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In this paper, we explain the connection between the elephant random walk (ERW) and an urn model à la
Pólya and derive functional limit theorems for the former. The ERW model was introduced in [Phys. Rev. E 70,
045101 (2004)] to study memory effects in a highly non-Markovian setting. More specifically, the ERW is a
one-dimensional discrete-time random walk with a complete memory of its past. The influence of the memory is
measured in terms of a memory parameter p between zero and one. In the past years, a considerable effort has
been undertaken to understand the large-scale behavior of the ERW, depending on the choice of p. Here, we use
known results on urns to explicitly solve the ERW in all memory regimes. The method works as well for ERWs
in higher dimensions and is widely applicable to related models.
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I. INTRODUCTION

Random walks and, more generally, diffusion processes
are widely used in theoretical physics to describe phenomena
of traveling motion and mass transport. Due to the fractal
structure of nature and space and temporal long-range correla-
tions in particle movements (see, e.g., Refs. [1–5]), so-called
anomalous diffusions often appear, where the mean square
displacement of a particle is no longer a linear function of
time, but is rather given by a power law.

A simple model exhibiting anomalous diffusion is the so-
called elephant random walk (ERW) introduced by Schütz and
Trimper [6] in 2004, which is the topic of this paper. The ERW
model is a one-dimensional discrete-time nearest-neighbor
random walk on Z, which remembers its full history and
chooses its next step as follows: First, it selects randomly
a step from the past, and then, with probability p ∈ [0,1],
it repeats what it did at the remembered time, whereas with
the complementary probability 1 − p, it makes a step in the
opposite direction. We refer to the next section for the precise
definition. The memory parameter p ∈ [0,1] allows us to
model the willingness of the walker to do the same as in
the past. When p = 1/2, the memory has no effect on the
movement: the model becomes Markovian.

The ERW model and some variations thereof have drawn
a lot of attention in the last years; see, e.g., Refs. [6–16] to
mention just a few. One of the key questions concerns the
influence of the memory on the long-time behavior. Various
results and predictions have been obtained, e.g., in Refs.
[6–8]. In this paper, we explicitly determine the long-time
behavior of the ERW model in all regimes p ∈ [0,1]. We obtain
central limit theorems for the full process of the ERW, with a
scaling depending on the choice of p. In the regime p � 3/4,
the limiting process turns out to be Gaussian (with explicit
parameters). In the superdiffusive case p > 3/4, the limit is
non-Gaussian as was already predicted in Refs. [7,8]. We point
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out that our limit theorems are stronger than finite-dimensional
convergence of the ERW. In particular, they imply convergence
of continuous functionals of the walker.

Our method uses a connection to Pólya-type urns that was
already known before in the literature; see, e.g., the works
of Harris [14,15] and also the survey of Pemantle [17] on
related random processes with reinforcement. Being robust
and simple, the method is neither limited to one-dimensional
models nor to the specific ERW model, but rather widely
applicable to other random walks with memory. A bit more
precisely, given what is known from the theory of urns, we will
see that the asymptotic behavior of such models is essentially
determined by the spectral decomposition of the (replacement)
matrix of the corresponding urn.

Since the ERW is arguably the most natural and simplest
model of a one-dimensional random walk with a complete
memory, we concentrate in this paper on the basic ERW and
leave it mostly to the reader to adapt the method to other walks
with memory. However, we outline some possible extensions
in Sec. V.

The rest of this paper is structured as follows: After having
introduced the exact ERW model in the following section,
we describe in Sec. III a particular discrete-time urn model
containing balls of two colors, where step by step a new ball is
added. We then show in Sec. IV how the known limit results on
the composition of the urn can be transferred into statements
about the position of the ERW when time goes to infinity. In
Sec. V, we discuss various extensions and, in the last part, we
summarize our findings.

II. THE MODEL

Let us now introduce the exact model, in the way it was first
defined in Ref. [6]. The ERW is a one-dimensional random
walk (Sn,n ∈ N0) on the integers starting, say, at zero at time
zero, S0 = 0. At time n � 1, the position of the walk is given
by

Sn = Sn−1 + σn,
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where σn, n ∈ N = {1,2, . . .} are random variables taking
values in {±1}, which are specified as follows: First, σ1 takes
the value 1 with some probability q ∈ [0,1] and the value
−1 with probability 1 − q. Accordingly, the first step of the
ERW goes to the right (left) with probability q (1 − q). At any
later time n � 2, we choose a number n′ uniformly at random
among the previous times 1, . . . ,n − 1 and set

σn =
{+σn′ with probability p

−σn′ with probability 1 − p,

where p ∈ [0,1] is a memory parameter which is inherent to
the model. Note that the case p = 1/2 corresponds to simple
symmetric random walk: there is no memory effect. Moreover,
we remark that Sn = σ1 + · · · + σn. We implicitly agree that
the various random choices made in this construction are
independent from each other.

In Ref. [6], the question of how the memory of the history
influences the position of the walker at large times was
investigated. In particular, by writing 〈·〉 for the expectation
operator, it was shown that the mean displacement of the ERW
satisfies for n � 1,

〈Sn〉 ∼ (2q − 1)

�(2p)
n2p−1, (1)

while for the second moment, it was proved that

〈
S2

n

〉 ∼

⎧⎪⎨
⎪⎩

n
3−4p

for 0 � p < 3/4

n ln n for p = 3/4
n4p−2

(4p−3)�(4p−2) for 3/4 < p � 1.

(2)

The last display entails at p = 3/4 a transition from a
diffusive (0 � p < 3/4) to a superdiffusive (3/4 < p � 1)
regime, whereas at p = 3/4, the ERW behaves marginally
superdiffusive. Using an approximation by a non-Markovian
Fokker–Planck equation, the random walk propagator of the
ERW model was reported in Ref. [6] to be Gaussian in all
regimes (with a time-dependent diffusion constant), an obser-
vation which was later adapted in Ref. [7] for the superdiffusive
regime p > 3/4, where a more precise analysis showed that
the random walk propagator is in fact non-Gaussian. Here, the
term propagator refers to the probability density of the usual
continuum limit. See also Ref. [8] for a related work confirming
that the Fokker–Planck approximations do not yield adequate
results for the ERW model, at least not in the superdiffusive
regime. The statistics in the regime 1/2 < p � 3/4 were left
open in Ref. [7].

The main purpose of this paper is to affirm the observation
of Ref. [7] in the superdiffusive regime and clarify the behavior
in the remaining regimes by explicitly calculating the large-
scale behavior of the ERW model by using a connection to
Pólya-type urns, which we explain next.

III. THE CONNECTION TO PÓLYA-TYPE URNS

Imagine a discrete-time urn with balls of two colors; say,
black and red. The composition of the urn at time n ∈ N is
given by a vector Xn = (X1

n,X
2
n), where the first component

X1
n counts the number of black balls at time n, and the second

component X2
n counts the number of red balls. We restrict

ourselves to starting compositions X1 = ξ for some (possibly

random) vector ξ = (ξ 1,ξ 2) taking values in {(1,0), (0,1)}
almost surely. The urn now evolves according to the following
dynamics: At time n = 2,3, . . ., we draw a ball uniformly at
random, observe its color, put it back to the urn and add with
probability p a ball of the same color, and with probability
1 − p a ball of the opposite color. Then we update Xn, so that
Xn describes the composition of the urn after the (n − 1)st
drawing.

The connection to the ERW model is remarkably simple:
If (Sn,n ∈ N0) is the ERW started from S0 = 0 such that S1 =
ξ 1 − ξ 2, then

(Sn,n ∈ N) =d

(
X1

n − X2
n,n ∈ N

)
, (3)

where =d refers to equality in law. In other words, the
difference between the number of black and red balls in the
above urn evolves like an ERW with first step equaling ξ 1 − ξ 2.

The urn described above fits into a broader setting of
so-called generalized Friedman’s or Pólya urns; see Refs.
[18–21] for first results (with deterministic replacement rules).
Athreya and Karlin [22] proved an embedding of urn schemes
into continuous-time multitype Markov branching processes,
which includes the treatment of generalized Friedman’s urn
processes with randomized replacement rules, as in our case.
These techniques were further developed by Janson in Ref.
[23], which serves as the main reference for this paper. Many
results on urns can also be found in Mahmoud’s book [24],
which is, however, more combinatorial in nature.

Key quantities that govern the long-time behavior of the urn
process are the eigenvalues and eigenvectors of the so-called
mean replacement matrix. In our case, it is given by

A =
(

p 1 − p

1 − p p

)
. (4)

The eigenvalues of A are λ1 = 1, λ2 = 2p − 1, and the
corresponding right and left eigenvectors are v1 = 1

2 (1,1)′,
v2 = 1

2 (1,−1)′, u1 = (1,1), u2 = (1,−1), where we write v′
for the transpose of v. Here, as in (2.2) and (2.3) of Ref. [23],
we have chosen v1,v2 and u1,u2 such that u1v

′
1 = u2v

′
2 = 1

and the L1-norm of v1, v2 is equal to one.
It is well known (see, e.g., Refs. [22,23,25,26]) that the

asymptotics of the urn depends on the position of λ2/λ1 with
respect to 1/2 (in the situation of a more general urn, assuming
that the largest eigenvalue λ∗ is positive and simple, one has
to check whether there is an eigenvalue different from λ∗ with
real part >λ∗/2). This already explains on a formal level why,
for the ERW model, a phase transition occurs at p = 3/4.

IV. RESULTS AND PROOFS FOR THE STANDARD
ELEPHANT RANDOM WALK MODEL

The paper of Janson [23] contains an exhaustive and very
broad treatment of urn schemes and corresponding functional
limit theorems. For our purpose, it is most convenient to adapt
the general results from there and to translate them into the
setting of the ERW model, via Eq. (3).

A. The diffusive case (0 � p < 3/4)

Our first convergence result deals with a distributional
convergence of processes, which holds in the Skorokhod space
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D([0,∞)) of right-continuous functions with left-hand limits.
We simply recall that distributional convergence in D([0,∞))
to a process without discontinuities at fixed times is stronger
than finite-dimensional distributional convergence, and point
at Ref. [27] for more background.

Theorem 1. Let 0 � p < 3/4. Then, for n tending to infinity,
we have the distributional convergence in D([0,∞)):(

S
tn�√
n

,t � 0

)
=⇒ (Wt,t � 0),

where W = (Wt, t � 0) is a continuous R-valued Gaussian
process specified by W0 = 0, 〈Wt 〉 = 0 for all t � 0, and

〈WsWt 〉 = s

3 − 4p

(
t

s

)2p−1

, 0 < s � t.

We observe that, when p = 1/2, W is a standard Brownian
motion. Of course, this we already know from Donsker’s
invariance principle, since in this case, the ERW behaves as
a simple symmetric (Bernoulli) random walk on Z, except
possibly for the first step.

Proof. We apply Theorem 3.31(i) of Ref. [23], which shows
that

(n−1/2(X
tn� − tnλ1v1), t � 0)

converges in distribution towards a continuous R2-valued
Gaussian process V = (Vt ,t � 0) with V0 = 0 and 〈Vt 〉 = 0
for all t � 0. In our case, we have λ1 = 1, and the covariance
structure of V is closer specified in Remark 5.7 of Ref. [23].
Display (5.6) in that work shows that

〈VsVt
′〉 = s�I e

ln (t/s)A, 0 < s � t,

with �I being a 2 × 2 matrix defined under (2.15) of Ref. [23].
An explicit calculation gives

�I = 1

4(3 − 4p)

(
1 −1

−1 1

)
,

and the matrix exponential reads, in our case,

eln (t/s)A = P

(
t
s

0

0
(

t
s

)2p−1

)
P −1, with P = 1

2

(
1 1

1 −1

)
.

Together, we obtain for 0 < s � t ,

〈VsVt
′〉 = s

4(3 − 4p)

(
t

s

)2p−1( 1 −1

−1 1

)
.

By definition of Sm and the continuous mapping theorem,
we then deduce that (n−1/2S
tn�,t � 0) converges in law
in D([0,∞)) to a process W = (Wt,t � 0) given by Wt =
V 1

t − V 2
t almost surely, where for i = 1,2, V i denotes the ith

component of V . This proves our claim. �
Note that the covariance structure of the limit W does not

fit the asserted effective diffusion coefficient in Ref. [6], cf.
Display (27) there. But the asymptotic behavior of the ERW
mean square displacement derived in Ref. [6] [see Display (2)
above] is in agreement with the second moment of W .

Moreover, we note that the initial steps of the ERW do
not influence its long-time behavior. Indeed, this can easily
be derived from the fact that the above urn admits the same
Gaussian limit when starting from more general configurations

ξ = (ξ 1,ξ 2) ∈ N2
0 with 〈|ξ |2〉 < ∞ and ξ �= (0,0). Specifying,

for example, to the deterministic initial configuration ξ =
(k1,k2) for some k1,k2 ∈ N, the increment process (X1

n −
X2

n,n = 1,2, . . .) can be seen as an ERW observed from time
k = k1 + k2 on when conditioned to be at position k1 − k2 at
time k. Applying Theorem 3.31(i) of Ref. [23] to the urn when
starting from configuration ξ = (k1,k2), we deduce that the
first k steps do not influence the limiting behavior.

B. The critical case ( p = 3/4)

In the borderline case p = 3/4, part (ii) of Theorem 3.31
of Ref. [23] applies.

Theorem 2. Let p = 3/4. Then, for n tending to infinity, we
have the distributional convergence in D([0,∞))(

S
nt �√
ln n nt/2

, t � 0

)
=⇒ (Bt, t � 0),

where B = (Bt,t � 0) is a standard one-dimensional Brown-
ian motion.

The function space D([0,∞)) is defined as in the diffusive
case discussed above.

Proof. According to Theorem 3.31(ii) of Ref. [23],

((ln n)−1/2n−t/2(X
nt � − ntλ1v1), t � 0)

converges in law towards a continuous R2-valued Gaussian
process V = (Vt ,t � 0) with V0 = 0 and mean 〈Vt 〉 = 0 for
all t � 0. The covariance structure of V is given by expression
(3.27) of Ref. [23], which simplifies in our case to

〈VsVt
′〉 = s

4

(
1 −1

−1 1

)
, 0 < s � t.

As above, the claim now follows from the continuous mapping
theorem. �

Again, the asymptotics (2) for the second moment of the
ERW obtained in Ref. [6] match with the limit. With the same
arguments as in the diffusive case, one deduces moreover that
the first steps of the walker have no influence on the long-time
behavior.

C. The superdiffusive case (3/4 < p � 1)

In this regime, we can make use of Theorems 3.24 and 3.26
in Ref. [23].

Theorem 3. Set α = 2p − 1 ∈ (1/2,1]. Then, for n tending
to infinity, we have the almost-sure convergence(

S
tn�
nα

, t � 0

)
−→ (tαY, t � 0),

where Y is some R-valued random variable different from
zero.

Below the proof of the theorem, we give some information
on the limiting variable Y .

Proof. We note that, in the notation of Theorem 3.24 of Ref.
[23], we have �′

III = {2p − 1}. We are therefore in the setting
of the last part of the cited theorem and get that

(n−α(X
tn� − tnλ1v1), t � 0)

converges almost surely to (tαŴ , t � 0), where Ŵ =
(Ŵ 1, Ŵ 2) is some nonzero random vector lying in
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the eigenspace Eλ2 of A, i.e., Ŵ ∈ {v ∈ R2 : v =
λ(1,−1) for some λ ∈ R\{0}}. Since Y = Ŵ 1 − Ŵ 2 almost
surely, the claim follows. �

In contrast to the regimes discussed in the two previous
sections, the distribution of Y does depend on the law of the
initial step of the ERW. For example, in the degenerate case
p = 1, Y has the same distribution as S1 = ξ 1 − ξ 2 [in fact,
(S
tn� = 
tn�S1) for all t � 0 with probability one]. In this
regard, see also the remarks in Ref. [23] above Theorem 3.9.

By looking at the skewness and kurtosis of the position
of the walker for large n, it was already observed in Ref.
[7] that the law of the limit Y cannot be Gaussian, even
not when starting from the symmetric initial condition P(ξ =
(1,0)) = P(ξ = (0,1)) = 1/2. See also Ref. [8] for a similar
observation.

Moreover, we point at Theorem 3.26 of Ref. [23], which
can be used to (recursively) calculate the moments of Y . Let us
for simplicity assume that ξ = (1,0). Then, using additionally
Theorem 3.10 of Ref. [23], one finds for the first two moments

〈Y 〉 = 1

�(2p)
,

〈
Y 2

〉 = 1

(4p − 3)�(4p − 2)
,

as we should have expected from Eqs. (1) and (2). For higher
moments, see the remark below Theorem 3.1 of Ref. [23].
We however mention that, even in the case of an urn with
deterministic replacement rules, there is in general no closed
form for the moments of the limiting variable. See Ref. [26]
and further references therein for more on this.

V. EXTENSIONS

It is the purpose of this section to exemplify that the
approach via Pólya-type urns is robust and allows extensions
and modifications of the ERW model in various directions.
We leave it to the reader to perform the exact calculations and
rather hint at the urn model one should consider.

A. Higher dimensions

Let us first explain how to obtain limit results for an
ERW in higher dimensions. In dimension d � 1, one should
simply consider an urn with 2d different colors. More
specifically, in d = 2, one might want to study the urn
Xn = (X1

n,X
2
n,X

3
n,X

4
n),n ∈ N, with mean replacement matrix

A2 =

⎛
⎜⎜⎜⎝

p (1 − p)/3 (1 − p)/3 (1 − p)/3

(1 − p)/3 p (1 − p)/3 (1 − p)/3

(1 − p)/3 (1 − p)/3 p (1 − p)/3

(1 − p)/3 (1 − p)/3 (1 − p)/3 p

⎞
⎟⎟⎟⎠.

The corresponding nearest-neighbor ERW on Z2 is given by

Sn = (
X1

n − X2
n

)
e′

1 + (
X3

n − X4
n

)
e′

2,

with e1 = (1,0) and e2 = (0,1). Starting from X1 = (1,0,0,0),
say, this means that the ERW first visits (1,0). Then, at any
later time n � 2, the walker chooses a time n′ uniformly at
random among the previous times 1, . . . ,n − 1 and decides
with probability p to perform a step in the same direction as
at time n′, and with probability (1 − p)/3 each to perform a
step in one of the three other coordinate directions.

The expression for Sn in the display above can again be
analyzed with the results of Janson [23]. In particular, since
the eigenvalues of A2 are given by λ1 = 1 and λ2 = λ3 = λ4 =
(4p − 1)/3, according to the remarks before Sec. IV, a phase
transition from diffusive to superdiffusive behavior occurs at
p = 5/8.

B. Elephant random walk with reinforced memory

In a different direction, one might want to model an ERW
which has a reinforced memory; for example, in the sense that
the more often a particular time from the past is remembered,
the more likely it is to remember this time again. From the
point of view of neural networks, this is certainly a reasonable
and desirable assumption on the model. More concretely, one
might want to study a random walk with memory where the
remembered time n′ at the nth step is not chosen uniformly
at random among the previous times 1, . . . ,n − 1, but rather
proportionally to a weight distribution, with a weight that takes
into account the number of previous choices of n′. In this
regard, it is interesting to point at the connection observed
in Ref. [16] between the ERW model and so-called random
(uniform) recursive trees, which can naturally be used to model
the memory of the walker. The memory tree of an ERW
with a reinforced memory would correspond to a so-called
preferential attachment tree; see, e.g., Ref. [28]. In terms of
a two-color urn, one might want to consider a “reinforced”
mean replacement matrix, for example

B =
(

a + p 1 − p

1 − p a + p

)
,

where a ∈ N0 is an additional parameter measuring the
strength of the reinforcement. Here, when a ball is drawn,
one puts it back to the urn with a additional balls of the same
color. In addition, one tosses a coin with probability p for
heads and probability 1 − p for tails. If a head shows up, one
adds another ball of the same color, whereas in case of tails,
one puts a ball of the opposite color into the urn. Note that the
case a = 0 corresponds to the uniform ERW model discussed
above.

Again, this urn model fits into the general framework of
urns treated in Ref. [23]. The eigenvalues of B are given by
λ1 = a + 1 and λ2 = a + 2p − 1. Hence, provided a < 3, a
phase transition for the urn occurs at

pa = (3 − a)/4.

As above, let us now assume that the starting configuration
of the urn is given by a (possibly random) vector ξ taking
values in {(1,0), (0,1)}. Regarding the corresponding random
walk model S = (Sn,n ∈ N0) (we use the same notation as
for the original ERW), there is a little subtlety here: Most
naturally, from time 1 on, S should not be defined as the
difference (X1

n − X2
n, n ∈ N) of black and red balls as before,

but rather as the difference of black and red balls which were
put into the urn as a consequence of the coin tosses, plus the
initial difference ξ 1 − ξ 2. In other words, one should not take
into account the a additional balls of the same color which
are put into the urn at every draw for determining the position
of the walker. In particular, if p = 1/2, except for the first
step, S behaves again like a simple symmetric random walk
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(but note that pa < 1/2 if a � 2 !). If p �= 1/2, the behavior
of the walk S can be traced back to the composition of the
urn ((X1

n,X
2
n), n ∈ N). Namely, writing 	n = Sn+1 − Sn for

the increment of the walker at time n, one finds for its mean
conditioned on Xn,

〈	n〉 = (2p − 1)

(
2X1

n

(a + 1)n − a
− 1

)
.

As to the urn, one can apply the results of Ref. [23] cited above
to obtain functional limit theorems, more precisely Theorem
3.31(i) of Ref. [23] in the case p < pa , Theorem 3.31(ii)
of Ref. [23] in the case p = pa , and Theorem 3.24 of Ref.
[23] in the case p > pa . The usual diffusion approximation
now yields corresponding results for the walker S when
p �= 1/2; namely, diffusive behavior if p < pa , marginally
superdiffusive behavior if p = pa (with the same rescaling as
in Theorem 2), and superdiffusive behavior if p > pa (with
the same rescaling as in Theorem 3).

C. Modified elephant random walk of Harbola, Kumar, and
Lindenberg

Harbola, Kumar, and Lindenberg [10] proposed a modified
ERW representing a minimal one-parameter model of a
random walk with memory, which gives rise to all three
possible types of behavior (superdiffusive, diffusive, and
subdiffusive). Again, p ∈ [0,1] is a memory parameter which
is inherent to the model.

In contrast to the original ERW, the random walker moves
only to the right, but it may also stay still. More precisely, the
modified ERW (Sn,n ∈ N0) starts at S0 = 0, and then, at time
n � 1, the position of the walker is given by

Sn = Sn−1 + σn,

with σn, n ∈ N, being {0,1}-valued random variables with the
following law: First, for concreteness, we assume that the first
step goes deterministically to the right, P(σ1 = 1) = 1 (this is
a slight simplification compared with the model considered in
Ref. [10]). At any later time n � 2, we choose a number n′
uniformly at random among the previous times 1, . . . ,n − 1.
If σn′ = 1, i.e., the walker moved to the right at time n′, we set

σn =
{

1 with probability p

0 with probability 1 − p.

If σn′ = 0, i.e., the walker stood still at time n′, we set σn = 0,
so that the walker does again not move at time n.

In the notation of Janson [23], the mean replacement matrix
of the corresponding two-color urn (black balls for moving to
the right, red balls for standing still) is

C =
(

p 0

1 − p 1

)
,

where the first (second) column of C is the expected change
when a black (red) ball is drawn. We stress that, often in
the literature (e.g., in Ref. [1]), rather the transpose C ′ is
considered as the mean replacement matrix.

In words, the dynamics of the urn process is described
as follows: Starting from some nontrivial initial condition at
time n = 1, we draw at time n = 2,3, . . . a ball uniformly at

random, observe its color and put it back to the urn. If we
drew a black ball, we add with probability p another black
ball and with the complementary probability 1 − p a red ball
to the urn, whereas if the observed color was red, we add
deterministically another red ball to the urn.

Note that, if we start the urn model with one single black
ball, the position Sn of the modified ERW at time n is given
by the number of black balls at time n.

The eigenvalues of the above matrix C are λ1 = 1 and
λ2 = p. Here, the results of Ref. [23] are not applicable, since
λ1 does not belong to the dominating class: Indeed, when start-
ing the urn process from a single red ball, the dynamics adds
only red balls to the urn, and never a black ball. Such random
triangular urn schemes were however treated by Aguech [29],
generalizing the results of Janson [30] for triangular urns with
deterministic replacement. In particular, Theorem 2(a) of Ref.
[29] shows that the right rescaling for the number of black
balls at time n is np (there is no recentering), and one has
almost-sure convergence as n tends to infinity to a nontrivial
(non-Gaussian) limit. This is in accordance with the results of
Harbola, Kumar, and Lindenberg [10], proving that, in this ran-
dom walk model, subdiffusive (if p < 1/2), diffusive (if p =
1/2), and superdiffusive (if p > 1/2) behavior does occur.

A slightly more complicated model of a random walker
moving to the left, right, and staying put, which also exhibits
all three types of behavior, was presented by the same authors
earlier in Ref. [9]. There, one should consider an urn with balls
of three different colors: one corresponding to a movement to
the right, one corresponding to a movement to the left, and one
for staying at the same place.

VI. CONCLUSION

In this paper we have explicitly determined the long-time
behavior of the one-dimensional ERW model introduced in
2004 by Schütz and Trimper [6]. We used a simple connection
to Pólya-type urns and relied on limit results for the latter
that were already established before. The ERW belongs to
the class of models describing anomalous diffusion and is
one of the few non-Markovian models that turns out to be
explicitly solvable. However, as we exemplified in this paper,
the ERW model (or variants thereof) or, more generally,
processes with reinforcement can sometimes be reformulated
in terms of urn models, which have been studied for a long
time in the mathematical literature and are still objects of active
research. In particular, results on urns often lead to a deeper
understanding of the corresponding random walk model.

Note added. Recently, a work of Coletti, Gava and Schütz
[31] appeared on the arXiv, with related results on the ERW
but using a different approach.
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