)−d

φj−1(φ + θ ) − �(d + j )

φ�(j + 1)�(d)

×
[
j + d

j + 1
2F1(1 + d + j,1,2 + j,1/φ)

+ θ2F1(d + j,1,1 + j,1/φ)

]
for j �= 0,

where 2F1 is the hypergeometric function [46]. The complexity
of the formula for those coefficients increases with growing
rank of both AR and MA parts, that is, p and q of
ARFIMA(p,d,q).

For the α-stable ARFIMA the test functional F (n), intro-
duced in the previous section, takes the following form:

F (n) = 1

n

n−1∑
k=0

⎛
⎝exp

⎧⎨
⎩σα

∞∑
j=0

|cj+n|α − |cj |α − |cj − cj+n|α
⎫⎬
⎭

− exp

⎧⎨
⎩−2σα

∞∑
j=0

|cj |α
⎫⎬
⎭

⎞
⎠, (9)

as |〈exp{iY0}〉|2 = exp (−2σα
∑∞

j=0 |cj |α).
In Fig. 1, the exemplary trajectories of test functional F (n)

for ARFIMA(1,d,1) model are depicted. The blue lines are the
values obtained from 1000 simulated sample paths, each of
the length 500, while the red ones are the theoretical ones; the
green dashed lines are 95% confidence intervals, introduced
by Janczura and Weron [38].

In the real world, sometimes it could be challenging to
obtain very long sample paths of the process, which could
reveal the information about ergodicity. Because exact formula
(9) for F (n) for an ergodic process is only asymptotically equal
to 0, we intend to find such n0 that

n0(ε) = min{n ∈ N : |F (n)| < ε} (10)

for a given accuracy ε > 0. The underlying assumption (for
this time being) is that the process we are considering is
ergodic. Our aim is to verify how long it takes to observe
this characteristic and later generalize it as a tool for testing
ergodicity breaking. As mentioned before, from now on we
focus on two exemplary variants of the ARFIMA process:
ARFIMA(0,d,0) and ARFIMA(1,d,1).

TABLE I. The minimal trajectory length of α-stable
ARFIMA(0,d ,0) process to claim ε-ergodicity: comparison of three
proposed methods for ε = 0.05. The first two columns were calcu-
lated using the analytical formulas, while the third one is obtained
by calculating mean of 100 n0(ε) values, each derived for the test
functional based on 1000 sample paths of the length 12 000. The
most outlying values are those for Gaussian model with high d value;
our studies show that the speed of F (n) convergence declines with
the growth of d (which is well explained by superdiffusion). The fall
is even more rapid for the high values of d .

Eq. (9) Eqs. (14) and (19) Simulation

α = 2 d = 0.43 121 158 1276 (443.66)
ARFIMA d = 0.06 18 5 18 (3.53)
(0,d,0) d = −0.39 16 16 11 (2.41)

α = 1 d = −0.07 10 620 48 (13.68)
ARFIMA d = −0.44 9 4 24 (3.15)
(0,d,0) d = −0.89 16 2 19 (2.49)

What we would like to stress is that in general ARFIMA
processes are ergodic (see [47]) and the testing functional
showing ergodicity breaking for such process is only pointing
to incorrect model choice. Hence, one can use the ε-ergodicity
breaking similarly to the statistical test, with the H0 hypothesis
concerning the model chosen to the data. The procedure of
calculation of n0(ε) for the empirical data is the following:
first, the proper model should be chosen [26,27]; second, its
parameters should be estimated [42,48], and, finally, the value
of n0(ε) should be calculated.

Of course, the values of n0(ε) differ with the underlying
model. Minimal n0(0.05) values for the ARFIMA(0,d,0)
process, for which the exact formula (9) fulfils the inequality
|F (n)| < 0.05, are given in the first column of Table I. They
were obtained by MATLAB computations of the exact formula,
replacing infinite sum in the formula (9) with the finite one, up
to j = 3000. That causes the numerical bias, which in the case
of such high level of truncation is well controlled (see [49]).
For simplicity, we assume σ = 1.

The values of α and d were chosen in the following
manner: the α values are corresponding to the cases that are
analytically derived in Secs. IV B and IV C, that is, α = 1 and
2, respectively. For every α there are three different values of
d, with similar location within the proper interval [it is needed
to choose d ∈ (−1/α,1 − 1/α)] (see, for example, [43]).

As was shown by many experiments (and can be partially
visible in the Fig. 2), the trajectory length sufficient to
identify ergodicity breaking appears to be linear with respect
to the accepted ε. Generally, the higher the positive d

parameter, the longer it takes for F (n) to converge; this is the
expected behavior, as d > 0 is responsible for the long-range
dependence. Nevertheless, our studies show that such a case
is observed only for d > 0.4.

On the other hand, as one can see in Fig. 2, treating F (n) as
a function of α only (that implies different α ranges for every
value of d) suggests that the longest data sample is required in
the case of the smallest α value. The values depicted are the
mean values of the set of 100 values of n0(ε), each calculated on
the base of 1000 simulated sample paths. The surprisingly high
and not perfectly aligning values for ε = 0.01 are the result of
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FIG. 1. The test functional Fα(n) for ARFIMA(1,d ,1) model with various values of α, d , φ, and θ . The blue lines are the values obtained
from 1000 simulated sample paths, each of the length 500, while the red ones are the theoretical ones; the green dashed lines are 95% confidence
intervals. Please note that the imaginary part is theoretically equal to 0, as according to the formula (9); during the simulations some numerical
noise occurs.

numerical perturbations and experiment constraints (the same
truncation has been used in all three cases; for smaller values
of ε, more cj coefficients need to be used).

Because calculations of the exact formula (9) require large
computational burden, in the following we find an analytical

formula for the bound of |F (n)|. To this end, we concentrate on
two noteworthy cases of α, namely α = 1 and 2, corresponding
to two well-known distributions. They can allow us to make an
estimation for the rest of two reasonable intervals, respectively,
α ∈ (0,1] and α ∈ (1,2].
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FIG. 2. The minimal sample length n0(ε) of ARFIMA(0,

− 0.11,0) process for different α-stable innovations. Please note that
the OY axis is in log scale to better present the common behavior.

B. Dynamical functional for Cauchy distribution

The Cauchy distribution is a special case of the family
of α-stable distributions when α = 1. In this case, we know
explicitly its density and it is related for example to bulk-
mediated diffusion [29,50]. First, let us note that for α = 1 we
have

D(n) = exp

⎛
⎝−σ

n−1∑
j=0

|cj | − σ

∞∑
j=0

|cj − cj+n|
⎞
⎠, (11)

where σ is a scale parameter of innovation process εn in the
ARFIMA model. As for ARFIMA(0,d,0) in case of α � 1
(equivalently d < 0) cj = �(j+d)

�(d)�(j+1) < 0 for j > 0,

∞∑
j=0

|cj | = 2. (12)

That is indeed a very interesting observation, as it is indepen-
dent of the memory parameter d. Second, c(0) = 1 and cn for
n > 0 are negative and increasing to 0. Hence, we can remove
the absolute value in the reasonable way:

D(n) = exp

⎧⎨
⎩−σ

⎛
⎝1 −

n−1∑
j=1

cj

⎞
⎠ − σ

⎡
⎣1 − cn +

∞∑
j=1

(cj+n − cj )

⎤
⎦

⎫⎬
⎭ = exp

⎛
⎝−2σ − σ

∞∑
j=1

cj+n + σ

n∑
j=1

cj + σ

∞∑
j=1

cj

⎞
⎠

= exp

⎛
⎝−2σ − σ

∞∑
j=n+1

cj + σ

n∑
j=1

cj + σ

∞∑
j=1

cj

⎞
⎠.

That leads us to the following form of D(n):

D(n) = exp

(
−2σ + 2σ

n∑
j=0

cj

)

= exp

{
−2σ + 2σ

[
�(n + 1 + d)

d�(d)�(n + 1)
− 1

]}

= exp

[
−2σ + 2σ

(
n + d

d
cn − 1

)]
, (13)

that is, the dynamical functional in this case can be expressed
via a single coefficient of moving average form of the process.
That observation points very strongly on the fact that D(n) is
in fact some measure of the process dependence. Hence, the
test functional F (n) we would like to examine has the form

F (n) =1

n

n−1∑
k=0

exp

(
−4σ + 2σ

k + d

d
ck

)
− exp(−4σ )

= exp(−4σ )
1

n

n−1∑
k=0

[
exp

(
2σ

k + d

d
ck

)
− 1

]
. (14)

A useful remark is that 2σ k+1+d
d

ck > 0 for every n > 0 and d,
hence, the functional is clearly non-negative. Moreover, one
can notice that �(n+1+d)

d�(d)�(n+1) is in fact the codifference of the

process and as it was shown by Kokoszka and Taqqu in [44],
it is positive for every α ∈ (0,1].

C. Dynamical functional for Gaussian distribution

The Gaussian distribution can be considered as a special
case of the family of α-stable distributions when α = 2.
However, many of its properties are in a sharp contrast to
other α-stable distributions for α < 2 which have, for example,
infinite second moment. The Gaussian distribution is important
for such basic stochastic processes in physics and biology as
Brownian motion and FBM [6].

For α = 2,

D(n) = exp

⎛
⎝σ 2

∞∑
j=0

2cj+ncj − 2c2
j

⎞
⎠. (15)

Provided that cj are as in (8), after a few transformations one
obtains

∞∑
j=0

c2
j = �(1 − 2d)

�(1 − d)2
(16)

and
∞∑

j=0

2cj+ncj = �(1 − 2d)�(d + n)

�(1 − d)�(d)�(−d + n + 1)
. (17)
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FIG. 3. The test functional Fα(n) for α = 1 with respect to n for
few d values.

Hence,

D(n) = exp

{
σ 2

[
�(1 − 2d)�(d + n)

�(1 − d)�(d)�(−d + n + 1)
(18)

−2
�(1 − 2d)

�(1 − d)2

]}
.

That leads to the following formula for F (n):

F (n) =1

n

n−1∑
k=0

exp

{
σ 2

[
�(1 − 2d)�(d + k)

�(1 − d)�(d)�(−d + k + 1)

−2
�(1 − 2d)

�(1 − d)2

]}
− exp

[
−2σ 2 �(1 − 2d)

�(1 − d)2

]

= exp

[
−2σ 2 �(1 − 2d)

�(1 − d)2

]
(19)

1

n

n−1∑
k=0

{
exp

[
σ 2 �(1 − 2d)�(d + k)

�(1 − d)�(d)�(−d + k + 1)

]
− 1

}
.

As it was shown in [44], σ 2 �(1−2d)�(d+k)
�(1−d)�(d)�(−d+k+1) being the

covariance of the process is not necessarily positive; in this
case of α = 2 it is greater than 0 for d > 0, but not for d < 0.

Those formulas, although not reversible with respect to n (in
case of arbitrary d), are simple enough to be easily computed
and the relevant value n can be read from the plot. Such graphs
are presented in Figs. 3 and 4, respectively, for α = 1 and 2.

In the second column of Table I there are n0(0.05) values
for ARFIMA(0,d,0) calculated using the formula from this
and previous section.

D. Simulation results

In order to show that analytical results are adequate, the
first two columns of Table I present analytical results for the
ARFIMA(0,d,0) model to find n0 satisfying (10). Now, we
turn to a more experimentally grounded analysis. In the third
column of Table I, such n0(0.05) are obtained via simulating
sample paths of the process are given. For each case of α and
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d=−0.39

FIG. 4. The test functional Fα(n) for α = 2 with respect to n for
few d values.

d we simulated 1000 sample paths, calculated the empirical
values of F (n), and searched for the mentioned n0(ε) value.
The results are then averaged over 100 repetitions. Note that
in parentheses we also give the standard deviations. What can
concern the reader is the particularly high value obtained for
α = 2 and d = 0.43.

As in experiments one usually has a single trajectory,
which is needed to examine this case in details. To this
end, we simulate sample paths of ARFIMA model, calculate
the empirical values of F (n) [the ensemble average in (1)
is now replaced with a time average], and search for the
mentioned n0(ε) value. The results were then averaged over
100 repetitions. The obtained mean results, together with the
standard deviations, are given in Table II. Note that this can
be done only for an ergodic process, so we would obtain
only a necessary (but not sufficient) condition for ergodicity
(for details see [36]), that means based on those results we
can only claim lack of ε-ergodicity, or rather in this case
incorrect model choice, as we know the process is ergodic.
The two bolded cases, i.e., ARFIMA(0,d,0) with α = 2
and ARFIMA(1,0,0) with α = 2, when properly aggregated,
are discrete time versions of the popular physical diffusion
models: increments of the fractional Brownian motion and
the Ornstein-Uhlenbeck process, respectively. Recall that
parameter d in the ARFIMA(0,d,0) model is linked with
the Hurst exponent H with the relation H = d + 1/α. For
the ARFIMA(1,0,0) model we use three different values of
the φ parameter, describing the speed of mean reversion
(note that the memory parameter d is now equal to 0). What is
particularly interesting from the experimentalist point of view
is that those values are not very high, which means the sample
length required to state something about ergodicity is possible
to obtain in most of the experiments.

Finally, we would like to demonstrate how our methodology
of the ε-ergodicity can be easily applied to real molecular
biology experimental data. We consider the single trajectory
studied in Fig. 10 in [45], which is related to the analysis
of fluorescently labeled telomeres in the nucleus of living
human cell originating from the U2OS cancer cell line. To

052136-6



IDENTIFYING ERGODICITY BREAKING FOR . . . PHYSICAL REVIEW E 94, 052136 (2016)

TABLE II. The minimal trajectory length of α-stable ARFIMA
process for the necessary condition to claim ε-ergodicity in the one
trajectory case. The values in parentheses are the standard deviations.
Please note that for one trajectory one obtains only a necessary (but not
sufficient) condition for ergodicity, which is the reason of the smaller
n0(ε) values in case of high d values in comparison with Table I. The
two bolded cases are discrete time versions of the popular physical
diffusion models.

ε = 0.1 ε = 0.05 ε = 0.01

α = 2 d = 0.43 36 (26.03) 67 (150.77) 443 (855.82)
ARFIMA d = 0.06 25 (8.28) 34 (29.40) 190 (398.07)
(1,d,1) d = −0.39 22 (3.96) 28 (12.51) 128 (163.72)

α = 1 d = −0.07 22 (9.81) 34 (54.03) 234 (786.82)
ARFIMA d = −0.44 21 (2.57) 25 (9.88) 61 (37.16)
(1,d,1) d = −0.89 21 (2.49) 25 (7.81) 60 (34.83)

α = 2 d = 0.43 45 (55.93) 79 (162.44) 419 (841.53)
ARFIMA d = 0.06 25 (8.28) 40 (37.10) 166 (306.70)
(0,d,0) d = −0.39 23 (4.218) 32 (16.73) 101 (118.77)

α = 1 d = −0.07 23 (3.44) 33 (33.21) 152 (513.37)
ARFIMA d = −0.44 21 (1.59) 26 (8.16) 118 (456.37)
(0,d,0) d = −0.89 22 (2.38) 26 (8.35) 63 (44.79)

α = 2 φ = 0.84 34 (17.63) 43 (23.69) 142 (119.00)
ARFIMA φ = 0.23 25 (7.80) 32 (14.95) 127 (155.24)
(1,0,0) φ = −0.79 22 (3.27) 29 (10.78) 95 (103.66)

the stationary increments of this trajectory the ARFIMA(0,

− 0.32,1) model has been fitted, with θ = −0.65 and σ =
0.01. If we calculate the n0 for the mentioned data (using
the time average, as it is the one trajectory case), we get that
n0(0.05) = 20. It proves that as we have very long trajectory
(1000 observations, 999 increments), it can be clearly stated
that the chosen model is well fitted (since we know from [45]
that it is ergodic).

V. CONCLUSIONS

In this paper, we have proposed, investigated, and validated
reliable statistical analysis that can be applied to study
ε-ergodicity breaking for fractional anomalous diffusion data,
for example, representing single-particle tracking in living

cells. In many biological experiments the data acquisition
procedure is complicated, so that only few such trajectories
of considerable length are available. In such a situation we
propose to use the ε-ergodicity. In the telomeres example
presented in Sec. IV we considered ε = 0.05, but our method-
ology leaves to experimentalists a crucial decision on the level
of accuracy ε, which can depend, for example, on the known
level of the calibrated noise in the experiment.

In Table I is presented n0(0.05), the minimal n for
which |F (n)| < 0.05 for three different methods (general
analytical formula, closed formula for α = 2, and α = 1 and
simulating sample paths) for ARFIMA(0,d,0) process. The
biggest n0(0.05) for for α = 2 and d = 0.43 is suggested via
simulations, which is biased by numerical burden. The more
exact methods, that is the use of formulas (14) and (19), give
the smaller bounds, but on the other hand, such strict criterion
can lead to the false ε-ergodicity breaking identification. For
the empirical use, we suggest taking into account the quality
of the data while applying particular thresholds for n0(ε);
nevertheless, it is worth to remember that decreasing value of
ε can result in claiming ε-ergodicity breaking even for ergodic
samples due to numerical burden.

We foresee two future steps that can be done in a further
study: (i) calculation of the closed forms for the mentioned
two cases of α = 1 and 2 while increasing the rank of MA(p)
and AR(q) polynomials and (ii) verifying the behavior (and
the monotonicity, if it occurs) of Fα(n) as the function of
α parameter [with d set in case of ARFIMA(0,d,0)]. The
latter one will allow stating some inequalities concerning the
minimal trajectory length for α ∈ (0,2] and from the practical
point of view it should be sufficient for most of the applications.
The initial work upon the behavior of Fα(n) as one-variable
function (of α or d) has been already done. The simulations
show that parameter d influences strongly the convergence
speed of Fα(n), hence the values of n0(ε). Moreover, also the
estimators F̂ (n) and n̂0(ε) can be interesting objects of study.

ACKNOWLEDGMENTS

The research of J.J was cofinanced by the Foundation for
Polish Science under the START programme. The research
of H.L.-O., G.S., and A.W. was partially supported by NCN
Maestro Grant No. 2012/06/A/ST1/00258.

[1] R. Metzler, J. Jeon, A. G. Cherstvy, and E. Barkai, Phys. Chem.
Chem. Phys. 16, 24128 (2014).

[2] Y. Meroz and I. M. Sokolov, Phys. Rep. 573, 1 (2015).
[3] A. G. Cherstvy and R. Metzler, J. Chem. Phys. 142, 144105

(2015).
[4] D. Krapf, Curr. Top. Membr. 75, 167 (2015).
[5] I. Golding and E. C. Cox, Phys. Rev. Lett. 96, 098102 (2006).
[6] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Shav-Tal, E. Barkai,

and Y. Garini, Phys. Rev. Lett. 103, 018102 (2009).
[7] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Phys.

Rev. Lett. 103, 180602 (2009).
[8] C. Manzo and M. F. Garcia-Parajo, Rep. Prog. Phys. 78, 124601

(2015).

[9] M. P. Backlund, R. Joyner, and W. E. Moerner, Phys. Rev. E 91,
062716 (2015).

[10] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[11] M. J. Saxton, Nat. Methods 5, 671 (2008).
[12] K. Burnecki, M. Muszkieta, G. Sikora, and A. Weron, Europhys.

Lett. 98, 10004 (2012).
[13] E. Barkai, Y. Garini, and R. Metzler, Phys. Today 65(8), 29

(2012).
[14] W. Deng and E. Barkai, Phys. Rev. E 79, 011112 (2009).
[15] C. W. J. Granger and R. Joyeux, J. Time Ser. Anal. 1, 15 (1980).
[16] H. R. M. Hosking, Biometrika 68, 165 (1981).
[17] K. Burnecki, G. Sikora, and A. Weron, Phys. Rev. E 86, 041912

(2012).

052136-7

https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1039/C4CP03465A
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1063/1.4917077
https://doi.org/10.1063/1.4917077
https://doi.org/10.1063/1.4917077
https://doi.org/10.1063/1.4917077
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1016/bs.ctm.2015.03.002
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.96.098102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.018102
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1088/0034-4885/78/12/124601
https://doi.org/10.1103/PhysRevE.91.062716
https://doi.org/10.1103/PhysRevE.91.062716
https://doi.org/10.1103/PhysRevE.91.062716
https://doi.org/10.1103/PhysRevE.91.062716
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1038/nmeth0808-671
https://doi.org/10.1038/nmeth0808-671
https://doi.org/10.1038/nmeth0808-671
https://doi.org/10.1038/nmeth0808-671
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1209/0295-5075/98/10004
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1063/PT.3.1677
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1103/PhysRevE.86.041912
https://doi.org/10.1103/PhysRevE.86.041912
https://doi.org/10.1103/PhysRevE.86.041912
https://doi.org/10.1103/PhysRevE.86.041912


LOCH-OLSZEWSKA, SIKORA, JANCZURA, AND WERON PHYSICAL REVIEW E 94, 052136 (2016)

[18] J. Slezak and A. Weron, Phys. Rev. E 91, 053302 (2015).
[19] J. Slezak, S. Drobczynski, K. Weron, and J. Masajada, Appl.

Opt. 53, B254 (2014).
[20] M. Magdziarz and A. Weron, Ann. Phys. (NY) 326, 2431 (2013).
[21] A. Weron and M. Magdziarz, Phys. Rev. Lett. 105, 260603

(2010).
[22] D. Krapf, Phys. Chem. Chem. Phys. 15, 459 (2013).
[23] A. Fulinski, J. Chem. Phys. 138, 021101 (2013).
[24] A. V. Weigel, M. M. Tamkun, and D. Krapf, Proc. Natl. Acad.

Sci. USA 110, E4591 (2013).
[25] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Proc.

Natl. Acad. Sci. USA 108, 6438 (2011).
[26] P. J. Brockwell and R. A. Davis, Introduction to Time Series and

Forecasting (Springer, New York, 2002).
[27] P. J. Brockwell and R. A. Davis, ITSM for Windows. A User’s

Guide to Time Series Modelling and Forecasting (Springer, New
York, 1994).

[28] C. Manzo, J. A. Torreno-Pina, P. Massignan, G. J. Lapeyre Jr.,
M. Lewenstein, and M. F. Garcia Parajo, Phys. Rev. X 5, 011021
(2015).

[29] G. Campagnola, K. Nepal, B. W. Schroeder, O. E. Peersen, and
D. Krapf, Sci. Rep. 5, 17721 (2015).

[30] S. M. Ali Tabei, S. Burov, H. Y. Kim, A. Kuznetzov, T. Huynh,
J. Jureller, L. H. Philipson, A. R. Dinner, and N. F. Scherer,
Proc. Natl. Acad. Sci. USA 110, 4911 (2013).

[31] X. Brokmann, J.-P. Hermier, G. Messin, P. Desbiolles, J.-P.
Bouchaud, and M. Dahan, Phys. Rev. Lett. 90, 120601 (2003).

[32] J.-H. Jeon, A. V. Chechkin, and R. Metzler, Phys. Chem. Chem.
Phys. 16, 15811 (2014).

[33] A. G. Cherstvy, A. V. Chechkin, and R. Metzler, New J. Phys.
15, 083039 (2013).

[34] J. A. Torreno-Pina, B. M. Castro, C. Manzo, S. I. Buschow, A.
Cambi, and M. F. Garcia-Parajo, Proc. Natl. Acad. Sci. USA
111, 11037 (2014).

[35] J. A. Torreno-Pina, C. Manzo, and M. F. Garcia-Parajo, J. Phys.
D: Appl. Phys. 49, 104002 (2016).

[36] M. Magdziarz and A. Weron, Phys. Rev. E 84, 051138
(2011).
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