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Thermal conductance of one-dimensional materials calculated with typical lattice models
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We show through calculations on typical lattice models that thermal conductance σ can well describe the
near-equilibrium thermal transport property of one-dimensional materials of finite length, which presents a
situation often met in the application of nanoscale devices. The σ generally contains contributions from the
material itself and those from the thermal reservoirs. The intrinsic σ of the material, i.e., the one with the fewest
external influences, can be efficiently calculated with the help of the “blackbody”-like nonreflective thermal
reservoir, either through the nonequilibrium method or through the Green-Kubo-type formula. σ thus calculated
would be helpful to guide the design of thermal management and heat control in nanoscale devices.
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I. INTRODUCTION

With the scale of materials decreasing to the nanoscale,
the cooling of nanoscale devices [1–5] becomes a challenge.
As a result, the past few decades have witnessed a rapid
growth of interest in thermal transport properties of low-
dimensional systems [6,7]. Through concerted efforts in
theory, experiments, and numerical simulations, it has been
gradually accepted that microscopic thermal properties are
distinct from their macroscopic counterparts [6,8–13]. In
particular, Fourier’s law, which governs macroscopic thermal
transport phenomena, may not be appropriate on the nanoscale
[9–13]. Whether the thermal transport property of a nanoscale
material can be well characterized by a set of appropriate
material parameters is still an open question. A consistent
theoretical understanding of all the experimental findings to
guide the design of nanoscale thermal management has not
emerged yet.

The thermal transport property of a material is usually
described by its thermal conductivity κ . It is defined through a
differential form of Fourier’s law, j = −κ∇T , which linearly
connects the local heat flux density j and the gradient of
local temperature T . This definition essentially relies on the
assumption of local equilibrium [6], i.e., there is a well-defined
local temperature that can represent local thermal properties
at equilibrium. However, in reduced dimensions, the local
equilibrium assumption has not been conclusively justified
yet [14–17], which not only raises ambiguities in theoretical
discussions, but also causes difficulties in the interpretation of
experimental measurements. For example, there is inconsis-
tency between the local equilibrium assumption [14–17] and
the length dependency of the measured thermal conductivity
of nanotubes or nanowires [9–12,18,19].

Instead, one can treat the material in reduced dimensions
as a finite-size open system [7,20]. It has been proposed
theoretically [20] that the thermal conductance

σ = lim
�T →0

S

�T
, (1)
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instead of the conductivity κ , is a better physical quantity to
describe the thermal transport properties of a finite system
in reduced dimensions. Here S is the average total thermal
flux. With the validity of the steady-state-fluctuation theorem
[21,22], or on conditions that the Fokker-Planck equation
is sufficient for the description of the system together with
the thermal reservoirs connected to it [20], σ can be further
expressed with the correlation function of the average total
thermal flux S(t) in a Green-Kubo type formula,

σGK = 1

kBT 2
lim
t→∞

∫ t

0
dτ 〈S(τ )S(0)〉, (2)

where kB is the Boltzmann constant and L is the length of the
system.

It has been revealed that the value of σ in an open system
sensitively depends on the connection between the system and
the reservoirs [23]. A major factor that affects the magnitude of
σ is the reflection at the interfaces, as displayed by the velocity
correlation functions of the system [24]. It suggests that σ

is composed of both contributions from the material itself
and from the reservoirs. When the intrinsic thermal transport
property of the system is involved, as encountered in the design
of nanoscale thermal management [3,5,25], or in the control of
heat balance for microchips [1,2,4], this situation of including
external influences in σ is quite unfavorable.

From the point of view of the property of a nanoscale
system, a good question for the theoretical part is whether
there is a set of physical quantities of the system that can
describe the thermal transport property in reduced dimensions,
for example in nanotubes or nanowires. More specifically, can
such a physical quantity as σ be derived from the equilibrium
properties of the material itself? For an open system, this
further requires the separation of the intrinsic thermal transport
property of the material from those that were externally
induced.

In this work, we show that in typical one-dimensional
model lattices, the thermal conductance σ can serve the
purpose. By showing that σ defined in Eq. (1) can be readily
calculated through the Green-Kubo-type formula Eq. (2) in
these lattices, we display that σ is a material parameter, i.e., a
constant, that only relies on the equilibrium properties of the
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material. In addition, the σ with the fewest external influences,
i.e., the “intrinsic” σ of the lattice, can be determined
with “blackbody”-like nonreflective thermal reservoirs. These
results give a clue as to what kind of physical quantities can
be meaningfully measured in an experiment, and which would
provide a better starting point to the future investigation of
thermal transport in low-dimensional materials.

The rest of the work is organized as follows. In Sec. II,
the model lattices and thermal reservoirs used in the work are
concisely described. Details of the calculation are provided in
Sec. III. In Sec. IV, the thermal conductances calculated with
various lattices and thermal reservoirs are carefully examined.
Finally, we conclude our work with a short summary in Sec. V.

II. MODEL LATTICES AND THERMAL RESERVOIRS

A. Model lattices

Model lattices have been used extensively to illustrate the
thermal transport properties of one-dimensional systems [6,7].
In general, they can be divided into three categories according
to Ref. [26]. The first is the integrable harmonic chain,
where heat conduction is ballistic and the observed thermal
conductance σ is a constant independent of the system length
L [27]. The second is the nonintegrable momentum-conserved
lattices, for example the Fermi-Pasta-Ulam-β (FPU-β) lattice
[6,28,29] and the Toda lattice [30], in which σ is proportional
to Lα−1 with α ∈ (0,1) [9–11]. The third is the nonintegrable
momentum-nonconserved lattices, such as the φ4 lattice and
the Frenkel-Kontorova (FK) lattice, in which Fourier’s law
is recovered and κ is displayed as a constant independent
of the system length. As has been pointed out by several
authors [26,31], the recovery of the Fourier law in the
momentum-nonconserved model lattices is attributed to the
external potential. The FPU-β lattice is used primarily to
illustrate the calculation details of σ in this work. The results
of the harmonic lattice and the φ4 lattice are also displayed as
representatives of two other types of model lattices.

The harmonic and the FPU-α-β model lattices can be
directly derived from a real one-dimensional material in a
series expansion of the interaction potential. The FPU-β model
is obtained by ignoring the cubic term in the Hamiltonian of
the FPU-α-β model. Details of the derivation are described
in Ref. [24]. The Hamiltonian of both model lattices can be
expressed as

H =
∑

i

p2
i

2m
+ k

2
(xi − xi−1 − a)2 + B ′

4
(xi − xi−1 − a)4,

(3)

where m, xi , and pi are the mass, position, and momentum
of the particles, respectively, a is the lattice constant, k is the
spring constant, and B ′ is the cubic force constant. When B ′
is set to zero, Eq. (3) is reduced to the Hamiltonian of the
harmonic lattice. Using m, a, and k as units, Eq. (3) can be
transformed into a dimensionless form of H = ∑

i hi , where

hi = p2
i

2
+ 1

2
(xi − xi−1 − 1)2 + B

4
(xi − xi−1 − 1)4. (4)

In our calculations, B = 1 is assumed throughout. Similarly,
the dimensionless hi for the φ4 lattice is written as

hi = p2
i

2
+ 1

2
(xi − xi−1 − 1)2 + 1

4
(xi − i)4, (5)

where xi − i denotes the displacement of the ith particle from
its equilibrium position.

B. Thermal reservoirs

The influence of thermal reservoirs is investigated with
three types of reservoirs, i.e., the Nosé-Hoover deterministic
thermal reservoir [32,33], the stochastic Langevin reservoir
[34,35], and a “blackbody”-like reservoir without interface
reflection [24]. The last one is the major thermal reservoir
used throughout the work. It is a series of damping particles
attached to the lattice. These damping particles have the same
interactions as those in the model lattice, and they are subjected
to a gradually increasing frictional force when their position
is away from the lattice. With the gradually increasing friction
force, the reservoir can absorb as much as possible the incident
energy flux without reflection. The equation of motion for the
reservoir is

ṗi = −ξipi + fmodel + 
i(t), (6)

where the subscript i represents the displacement of reservoir
particles from the lattice-reservoir interface. fmodel is the inter-
acting force between reservoir particles. It keeps the same form
as that in the lattice under investigation. For example, with
a FPU-β lattice, fmodel = xi+1 − 2xi + xi−1 + B(xi+1 − xi −
1)3 − B(xi − xi−1 − 1)3 in the reservoir. 
i is the stochastic
force on the reservoir particles. Its time correlation function is
determined by the temperature T of the reservoir and the local
frictional coefficient ξi via the fluctuation-dissipation relation
〈
i(0)
i(t)〉 = 2T ξiδ(t). The Boltzmann constant kB is set to
be 1 in the dimensionless form. This “blackbody”-like thermal
reservoir is physically sound, but computationally not the most
efficient. For a mathematically rigorous discussion of how to
construct efficient thermal reservoirs, the reader is referred to
Refs. [36,37].

When the number of particles in this thermal reservoir
is reduced to one, it goes back to the stochastic Langevin
reservoir [34,35]. In this case, the reservoir particle links to
the model lattice on one side, and attaches to a fixed lattice
point on the other side. The equation of motion is then

ṗr = −ξrpr + fmodel + 
r (t)

with 〈
r (0)
r (t)〉 = 2T ξrδ(t). Another thermal reservoir used
in the calculation is the deterministic Nosé-Hoover reservoir
[32,33]. Its equation of motion is

ṗr = −ξrpr + fmodel,

where ξr follows the dynamics of ξ̇r = 1
�2 (p2

r

T
− 1). The � here

denotes the relaxation time scale of the reservoir. The choice
of � affects the ergodicity of the reservoir and was set to be 1.0
in most of the literature. We use the same value in our work.
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III. NUMERICAL DETAILS OF THE CALCULATION

To show that σ is a material parameter that can be expressed
with physical quantities at equilibrium, it is calculated using
two different methods. One is the nonequilibrium method, in
which the lattice is connected to thermal reservoirs at tem-
peratures TH = T0 + �

2 and TL = T0 − �
2 , with T0 denoting

the average temperature of the system and � the temperature
difference. σ is calculated through

σNE = S

TH − TL

= S

�

after S reaches its stationary value. The other one is the
Green-Kubo-like method formulated in Eq. (2), in which only
the fluctuation of S is concerned. If σ indeed characterizes
the thermal transport property of the lattice, the values of σ

calculated through these two methods should be identical.
In the calculation, the dynamics of the entire system,

including the lattice and the thermal reservoirs, is integrated
using the velocity Verlet algorithm [38], which is an energy-
conserved symplectic algorithm [39–41]. Other symplectic
algorithms such as the symplectic Runge-Kutta-Nystrom
(SRKN) algorithm [42] are also tried in the calculation, but
they turn out to be far less efficient computationally. The time
step used in the calculation is dt = 0.01, and the trajectories
of lattice particles in the first 2 × 107 dimensionless time units
are discarded to ensure the system has arrived at a stationary
state. Then, the subsequent trajectories of 2 × 107 time units
are used for statistics.

The dimensionless local temperature Ti is calculated as
the time average of ẋ2

i , i.e., Ti = limτ→∞ 1
τ

∫ τ

0 dt ẋ2
i (t). S is

calculated as the average of the local thermal flux ji(t) at each
lattice point as S = ∑

i ji(t)/L, where ji(t) is expressed as [6]

ji(t) = 1
2 (xi+1 − xi)(ẋi+1 + ẋi)F (xi+1 − xi) + ẋihi, (7)

with hi defined in Eq. (4) or Eq. (5), depending on the lattice
models.

In the nonequilibrium method, the stationary thermal flux
presented in the final results is calculated as the time average
of S(t) in the 2 × 107 time units after it reaches the stationary
state. The instantaneous S in Eq. (2) is calculated as S(t) =∑

i ji(t)/L. In the calculation of the correlation function
C(t) = L2〈S(t)S(0)〉, up to t = 10 000, an ensemble of 120
independent lattices is averaged to get the final results in
addition to the time average along the particle trajectories.
The convective part, i.e., the contribution of the velocity and
the displacement of the center of mass, is subtracted from S(t)
when C(t) is calculated [43].

To remove as much as possible the reflection of long-
wavelength fluctuations, the length of each “blackbody”-like
reservoir is set to be half of the lattice length, i.e., L/2 for a
lattice of length L. In addition, ξi varies linearly from ξi = 0
at the interface to ξmax = 20 at the other end of the reservoir.
The effectiveness of this reservoir to reduce reflection is
demonstrated in Ref. [24].

IV. RESULTS AND DISCUSSION

With the nonequilibrium method, one can first establish the
existence of a linear relation between S and the temperature

FIG. 1. σL as a function of the temperature difference � in
a FPU-β lattice connected to the “blackbody”-like nonreflective
thermal reservoirs, in which L = 500 and T0 = 0.05. The stars
represent calculated values, and the dashed line is fitted with an
exponential function.

difference �, as � approaches zero. Figure 1 displays the
σ as a function of � in a FPU-β lattice of length L = 500
and T0 = 0.05. It suggests that there is a physical quantity,
e.g., σ , which can be used to characterize the near-equilibrium
thermal transport capability of the system. It should be noted
that the σ assessed in this way includes both the contributions
from the lattice and those from the interfaces, i.e., the Kapitza
effect [44]. Moreover, the existence of such a quantity only
means that the thermal flux has a linear response to the small
temperature difference imposed at both ends of the system. It
does not necessarily imply the validity of Fourier’s law inside
the lattice.

The fitted curve, displayed as a red dashed line in Fig. 1,
shows that σ increases exponentially when � is on the same
order of T0. The region in which σ is nearly a constant, i.e.,
where the deviation of σ is less than 1.0%, lies in the range of �

less than 0.01, which is around 20% of T0. This 20% condition
can be met by most of the experiments [45–47] conducted near
room temperature, i.e., ∼300 K, where � is usually smaller
than 60 K.

The convergence of the correlation function C(t) and
σ in a FPU-β lattice of length L = 100 connected to the
“blackbody”-like nonreflective thermal reservoirs is displayed
in Fig. 2. The results calculated with various trajectory lengths
are presented with different symbols. Note that the solid
and dashed lines closely match each other. It unambiguously
displays that the convergence of C(t) and σ has been reached.
A typical unconverged calculation is displayed by the dash-
dotted lines. They show clearly that the time integration of
C(t) keeps increasing with t . In a converged calculation, as
displayed by the solid and dashed lines, C(t) decreases to
nearly zero at t ∼ 100, which is the time that the influence
of a thermal fluctuation travels through the system at the
sound speed (vs ∼ 1 here). This observation also gives an
estimation as to the length of trajectory necessary to converge
the calculation of C(t). For the lattice of L = 100, the length
of the trajectory to converge C(t) up to t ∼ 100 is ∼1 × 105,
and for L = 5000, the longest lattice length investigated in
our work, the trajectory length necessary for convergence is
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FIG. 2. (a) Heat current correlation function C(t) in a FPU-β
lattice connected to the nonreflective thermal reservoirs, with T0 =
0.05 and L = 100. Various trajectory lengths were used to examine
the convergence of C(t). (b) Corresponding σL integrated from C(t)
with various trajectory lengths.

∼5 × 106. Note that this estimation is based on the ensemble
average of 120 samples in each calculation.

The C(t) thus calculated displays a distinct behavior from
those reported in previous works, as displayed in Fig. 3. In
most of the works [48–52], C(t) is calculated as follows:
First, the system is put into a canonical distribution of the
desired temperature. Then, the system is allowed to evolve
with a periodic boundary condition. The C(t) is calculated
in the second step. This procedure is useful for systems
approaching the thermodynamic limit, however it would be
problematic for a lattice of finite length. The recurrence of
the system [28,51] in this procedure causes a fundamental
problem, i.e., C(t) thus calculated does not decay to zero with
increasing t , as displayed by the dash-dotted curve in Fig. 3.
This makes the integration of C(t) in the calculation of σ

unbounded [43,48]. Putting an artificial cutoff time tc = L/vs

in the integration, as practically employed in the literature,
does not solve the problem completely. The σ calculated in this
way is essentially overestimated compared to those calculated
using the nonequilibrium method [23,50]. The nonundulated
decaying behavior in a system with periodic boundaries itself is

FIG. 3. C(t) calculated with three different kinds of reservoirs as
well as that calculated with periodic boundary conditions in a FPU-β
lattice, with T0 = 0.05 and L = 100.

FIG. 4. C(t) for various system lengths of L = 100,500,1000 in
a FPU-β lattice connected to the nonreflective thermal reservoirs. (a)
T0 = 0.05 and (b) T0 = 0.25.

of interest. It was attributed by Chen et al. [51] to the vanishing
correlation of the local current to either the position or the
momentum.

Alternatively, Kundu et al. [20] proposed to calculate C(t)
using Eq. (2) with thermal reservoirs attached. Recently, Das
et al. showed [23] in a FPU-α-β lattice attached to stochastic
Langevin thermal reservoirs that the C(t) thus calculated
indeed decayed to zero, and the calculated σ agreed with
those estimated with the nonequilibrium method. However,
it was also observed [23] that C(t) decayed slowly with strong
oscillations, which makes the calculation of σ via Eq. (2)
converge extremely slowly and the method practically less
attractive. The oscillatory behavior is also reproduced in Fig. 3
with a FPU-β lattice connected to Nosé-Hoover deterministic
or stochastic Langevin thermal reservoirs, displayed as a
dashed curve and a dotted curve, respectively. The oscillatory
behavior, which repeats with a period of 2L/vs , is quite
similar to that in the velocity correlation functions revealed
in Ref. [24]. It is attributed to the reflection at the interfaces
between the lattice and the thermal reservoirs, and it can
be eliminated using nonreflective “blackbody”-like thermal
reservoirs. The solid curve in Fig. 3 shows the C(t) calculated
with the nonreflective thermal reservoirs, where the oscillatory
behavior duly disappears.

Figure 4 shows the dependency of C(t) on the system size
after the interfacial reflection is removed. Two temperatures
of T0, i.e., T0 = 0.05 and 0.25, are displayed to represent
low- and high-temperature conditions, respectively. It shows
that C(t) does not have a long-time tail that slowly decayed
with the power law at large t . Instead, there is a natural time
scale proportional to the length of the lattice, on which the
correlation decays to a value close to zero. Noticing that
the time scale in which a thermal fluctuation travels through
the lattice is around L/vs , where vs ∼ 1, these results suggest
that C(t) thus calculated may well reflect the intrinsic property
of the lattice itself. The σ integrated from the C(t) is thus also
a physical property associated with the lattice itself, without
or with the fewest external influences. This should be the very
thermal transport property looked for by the nanoscale heat
management or thermal control design [53,54].
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FIG. 5. Comparison of σL calculated using the nonequilibrium
method and the Green-Kubo-type formula in various model lattices
up to L = 5000. (a) T0 = 0.25 and (b) T0 = 0.05.

Figure 5 presents a systematic investigation of the σ in
three typical lattices, i.e., the FPU-β, φ4, and harmonic lattices,
The σ ’s calculated using the C(t) with nonreflective thermal
reservoirs, denoted as σGK, are displayed as dots and dashed
lines in the figure. To compare with the results of other studies
[23,50], σ is multiplied by the length of the system as σL,
which can be regarded as the effective thermal conductivity of
the system [7,47,55]. σ calculated using the nonequilibrium
method, denoted as σNE, are also displayed as dots and

solid lines for comparison. The σ ’s calculated using these
two methods are almost identical to each other in all cases
independent of the model lattice and system size, as illustrated
by the figure.

At high temperature, as displayed in Fig. 5(a) for T0 = 0.25,
σL is proportional to L for the harmonic lattice, and it
approaches a constant for the φ4 lattice. These agree well
with previous findings [26,27,31]. For the FPU-β lattice, our
calculation shows that σL approaches Lα , with α between
0.3 and 0.4, as the system size increases. It should be noted
that, as pointed out by Refs. [50,56], the scaling may change
with the transition of the transport region when the length
increases further. However, that discussion is beyond the scope
of the current work. At low temperature, as displayed in
Fig. 5(b) for T0 = 0.05, the power law of the φ4 model is
less evident up to the system size of L = 4500, which may
be caused by the decreasing phonon scattering frequency at
lower temperature [57]. Nevertheless, our calculation shows
that σ ’s calculated with the two methods agree with each
other. This suggests it a well-behaved physical quantity in
various conditions regardless of whether the thermal transport
behavior itself is normal or abnormal.

V. SUMMARY

In summary, we show through calculations on typical
models that the thermal conductance σ can be used to
characterize the thermal transport of one-dimensional ma-
terials of finite length, e.g., nanotubes and nanowires. The
σ generally contains the contribution of the material itself
and that from the thermal reservoirs. The value of σ with
the fewest external influences can be efficiently calculated
by employing nonreflective thermal reservoirs, either through
the nonequilibrium method or through the Green-Kubo-type
formula.
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[1] K. Kordas, G. Tóth, P. Moilanen, M. Kumpumäki, J.
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