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Aging Wiener-Khinchin theorem and critical exponents of 1/ f β noise

N. Leibovich,1 A. Dechant,1,2 E. Lutz,2 and E. Barkai1
1Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel

2Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
(Received 20 March 2016; revised manuscript received 7 August 2016; published 17 November 2016)

The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using
the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and
introduce a time-dependent power spectrum 〈Stm (ω)〉 where tm is the measurement time. For processes with an
aging autocorrelation function of the form 〈I (t)I (t + τ )〉 = tϒφEA(τ/t), where φEA(x) is a nonanalytic function
when x is small, we find aging 1/f β noise. Aging 1/f β noise is characterized by five critical exponents. We
derive the relations between the scaled autocorrelation function and these exponents. We show that our definition
of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation
to the apparent infrared divergence of 1/f β noise. We illustrate our results for blinking-quantum-dot models,
single-file diffusion, and Brownian motion in a logarithmic potential.
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I. INTRODUCTION

In many applications, a random process I (t) recorded
in a time interval [0,tm] is analyzed using the sample
spectrum Stm (ω) = | ∫ tm

0 I (t ′) exp(−ıωt ′)dt ′|2/tm, where the
measurement time tm is assumed to be long. For a stationary
process, the power spectrum is routinely calculated from
the autocorrelation function C(τ ) = 〈I (t)I (t + τ )〉, using the
Wiener-Khinchin theorem [1,2]

lim
tm→∞

〈
Stm (ω)

〉 = 2
∫ ∞

0
dτ C(τ ) cos(ωτ ). (1)

Obviously, not all physical processes are stationary [3–15] and
then the Wiener-Khinchin theorem (1) does not hold. Extend-
ing the Wiener-Khinchin theorem to nonstationary processes
has been a topic of many works [16–19]. Some relate it to the
instantaneous power spectrum, where it loses its meaning as a
density since it may get negative values (e.g., [16,17]). Others
deal with a specific process such as telegraphic noise [18] or
periodically driven stochastic systems [19].

We here consider the power spectrum of systems exhibiting
scale invariant aging with an autocorrelation function of
the form C(t,τ ) ∼ tϒφEA(τ/t), where (. . .)EA refers to the
ensemble average. Such autocorrelation functions appear in
a vast array of systems and models ranging from glassy
dynamics [10,20,21], blinking quantum dots [22], laser-cooled
atoms [23,24], motion of a tracer particle in a crowded environ-
ment [25,26], elastic models of fluctuating interfaces [27], dif-
fusion in heterogeneous environment [28], deterministic noisy
Kuramoto models [29], granular gases [30], deterministic
intermittency [31], to growing interfaces following the Kardar-
Parisi-Zhang (KPZ) equation [32,33]. In our recent publi-
cations [34,35], we have generalized the Wiener-Khinchin
theorem to these aging processes by introducing a time-
dependent spectral density. We have moreover established a
correspondence to 1/f β noise when φEA(x) is not analytic for
small arguments.

The power spectrum of 1/f β noise (sometimes simply
called 1/f noise) at low frequencies is

S(ω) ∼ ω−β, 0 < β < 2. (2)

The value β = 0 corresponds to white noise and β = 2
to Brownian noise. 1/f β noise, with a range of different
exponents, occurs in many systems in a variety of disciplines.
A partial list includes electronic, solid and condensed matter
devices [36–39], sand-pile models [40], blinking quantum
dots [41,42], nanoscale electrodes [43], geophysics including
weather data [44,45], experimental data of voltage-dependent
anion channel in rats’ brains [46], and processes modeled by
nonlinear-stochastic-differential equations [47].

In [48], Mandelbrot suggested that “one needs a non-
Wienerian spectral theory to account for f θ−2 noise,” where
a spectrum dependent on the length of the time series might
be measured [48,49]. Indeed, as shown theoretically [5,6,50]
and experimentally [43,51], the power spectrum of a blinking
quantum dot and of nanoelectrodes ages, namely, as the mea-
surement time becomes longer the intensity of the measured
noise is reduced, decaying as a power law.

Traditional studies of 1/f β noise characterize the spectrum
with a single exponent β. In the recent experiment of Ref. [51],
the aging properties of 1/f β noise were characterized with
the help of five different exponents β, z, μ, η, and δ defined
as follows: the asymptotic power spectrum is of the form
S(ω) ∼ Atmω−β with the time-dependent amplitude Atm ∼
(tm)−z for long times and low-frequency cutoff ωmin ∼ (tm)−η.
Furthermore, the “power” at zero frequency is S(0) ∼ (tm)μ

and the total measured power
∫ ∞

1/tm
S(ω)dω ∼ (tm)δ . Our aim

here is to derive these five exponents from the scale invariant
autocorrelation function for aging processes and investigate
their relationships. We apply our finding to blinking-quantum-
dot models [22], as well as to single-file diffusion [25,26]
and diffusion in a logarithmic potential [23,24]. Sample paths
of these models, i.e., a representative time trace of these
processes, are shown in Fig. 1. Visually these processes
appear very different; the underlying unifying theme is their
description in terms of a scale invariant autocorrelation
function which leads to 1/f β noise.

For stationary processes, the spectrum is related to the
discrete Fourier modes at the natural frequencies ωn = 2πn/tm
with n integer [1]. The integral of the spectrum over all
frequencies is finite and equal to the sum of the Fourier
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FIG. 1. Time traces of the three models: blinking-quantum-dot
(BQD) model with α = 0.8 (upper panel), single-file diffusion (SFD)
with D = 0.5 and a = 1 (middle panel), and Brownian motion in
a logarithmic potential (lower panel). See details on each model in
Secs. VII, VIII, and IX (respectively).

modes’ intensities. Since the spectrum is thus positive and
normalizable, we can interpret it as the continuous distribution
of Fourier modes in the limit of infinite measurement time.
By contrast, 1/f β noise with β > 1 exhibits a nonintegrable
infrared divergence and thus infinite power, which has led
to some discussions on its physical interpretation [5,48,49].
We comment that in some (although not many) systems,
regardless of stationarity, a low-frequency cutoff can be found
at low frequencies. This cutoff may render the power spectrum
integrable (see [36,38,52] and the references therein). For other
systems, no cutoff has ever been observed. Here, we show that
allowing a measurement-time-dependent spectrum naturally
resolves this apparent convergence paradox, as the power
remains finite at finite times. Thus, even for nonstationary
processes, the spectrum retains its interpretation as a density
in frequency space. While for finite measurement times the
detectable Fourier modes are of course discrete, we argue
that, nevertheless, the spectrum can also be understood
as a continuous function of frequency. This function then
exhibits scale invariant oscillations, which can yield additional
information on the critical exponents not contained in the
natural frequencies.

The outline of the paper is the following. In Secs. II
and III, we derive the generalized Wiener-Khinchin theorem
connecting the aging autocorrelation function C(t,τ ) and
the time-dependent spectral density Stm (ω). In Sec. IV, we
evaluate explicitly the spectral density for a scale invariant
autocorrelation function and discuss the relationship with
1/f β noise. We then compute in Sec. V the five critical
exponents characterizing 1/f β noise. In Sec. VI, we compare
the properties of the time-dependent spectrum to the stationary
case and discuss its relation to Fourier modes. Finally, in
Secs. VII, VIII, and IX, we apply our results to concrete
examples: blinking quantum dot, single-file diffusion, and
diffusion in a logarithmic potential, respectively.

II. AGING POWER SPECTRUM:
THE TIME-AVERAGED FORMALISM

For a nonstationary process, the ensemble-averaged auto-
correlation function is 〈I (t)I (t + τ )〉 = C(t,τ ) and depends
explicitly on the time t and the lag time τ . To examine
analytically the temporal behavior of the power spectrum, we
follow Mandelbrot [48] and define the power spectrum of a
random signal I (t) as Stm (ω) = |Îtm (ω)|2/tm where Îtm (ω) =∫ tm

0 I (t ′) exp(−ıωt ′)dt ′, and tm is the measurement time. The
spectrum, by this definition, is〈

Stm (ω)
〉 =

〈
1

tm

∫ tm

0
dt1I (t1)e−ıωt1

∫ tm

0
dt2I (t2)e+ıωt2

〉
. (3)

Equivalently, we can write〈
Stm (ω)

〉 = 1

tm

∫ tm

0
dt1

∫ tm

t1

dt2〈I (t1)I (t2)〉e−ıω(t1−t2)

+ 1

tm

∫ tm

0
dt1

∫ t1

0
dt2〈I (t1)I (t2)〉e−ıω(t1−t2), (4)

where the first term on the right side corresponds to t1 < t2,
and the second term is for t2 < t1. In order to express Eq. (4)
in terms of the autocorrelation function we first change the
integration order and the names of integration variables (t1 ↔
t2) to find 〈

Stm (ω)
〉 = 1

tm

∫ tm

0
dt1

∫ tm

t1

dt2〈I (t1)I (t2)〉

× [eıω(t1−t2) + e−ıω(t1−t2)]. (5)

An additional change of variables t1 = t1 and t2 − t1 = τ gives〈
Stm (ω)

〉 = 2

tm

∫ tm

0
dt1

∫ tm−t1

0
dτ 〈I (t1)I (t1 + τ )〉 cos(ωτ ).

(6)

By interchanging the order of integration, we finally ob-
tain [50]〈

Stm (ω)
〉 = 2

tm

∫ tm

0
dτ (tm − τ )〈CTA(tm,τ )〉 cos(ωτ ), (7)

where the time-averaged autocorrelation function is defined as

CTA(tm,τ ) = 1

tm − τ

∫ tm−τ

0
dt1I (t1)I (t1 + τ ). (8)

We emphasize that the ensemble- and time-averaged autocor-
relation functions C(t,τ ) and CTA(tm,τ ) are not identical for the
underlying processes considered in this paper. In the following,
we consider time-averaged autocorrelation functions of the
scaling form

〈CTA(tm,τ )〉 = tϒm ϕTA(τ/tm). (9)

For the time being, we assume that this asymptotic scaling
is valid for all τ and tm. For real physical systems this is
an approximation, as we discuss in Secs. VII–IX. We also
assume that 〈I 〉 is a constant independent of time (see further
discussion in Appendix A). Substituting Eq. (9) in Eq. (7)
and changing variables (x = τ/t1), we obtain what we call the
time-averaged form of the aging Wiener-Khinchin theorem

〈
Stm (ω)

〉 = 2tϒ+1
m

∫ 1

0
dx(1 − x)ϕTA(x) cos(ωtmx). (10)
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By using a cosine transform [53] we further find

tϒm ϕTA(x) = 1

2π (1 − x)

∫ ∞

−∞
dω

〈
Stm (ω)

〉
cos(ωtmx), (11)

where 0 < x < 1 and 〈Stm (ω)〉 is an even function. Equa-
tion (11) establishes a direct connection between the scaling
function ϕTA(x) and the average power spectrum 〈Stm (ω)〉.
Care must be taken when evaluating information on the
underlying autocorrelation function from the sample spectrum
(see discussion in Appendix B).

Note that the spectrum ages, i.e., it depends on the
measurement time tm (when the measurement started at t = 0),
namely, as the measurement time becomes longer the intensity
of the measured noise might change, reflecting the aging of
the system.

III. AGING POWER SPECTRUM:
THE ENSEMBLE-AVERAGED FORMALISM

In this section, we derive a relation between the ensemble-
averaged autocorrelation function C(t,τ ) and the average time-
dependent power spectrum 〈Stm (ω)〉. We assume, as before,
that the autocorrelation function scales as

C(t,τ ) = tϒφEA(τ/t) (12)

at all times τ and t . Systems which exhibit this type of
correlation scaling behavior have been discussed in Refs.
[10,20–22,25–27,29–31,33,54]. By taking the ensemble av-
erage of Eq. (8), we directly obtain a connection between time
and ensemble-averaged correlation functions

ϕTA(x) = xϒ+1

1 − x

∫ ∞

x
1−x

dy
φEA(y)

y2+ϒ
. (13)

Let us first assume ϒ = 0. Then, substituting Eq. (13) in
Eq. (10) and changing the integration order we find

〈
Stm (ω)

〉 = 2tm

∫ ∞

0
dx φEA(x)

∫ 1/(1+x)

0
dt̃1 cos(ω̃t̃1x)t̃1. (14)

Integrating by parts gives

〈
Stm (ω)

〉 = 2tm

∫ ∞

0
dx φEA(x)

×
[

sin
(
ω̃ x

1+x

)
ω̃x(1 + x)

+ cos
(
ω̃ x

1+x

)
ω̃2x2

− 1

ω̃2x2

]
. (15)

Again changing variables according to y = x/(1 + x) eventu-
ally gives

〈
Stm (ω)

〉 = 2tm

∫ 1

0

dy

(ω̃y)2
φEA

(
y

1 − y

)
× [ω̃y sin(ω̃y) + cos(ω̃y) − 1], (16)

where ω̃ = ωtm.
For ϒ 	= 0, we find in a similar manner

〈
Stm (ω)

〉 = 2tm

∫ ∞

0
dx φEA(x)

∫ 1/(1+x)

0
dt̃1 cos(ω̃t̃1x)t̃1

ϒ+1
.

(17)

Evaluating the last integral explicitly [55], we finally arrive at

〈
Stm (ω)

〉 = 2tϒ+1
m

2 + ϒ

∫ 1

0
dy(1 − y)ϒφEA

(
y

1 − y

)

× 1F2

[
1 + ϒ

2
;

1

2
,2 + ϒ

2
; −

(
ω̃y

2

)2]
, (18)

where 1F2[a; b1,b2; z] refers to the hypergeometric function
and ϒ > −2 for convergence. Equation (18) is our second
aging Wiener-Khinchin theorem connecting the ensemble-
average scaling autocorrelation function φEA to the sample
spectrum. The inverse formula, which relates the power
spectrum to the ensemble-averaged autocorrelation function
is

C(tm − τ,τ ) = 1

π

∫ ∞

0
dω cos(ωτ )

[〈
Stm (ω)

〉+ tm
∂

∂tm

〈
Stm (ω)

〉]
.

(19)

This inversion is general and valid for any type of autocorre-
lation function.

Equations (10) and (18) provide two forms of the aging
Wiener-Khinchin theorem, relating the sample spectrum to
either the time- or ensemble-averaged scaling autocorrelation
function. The choice between the theorems depends on
the practical application. Most theoretical works provide an
ensemble-averaged autocorrelation function φEA(x). In this
case, to use Eq. (10) we need to determine the time-averaged
autocorrelation function from Eq. (13) first. On the other hand,
to use Eq. (18) we need to determine the time dependency
of the autocorrelation function, in particular the exponent ϒ ,
which in experimental situations is a priori unknown, although
it could be estimated from data. In addition, the inverse
formula (19) contains a derivative term, which may increase
measurement errors (see Appendix B where the inversion is
performed for a specific example). Still, both formalisms are
clearly equivalent and useful.

IV. SCALE INVARIANT AUTOCORRELATION FUNCTION
AND THE POWER SPECTRUM

Our goal now is to relate explicitly the spectral density
for the scale invariant autocorrelation function and discuss the
relationship with 1/f β noise. We assume an additional char-
acteristic behavior of the scaling function; the autocorrelation
function φEA(x) is asymptotically of the polynomial form

φEA(x) ≈
{
a0 − aVxV + · · · , x � 1

b0 − b�x� + · · · , x � 1
(20)

where a0, b0, aV, and b� are constants which are determined by
the specific process. Processes that possess such a behavior are
given in Refs. [21–23,25–30,33,37] (see also Table I). Using
Eq. (13) we find the time-averaged autocorrelation function

ϕTA(x) ≈
{

ã0 − ãVxV + ã1x + · · · , x � 1

b̃0(1 − x)ϒ − b̃�(1 − x)ϒ−� + · · · , 1 − x � 1

(21)

where ã0 = a0/(1 + ϒ), b̃0 = b0/(1 + ϒ), ãV = aV/(1 +
ϒ − V), and b̃� = b�/(1 + ϒ − �). We assume 0 < |V| < 1,
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TABLE I. The aging behavior of several models, where the autocorrelation function is given in terms of 〈I (t)I (t + τ )〉 ∼ tϒφEA(τ/t) and
φEA(x) ∝ a0 − aVxV when x � 1.

Model [Ref.] Exponent range ϒ V Method

Unilayer Parisi’s tree [21] 0 < α < 1 0 α − 1 Analytic
Blinking quantum dot [22] 0 < α < 1 0 a, 2α − 2b α − 1a, 1 − α b Analytic
Laser-cooled atoms [23] 1 < α < 3 2 − α 2 − α Analytic
Single-file diffusion [25,26] 1/2 1/2 Analytic
Generalized elastic model [27] 0 < α < 1 α α Analytic
Coupled classical oscillatorsc [29] [−0.02,0]d [−0.58, − 0.4]e −0.14 ± 0.03d 0e Numeric
(1+1)D KPZ class [32] 2/3 2/3 Analytic
(1+1)D KPZ interfaces in LC turbulence [33,57] ≈0.66f ≈0.66 Experiment
(2+1)D DP class [58] ≈0.901 Numeric
(2+1)D DP transition in LC turbulence [59] ≈0.9 Experiment
Infinite RC transmission line [37] 1 < α < 2 α − 1 α − 1 Analytic
2D Glauber-Ising model [60,61] ≈0.115g Numeric

0h Analytic

aPower-law “on”/“off” waiting time [22].
bFinite mean “on” time [22].
cLattice size 32 × 32, coupling strength κ = −4 [29].
dIntermediate regime (ii) (see details in [29]).
eSaturation regime (iii) (see details in [29]).
fThe exponent ϒ = 2β where β was measured as ≈0.33.
gQuench from disordered configuration to critical temperature.
hQuench from disordered configuration to low temperature.

ϒ − V > −1, � < 0, and ϒ − � > −1 for convergence.
These conditions are naturally satisfied for all relevant ex-
amples (see Table I and Secs. VII–IX).

Using Eq. (10), the power spectrum for such a process in
the limit ωtm = 2πn, where n is a large positive integer, is〈

Stm (ω)
〉
ωtm=2πn

≈ 2ãV
sin(πV/2)�(1 + V)

t−ϒ+V
m ω1+V

. (22)

Accordingly, the scale invariant autocorrelation function (20)
leads to 1/f β noise. The next leading terms are〈

Stm (ω)
〉
ωtm�1

≈ 2ãV
sin(πV/2)�(1 + V)

t−ϒ+V
m ω1+V

+ 2(a0 − ã1)

ω2t−ϒ+1
m

− 2b̃0
�(2 + ϒ) cos(ωtm − ϒπ/2)

ω2+ϒtm

+ 2b̃�

�(2 + ϒ − �) cos [ωtm − (ϒ − �)π/2]

ω2+ϒ−�t−�+1
m

(23)

(see derivation in [35]). When ωtm is treated as a continuous
variable, Eq. (23) exhibits oscillations. For specific examples,
these oscillations are discussed in Secs. VII–IX. The condi-
tions on the exponents ϒ, V, and � guarantee that the 1/f β

spectrum (22) is indeed the leading order for large ωtm. Exact
1/f noise, with β = 1 and logarithmic time dependence [6], is
not discussed here and left for a future work. In Secs. VII–IX
we show that this result is not valid for arbitrarily large
frequencies since then the scaling assumption breaks down.

We note that when ωtm � 1, the spectrum is controlled
by the first term, which was determined by the nonanalytic
expansion of the autocorrelation function when τ � tm. The
oscillating behavior seen in Eq. (23) is a finite-measurement-
time effect and is related to the autocorrelation function when

τ ∼ tm. Thus, detecting these oscillations gives insight on
the details of the underlying autocorrelation function. In fact,
since 1/f β spectrum is so common, yet its physical origin
still remains unclear in many cases, the oscillating part of the
spectrum might be a valuable tool for distinguishing between
microscopic models. These oscillations depend only on the
scaling variable ωtm and are universal in that sense. In our
examples below Eq. (22) works well also when ωtm ≈ 1.

We note that when the spectrum is evaluated on the natural
frequencies ωtm = 2πn, n ∈ N, then according to Eq. (22) the
power spectrum is characterized by two exponents: ϒ and V.
These are given in Table I for specific systems exhibiting aging.
When we consider the continuous frequencies then, according
to Eq. (23), the spectrum is quantified using three exponents ϒ ,
V, and � describing the time and frequency dependence of the
1/f β spectrum. Below we discuss three additional exponents,
which characterize the process.

V. CRITICAL EXPONENTS AND SCALING RELATIONS

As mentioned in the Introduction, traditional theories of
1/f β noise characterize the spectrum with a single expo-
nent β. However, this is not sufficient as recent studies
show [5,6,43,51]. We follow [51] and characterize the finite-
time power spectra Stm (ω) with five power laws as follows: (i)
the power spectrum frequency dependence S(ω) ∼ ω−β for
low frequencies, (ii) the power spectrum time dependence
S(ω) ∼ Atmω−β where Atm ∼ t−z

m for long times, (iii) the
lower cutoff time dependence ωmin ∼ t

−η
m , (iv) the power

at zero frequency S(0) ∼ t
μ
m, and (v) the total measured

power
∫ ∞

1/tm
S(ω)dω ∼ t δm. In this section, we compute these

exponents from the properties of the autocorrelation function.
We will later consider three physical models where these
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TABLE II. Summary of the scaling autocorrelation function
exponents [see Eq. (20)] for the three systems discussed in Secs. VI–
VIII. The first and second columns list the system and its relevant
scaling exponent range.

Model Exponent range ϒ V �

Single-file diffusion 1/2 1/2 −1/2
Blinking quantum

dot–finite mean
“on” time

0 < α < 1 2α − 2 α − 1 α − 1

Blinking quantum
dot–infinite mean

0 < α < 1 0 1 − α −α

Logarithmic
potential

1 < α < 3 2 − α 2 − α 1/2 − α

exponents are calculated explicitly; see Tables II and III for a
summary.

We consider a process with an autocorrelation function
with the scaling behavior (20). The critical exponent β which
is determined by the power-law decay of the average power
spectra in Eq. (22) is

β = 1 + V, (24)

where β 	= 1. In addition, the aging exponent z which is related
to the time decay is

z = V − ϒ, (25)

so clearly β = 1 + z + ϒ . When β = 1, logarithmic time
corrections are expected [6]. In an experimental situation the
exponent ϒ may be measured through the zero-frequency
power as described in the next paragraph.

A. Zero-frequency power density and the exponent μ

To determine the exponent ϒ , one may measure the

spectrum at zero frequency, i.e., 〈Stm (ω = 0)〉 = tm〈I 2
tm

〉 where

the time-averaged signal is I tm = ∫ tm
0 I (t)dt/tm. Of course,

the zero frequency cannot be considered part of the spectrum
itself, at least not in the traditional sense, since in a finite
time measurement one cannot detect a frequency shorter
than 2π/tm. However, this does not imply that it cannot be
measured, it is rather easy to do so. For a stationary process,
〈Stm (0)〉 is linearly dependent on the measurement time tm. For
a nonstationary process, its time dependence is related to the
exponent ϒ as follows.

When the ensemble-average autocorrelation function is
scaled as Eq. (12), the power density at zero frequency

is 〈
Stm (ω = 0)

〉 = 2tϒ+1
m

∫ ∞

0
dx

φEA(x)

(1 + x)ϒ+2
(26)

or, equivalently (after a change of variables),

〈
Stm (ω = 0)

〉 = 2tϒ+1
m

∫ 1

0
dx φEA

(
x

1 − x

)
. (27)

The exponent μ is hence given by

μ = 1 + ϒ. (28)

Notice that the scaling relation μ = β − z is also valid. This
relation was suggested in Ref. [51] in the context of blinking-
quantum-dot models.

Remark. Equation (26) was already obtained in the context
of a scaling Green-Kubo relation [54]. The scaling Green-
Kubo formula expresses the relation between the diffusion
coefficient of an enhanced diffusion process, and the scale
invariant velocity autocorrelation function. The mean-squared
displacement is equivalent to tm〈S(0)〉 which is the spectrum
in zero frequency multiplied by the measurement time tm.

B. Lower cutoff time dependence

The lower cutoff time dependence ωmin ∼ t
−η
m is defined

by the transition frequency between the power-law decay
〈Stm (ω)〉ωtm�1 and 〈Stm (0)〉. By comparing Eqs. (22) and (27),
i.e., 〈Stm (0)〉 = AVtϒ−V

m ω−1−V
min where AV = 2ãV sin(πV/2)

ϒ(1 + V), we find

ωmin ∼ t−1
m . (29)

We thus conclude that η = 1 for all processes with an
autocorrelation function in the form of Eq. (12).

The existence of such a cutoff is required since a purely
1/f β noise cannot exist in the range 0 < f < ∞ for the
following reasons. First, the power at zero frequency must
be finite since 〈Ī 2

tm
〉 < ∞, for every finite measurement time.

Second, we expect the total power to be finite at every finite
measurement time since∫ ∞

−∞
dω

〈
Stm (ω)

〉 = 2πtϒm ϕTA(0), (30)

even though Eq. (23) is not integrable in [0,∞). Notice that
the sample spectrum is time dependent although its 1/f β

part might be time independent, e.g., if ϒ = V. Therefore,
measuring 1/f β noise, even time independent, does not
contradict the finite power requirement. Equation (30) implies
that 〈Stm (ω)〉 is normalized, provided that ϕTA(0) is finite,

TABLE III. Summary of the critical exponents for the three systems discussed in Secs. VI–VIII.

Exponent β z η μ δ

Model range S ∼ ω−β S ∼ t−z
m ωmin ∼ t−η

m S(0) ∼ tμ
m

∫ ωmax

1/tm
Stm (ω)dω

Single-file diffusion 3/2 0 1 3/2 1/2
Blinking quantum dot–finite mean “on” time 0 < α < 1 α 1 − α 1 2α − 1 α − 1
Blinking quantum dot–infinite mean 0 < α < 1 2 − α 1 − α 1 1 0
Logarithmic potential 1 < α < 2 3 − α 0 1 3 − α 2 − α

2 < α < 3 3 − α 0 1 3 − α 0
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and since it is non-negative it satisfies the conditions for a
normalized density [56].

C. Total power time dependence

For an ideal 1/f β source, the total power of the process
diverges since

∫ ∞
0 ω−βdω = ∞. If β < 1 (β > 1) the integral

diverges due to the high- (low-) frequency limit. We should
be mainly concerned with low frequency since the whole
behavior of 1/f β is found in that regime. Indeed, as we show
below, there always exists a physical mechanism that leads
to a cutoff at large frequencies. As was mentioned in Sec. V,
the total measured power is characterized by the exponent δ,
i.e.,

∫ ωmax

1/tm
S(ω)dω ∼ t δm, where we assume that ωmax is time

independent. As a result,∫ ωmax

1/tm

S(ω)dω ∼ ω−V
maxt

ϒ−V
m + tϒm = ω−V

maxt
−z
m + tμ−1

m . (31)

The exponent δ is accordingly given by

δ = − min(z,1 − μ). (32)

Taking ωmax → ∞ the total power time dependence scales as
tϒm as is expected from Eq. (30).

For bounded processes, we expect that the total power will
not increase as a function of time, namely, ϒ � 0. By contrast,
in open (i.e., unbounded) processes, the total measured power
may increase with measurement time, as for example single-
file diffusion in infinite system, as we will discuss below.

VI. BASIC REQUIREMENTS FOR THE SPECTRAL
DENSITY THEOREM

We now compare between the properties of Wienerian
and aging power spectra clarifying the meaning of the latter.
Stationary processes I (t) and their power spectrum have the
following properties:

(i) 〈I 〉 is a constant independent of time.
(ii) 〈I 2〉 is a constant independent of time and the correla-

tion function 〈I (t + τ )I (t)〉 is a function of τ only.
(iii) The power spectrum is non-negative.
(iv) The total power is

PT =
∫ ∞

−∞
S(ω)dω = 2π〈I 2〉. (33)

This well-known property is easily verified using the Wiener-
Khinchin theorem.

(v) The total power is

PT = 2π

∞∑
n=−∞

〈|an|2〉 = 2π〈I 2〉, (34)

where an is the Fourier amplitude an = ∫ tm
0 exp(−iωnt)

I (t)dt/tm and ωn = 2πn/tm. Here, 〈S(ω)〉 = tm|an|2 in the
limit of large tm. See further discussion in Appendix A and in
Ref. [1].

Properties (iii)–(v) are important, they show that the power
spectrum is the distribution of the modes of the system, and that
we may normalize the power spectrum. Indeed, in many cases
the normalized power spectral density is considered, namely,
〈S(ω)〉/[2π〈I 2〉].

Our approach provides a non-Wienerian framework for the
power spectrum. It is thus natural to ask how the above points
translate to the nonstationary, non-Wienerian case.

(i) 〈I 〉 is a constant independent of time.
(ii) Here, 〈I (t + τ )I (t)〉 = tϒφEA(τ/t) is the starting

point. So, we get by definition

〈I 2(t)〉 = tϒφEA(0). (35)

(iii) The power spectrum 〈Stm (ω)〉 � 0 due the definition
of the periodogram.

(iv) We find∫ ∞

−∞

〈
Stm (ω)

〉
dω = 2π

tm

〈 ∫ tm

0
I 2(t)dt

〉
= 2π〈I 2〉 = 2πϕTA(0). (36)

Here, the overline stands for a time average. The key to the
interpretation of the power spectrum is Eq. (13) from which
we find

ϕTA(0) = lim
x→0

x1+ϒ

∫ ∞

x

dy
φEA(y)

y2+ϒ
. (37)

Using L’Hôpital’s rule we find

ϕTA(0) = φEA(0)

1 + ϒ
. (38)

Thus, using Eqs. (35) and (36) the total power is

PT =
∫ ∞

−∞
Stm (ω)dω = 2π〈I 2〉

1 + ϒ
. (39)

Hence, exactly like the stationary theory, for scale invariant
autocorrelation functions, the total power is given by 〈I 2〉.
Hence, it is fully justified to call 〈Stm (ω)〉 the power spectral
density. When ϒ = 0, the analogy is complete.

(v) Also here, rule (34) holds, with PT given in the previous
item (see discussion in Appendix A with respect to filtering).

We hence see that even though the autocorrelation function
is by definition far from being stationary, the main structure
of power spectrum theory is left untouched, though now the
power spectrum is dependent on the measurement time.

Since the aging spectrum is very different from the
Wienerian one, we actually have two methods to present it
(as shown all along this work). The spectrum of a 1/f β noise
source of the type discussed in this paper should be presented,
if possible, using two plots: The first is 〈S(ω)〉 versus ω where
ωn = 2πn/tm, this represents the true spectrum in the sense
that Fourier modes in (0,tm) are discrete. As well known within
this traditional presentation, 1/f β noise presents an infrared
divergence, S(f ) ∼ f −β which β � 1 implies naively that
the total energy of the process is infinite (the low-frequency
paradox of 1/f β noise [5,48]). To gain better insight on this
low-frequency behavior, we consider a second “spectrum”
where 〈S(ω)〉 is continuous in 0 � ω < ∞. This spectrum
yields insights on the low-frequency behavior, namely, the
oscillations of the spectrum and the zero-frequency component
〈S(0)〉. All these yield significant insight on the process, e.g.,
the exponents ϒ , V, �, β, z, η, μ, and δ. By contrast,
evaluating the spectrum at the natural frequencies yields only
the 1/f β component, which provides partial information on
the spectrum, i.e., the exponents ϒ , β, z, and δ. We would like
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to emphasize that all five exponents related to the spectrum,
β, z, η, μ, and δ, can be evaluated from natural frequency
data, provided that one adds one single measurement: the
time-dependent behavior of Stm (0). Three of them, β, z,
and δ, can be evaluated even without information on the
zero-frequency spectrum (then the cutoff is simply 1/tm). The
advantage of the continuous spectrum is that it can give further
information, for example, by the analysis of oscillations of the
spectrum we may estimate � which yields information on
the large argument behavior of the autocorrelation function.
So, while 〈S(ω)〉 on the natural frequencies ωn = 2πn/tm has
the advantage of a clear interpretation in terms of Fourier
modes (see, e.g., Kubo et al. [1]), the continuous spectrum
gives insights on the underlying process which should not
be ignored. The fact that the scaling autocorrelation function
on which we base our analysis can be observed in a wide
range of systems, beyond the specific examples discussed here,
underlines the universality of our main results.

VII. BLINKING-QUANTUM-DOT MODEL

We next demonstrate the above results by studying a
stochastic model for blinking quantum dots. A quantum dot is
a nanocrystal that, when interacting with a continuous wave
exciting laser field, switches at random times between on
and off states [62,63]. Such a process is an example of a
renewal process. To analyze such systems, we follow previous
works (e.g., [22,50,64]) and define a two-state system, where
I (t) = 0 is the state “off” and I (t) = 1 is “on.” Without loss of
generality we choose the system to be initially in I (0) = 1. At
each time tn, the system switches to the other state alternately
(“on” → “off” or “off” → “on”). The renewal times are tn =∑n

0 τi where {τi} are distributed according to the PDF ψ(τ )
and n is the number of renewals until time tn (see Fig. 2). We
assume that the “on” and “off” times {τi} are uncorrelated. The

I
(t

)

τ4 τ5 ....

.... tn+1

En

τ3

Ion

Ioff

tn tmt5t4t3t2t1

τ1 τ2

FIG. 2. A single realization of the signal I (t) versus time (blue).
{τi} are the sojourn times at each state: “on” (green) and “off” (red).
{ti} are the renewal times, tm is the measurement time, and En refers
to the forward recurrence time.

“off” sojourn times are power-law distributed ψ(τ ) ∼ τ−(1+α)

with 0 < α < 1. For the “on” times we consider two cases.
In the first one, the “on” times are distributed with infinite
mean, e.g., a power-law distribution ψ(τ ) ∼ τ−(1+α) [see the
realization of I (t) in Fig. 1 with α = 0.8]. In the second case,
we consider “on” times with a finite mean distribution, e.g.,
a power-law distribution with an exponentially decaying tail.
Both cases were experimentally examined [51,65]. Such a
system follows a power-law intermittency route to 1/f β noise.
This means that power-law waiting times in a substate of
the system are responsible for the observed spectrum. This
approach was suggested as a fundamental mechanism for 1/f β

noise in the context of intermittency of chaos and turbulence in
the work of Manneville [66]. We note that the renewal process
describes not only blinking dots, but also the trap model, a
well-known model of glassy dynamics [7,21]. The connection
between the two systems is the power-law waiting times in the
microstates of the system.

A. Infinite mean “on” sojourn time distribution

In this model both “on” and “off” times are power-law
distributed

ψoff/on(τ ) ∼ (τ0/τ )1+α, (40)

where τ0 is a microscopic time scale, τ > τ0, and 0 < α < 1
(e.g., see the experiment in [65]). We choose for both substates
“on” and “off” the same exponent α for simplicity. Typical
values of α in experiments are 0.5 < α < 0.8. This case was
studied analytically before in Refs. [5,22,50,64,67,68].

The analytic formulas for the time- and ensemble-averaged
autocorrelation function are given in [50], where t and τ are
larger than τ0, positive and comparable:

φEA(x) = 1

2
− 1

4

sin(πα)

π
B

(
x

1 + x
; 1 − α,α

)
,

ϕTA(x) = 1

4
+ 1

4

sin(πα)

π

[
B(1 − x; α,1 − α)

1 − x

− 1

α

(
x

1 − x

)1−α]
, (41)

where x = τ/t and B(z; a,b) ≡ ∫ z

0 dx(1 − x)b−1xa−1 is the
incomplete beta function. In order to determine the power
spectrum for this nonstationary process, we need to use the
aging Wiener-Khinchin theorem (10) or (16) instead of Eq. (1).

We find by using Eqs. (16) and (41) (see derivation in
Appendix C),

〈
Stm (ω)

〉
/tm = 1

4
sinc2

(
ω̃

2

)
+ 1

2ω̃
Im[M(1 − α,2; ıω̃)], (42)

where ω̃ = ωtm, M(a,b; x) is the Kummer confluent hyper-
geometric function, and Im[. . .] refers to its imaginary part.
The sinc2(. . .) term is the contribution to the spectrum from
a constant term. Equation (42) predicts the behavior of the
power spectrum where tm → ∞ but ω̃ remains finite.
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1. 1/ f β noise

The average power spectrum of the signal I (t), by using
Eqs. (20), (22), and (41), is〈

Stm (ω)
〉
ωtm=2πn

≈ cos(απ/2)

2�(1 + α)
tα−1
m ωα−2. (43)

The same result is found by taking the limit of ωtm � 1 in
Eq. (42). The aging Wiener-Khinchin theorem reproduces the
result (43) that was found before, e.g., in Ref. [50]. To evaluate
the oscillating behavior, we use Eq. (23) and find

〈
Stm (ω)

〉
ωtm�1 ≈ cos(απ/2)

2�(1 + α)
tα−1
m ωα−2 + tm

4
sinc2

(
ωtm

2

)

− cos[ωtm − απ/2]

2�(1 − α)ω2+αtα+1
m

. (44)

In Fig. 3, simulation results are compared with the exact
analytic prediction (42) and excellent agreement is observed.
Figure 3 further confirms the validity of the two approximated

10
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ωtm

(t
m

)−
1
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t m

(ω
)

ω
t m

=
2
π

n
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t m
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)

/
t m

FIG. 3. Simulation results for a blinking-quantum-dot model
where both distributions of “on” and “off” sojourn times are fat
tailed [Eq. (40)] when α = 0.5 at measurement time tm = 105. In the
upper panel, the spectrum is given at natural (discrete) frequencies
ωtm = 2πn and [compare to Eq. (43)] represented by the green
line. In the lower panel, the power spectrum is taken at continuous
frequencies, where complete analytic prediction is the black line
[Eq. (42)]. The simulations method is given in Appendix C.

spectra: First, the 1/f β noise (43) for discrete frequencies
ωtm = 2πn agrees well with the simulations when n ∈ N.
Moreover, the oscillatory behavior (44) for continuous fre-
quencies presents a good agreement in the limit ωtm � 1.

2. Critical exponents

The critical exponent β, which is determined by the power-
law decay of the average power spectra, is β = 2 − α for the
infinite mean “on” sojourn time. The aging exponent which is
related to the time decay is z = 1 − α.

The averaged zero-frequency power spectrum is defined
as 〈S(ω = 0)〉 = t−1

m

∫ tm
0 dt1

∫ tm
0 dt2〈I (t1)I (t2)〉. Using Eq. (41)

we find 〈
Stm (0)

〉 = 1
4 (2 − α)tm, (45)

hence, its related exponent is μ = 1. The transition point
between 〈Stm (ω)〉 when ω 	= 0 to the behavior at 〈Stm (ω = 0)〉
is defined as the low-frequencies cutoff ωmin:

ωmin =
[

2 cos(απ/2)

�(1 + α)(1 − α)

] 1
2−α

t−1
m . (46)

Therefore, we find the exponent η = 1.
The highest frequency where 1/f β appears, ωmax, is related

to the frequency at which the approximation (20) fails.
Using the Laplace transform of the waiting time probability
density function (PDF) ψ̂(u) ∼ 1 − �(1 − α)(τ0u)α , such an
approximation holds when ω � ωmax ∼ τ−1

0 . The behavior of
the total measured power is eventually∫ ωmax

ωmin

dω
〈
Stm (ω)

〉 ∝ const. (47)

We hence find δ = 0 = −min(z = 1 − α,1 − μ = 0) as ex-
pected.

B. Finite mean “on” sojourn time distribution

Now, we consider that the “on” sojourn times have a finite
mean 〈τ 〉, while the “off” times are power-law distributed
as the first case ψoff(τ ) ∼ (τ0/τ )1+α (see the measurements
in [51]). In Laplace space (s → t) we find for small s when
0 < α < 1

ψ̂on(s) = 1 − 〈τ 〉s + · · · ,
(48)

ψ̂off(s) = 1 − asα + · · · ,

where a = �(1 − α)τα
0 . The ensemble-averaged autocorrela-

tion function in the limit τ,t → ∞ scales as [22]

C(t,τ ) = 〈τ 〉2

a2�2(α)
(tτ )α−1. (49)

Using Eqs. (8) and (10), we obtain the power spectrum

〈
Stm (ω)

〉 = 2〈τ 〉2π�(1 + α)t2α−1
m

αa24α�(α)

× 2F̃3

[
1 + α

2
,
α

2
;

1

2
,
1

2
+ α,1 + α; − ω̃2

4

]
, (50)

where 2F̃3[a1,a2; b1,b2,b3; z] is the regularized hypergeomet-
ric function (see Fig. 4).
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FIG. 4. The simulation results (circles) for the 〈Stm (ω)〉 in the
blinking-quantum-dot model with finite-mean “on” times and the
power-law “off” times. We use α = 0.5 at three different measure-
ment times tm = 103 (blue), tm = 104 (pink), and t = 105 (green). The
solid black line represents Eq. (50) and red line is Eq. (52). As we
increase the measurement time, the simulations approach theoretical
prediction.

We note that Eqs. (42) and (50) are valid only for finite
ω̃ even though Eq. (16) imposes no such restriction. For very
large frequency, we expect to get nonscaling deviations since
then the scale invariant autocorrelation function is not strictly
valid for the Wiener-Khinchim theorem. For illustrations, see
Fig. 4 where a different behavior emerges at large ω. This
is a consequence of taking the autocorrelation function in
the long-time limit, i.e., t,τ → ∞. Information about the
autocorrelation function for short τ is necessary to find the
behavior of the spectrum at high frequencies. A more detailed
discussion will be published elsewhere [56]. However, Fig. 4
clearly illustrates that as we increase the measurement time
the asymptotic behavior perfectly matches the theory.

1. 1/ f β noise

By using Eqs. (20), (22), and (49) we obtain

〈
Stm (ω)

〉
ωtm=2πn

≈ 2〈τ 〉2 cos(πα/2)

�(α)a2α
tα−1
m ω−α. (51)

As in the infinite mean “on” times, the same result is found by
taking the limit ω̃ � 1 in Eq. (50). In addition, we examine
the oscillating behavior

〈
Stm (ω)

〉
ωtm�1 ≈ 2〈τ 〉2 cos(πα/2)

�(α)a2α
tα−1
m ω−α

+ 2〈τ 〉2�(1 + α)

(1 + α)�2(α)a2

sin (ωtm − απ/2)

ω1+αtαm
. (52)

In Fig. 4, we compare the simulation results with the the-
ory (50). The 1/f β noise with oscillatory corrections [Eq. (52)]
shows good agreement with numerical results for intermediate
frequencies.

2. Critical exponents

From Eq. (43) we conclude that β = α and z = 1 − α. The
averaged zero-frequency power spectrum is then

〈
Stm (0)

〉 = 〈τ 〉2

α�(2α)a2
t2α−1
m . (53)

We therefore find μ = 2α − 1 for this case. This result is
reasonable since the zero-frequency power is the squared-time-
averaged signal I (t) times the measurement time. The integral
over I (t) between zero and tm is proportional to Ntm times the
average “on” time 〈τ 〉, where Ntm is the number of renewals
until time tm. Ntm itself is proportional to tαm, a well-known
result in renewal theory [67]. Hence, we get Stm (0) ∝ t2α−1

m .
Interestingly in this case the value of α changes the behavior

of 〈Stm (0)〉, namely, if α > 1/2 then 〈Stm (0)〉 increases in time,
if α < 1/2, it decreases in time, and when α = 1/2 then
〈Stm (0)〉 is time independent.

The low-frequencies cutoff ωmin is

ωmin =
[

2 cos(πα/2)�(2α)

�(α)

]1/α

t−1
m . (54)

Therefore, we find that in both cases the low-frequencies cutoff
decays in time with the same exponent η = 1 and differs by a
prefactor only.

The behavior of the total measured power is further∫ ωmax

ωmin

dω
〈
Stm (ω)

〉 ∝ tα−1
m . (55)

As a result, δ = α − 1. The decrease of the total power with
measurement time is reasonable since the signal exhibits
longer and longer “off” times, while the “on” times remain
finite.

In Eq. (30) we showed that the total power is proportional
to tϒm ϕTA(0). This is true for the ideal process, where the scale
invariant autocorrelation functions are valid for all t and τ , and
then ϕTA(0) < ∞. We note that Eq. (49) gives ϕTA(0) → ∞,
hence, we cannot use this equation to evaluate ϕTA(0). Gen-
erally, we should use

∫ ∞
0 S(ω)dω = π〈CTA(tm,0)〉. Indeed,

for this case the ensemble-averaged autocorrelation function
is C(t,τ = 0) ∝ tα−1 as is given in [22]. Then, following
Eqs. (9), (12), and (13), we find CTA(t,τ = 0) ∝ tα−1 as well.

VIII. SINGLE-FILE DIFFUSION

The second example that we investigate is single-file
diffusion. Single-file diffusion refers to the motion of particles
in unidimensional systems, where the particles cannot pass
each other, hence their ordering is preserved. We assume an
infinite system, and we are interested in the displacement x(t)
of a tagged particle while all other particles play the role of a
bath [69–71]. This kind of system can be used as a model for
the motion of a single molecule in a crowed unidimensional
environment such as a biological pore or channel [72,73], and
experimental studies of physical systems such as zeolites [74]
and colloid particles in confined topology [75] or optical
tweezers [76].

We distinguish between two initial configurations of the
bath: a thermal (equilibrium) initial condition [denoted as
(. . .)uni] and a nonthermal initial condition of equally spaced
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particles [labeled (. . .)lat]. The free particle diffusion coeffi-
cient is D and the average spacing between nearest particles is
a. We note that the tagged particle is affected by the surround-
ing particles only at long times, i.e., t � a2/(2D). At shorter
times t � a2/(2D) the tagged particle diffuses normally.

The autocorrelation functions have been evaluated in [26]
and are given, for t � a2/(2D), by

C(t,τ )uni = a

√
D

π

√
t

(√
1 + τ

t
+ 1 −

√
τ

t

)
,

(56)

C(t,τ )lat = a

√
D

π

√
t

(√
2 + τ

t
−

√
τ

t

)
.

By using Eq. (16) we find that the spectrum for the equilibrium
initial configuration is

t−3/2
m

√
1

Da2

〈
Stm (ω)

〉
uni

= 2 + cos(ω̃)√
πω̃2

− 1 + 2 cos(ω̃)√
2ω̃5/2

C
(√

2ω̃

π

)

+
√

2

ω̃5/2
S

(√
2ω̃

π

)
[−ω̃ + sin(ω̃)], (57)

where the Fresnel functions C(u) and S(u) are defined as

C(u) =
∫ u

0
cos(πt2/2)dt,

(58)

S(u) =
∫ u

0
sin(πt2/2)dt.

For the lattice initial condition, we obtain

t−3/2
m

√
1

Da2

〈
Stm (ω)

〉
lat

=
√

2 + cos(ω̃)√
πω̃2

− cos(2ω̃)√
2ω̃5/2

[
C
(√

4ω̃

π

)
− C

(√
2ω̃

π

)]

+ sin(2ω̃)√
2ω̃5/2

[
S

(√
2ω̃

π

)
− S

(√
4ω̃

π

)]

+
√

2

ω̃3/2

[
ω̃S

(√
2ω̃

π

)
− C

(√
2ω̃

π

)]
. (59)

As we see in Fig. 5, these results are confirmed by simulations.
The simulation method is described in Ref. [26]. As in the
blinking-quantum-dot model we have assumed a scaling form
of the autocorrelation function (56), which works in the limit
of large time. Information on the autocorrelation function for
short times is needed to estimate the very high-frequency limit
of the spectrum. Hence, the deviations at high frequencies in
Fig. 5 are expected. As the measurement time is increased,
the spectrum plotted as a function of ω̃ perfectly approaches
the predictions of our theory (see also the following example
and Fig. 6).

By using Eqs. (20) and (22), we further find that the power
spectrum corresponding to the random displacement x(t) reads

〈
Stm (ω)

〉uni
ωtm=2πn

= 〈
Stm (ω)

〉lat
ωtm=2πn

=
√

a2D

2
ω−3/2. (60)
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FIG. 5. The simulation results for single-file diffusion for the
two initial conditions. Upper panel: the spectrum 〈Stm (ω)〉 versus
the natural frequencies ω = 2πn/tm, where tm = 103 and n ∈ N for
two initial conditions, uniform (blue circles) and equidistance (red
dots). For such a presentation of the power spectrum, there is no
distinction between two initial configurations. Lower panel: 〈St (ω)〉uni

(circles) at measurement times t = 103 (blue) and t = 102 (pink),
and 〈St (ω)〉lat (crosses) at measurement times t = 103 (green) and
t = 102 (red). The solid black lines represent the analytic prediction
Eqs. (57) and (59). The diffusion constant D and the average
distances between particles a are taken to be D = 0.5 and a = 1.
Deviations from theory at high frequencies are expected as explained
in the text. They disappear as we take the measurement time to be
long.

In the limit ωtm = 2πn � 1, the power spectrum seems to be
time independent. However, we note that the spectrum 〈Stm (ω)〉
remains time dependent. Hence, for every finite time tm, the
total power is finite because of the low-frequency cutoff at ω ∼
1/tm (see Sec. V C). Moreover, measurements of the spectrum
〈Stm (ω)〉 made without knowledge of initial conditions would
be consistent within the range of frequencies allowed by the
limited observation time. In other words, the spectrum in the
high-frequencies limit ω � 1/tm is not affected by the initial
condition, although the process is nonstationary.

A. Critical exponents for single-file diffusion

From Eq. (60) we observe that β = 3/2 and z = 0 for both
cases. Calculating 〈Stm (0)〉 by substituting ω = 0 in Eq. (10)
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FIG. 6. The simulation results for the diffusion in a logarithmic
potential when D = 0.4, at measurement times tm = 500 (red
squares) and tm = 2000 (blue circles) and when D = 0.25, at
measurement times tm = 500 (pink squares) and tm = 2000 (green
circles). The black solid lines represent Eq. (68).

yields

〈
Stm (0)

〉
uni =

√
Da2

π

2

5
t3/2
m ,

(61)〈
Stm (0)

〉
lat =

√
Da2

π

8

15
(
√

2 − 1)t3/2
m .

We may then conclude that μ = 3/2 for both initial conditions.
The low-frequency cutoff is furthermore found to be

ωuni
min =

(
25π

8

)1/3

t−1
m ,

(62)

ωlat
min =

(
15

√
π

8(2 − √
2)

)2/3

t−1
m

and consequently η = 1. The total measured power diverges
here with time, i.e.,∫ ωmax

ωmin

〈
Stm (ω)

〉
dω ∼ t1/2

m (63)

for both initial configurations. As expected, the total power
diverges since the displacement x(t) is unbounded, even
though for every finite time the total power is finite.

IX. BROWNIAN MOTION IN A
LOGARITHMIC POTENTIAL

The third model that we consider is a Langevin equation
with a logarithmic binding potential. Such a case is related, for
example, to optical lattices, where x is the momentum [24,77].
It further describes the denaturing of DNA [78], Manning
condensation on a polymer [79], or vortex dynamics [80].
Such a case is interesting since it is “weakly” bound and hence
may exhibit different properties than free Brownian motion or
Langevin dynamics in a harmonic potential [23,81].

The Langevin equation describes the temporal evolution of
the variable x in a logarithmic binding potential for large x,

ξ
dx

dt
+ dU (x)

dx
= η(t), (64)

where ξ is a friction coefficient (we took a unit mass) and η(t)
is the white noise with zero mean, satisfying the fluctuation-
dissipation relation. We assume that the potential is of the form

U (x) = 1
2U0 ln(1 + x2), (65)

where the constant U0 is related to the depth of the potential.
In equilibrium, the PDF of x is Peq(x) ∼ exp[−U (x)/kBT ]
due to the Boltzmann theorem, therefore, we find
Peq(x) ∼ (1 + x2)−U0/2kBT , i.e., x has infinite variance when
1 < U0/kBT < 3. We introduce the parameter α:

α = U0

2kBT
+ 1

2
(66)

and define a diffusion constant through the fluctuation-
dissipation relation D = kBT /ξ .

The autocorrelation function for the case where α > 1 is
given in [23], where both t and τ are assumed to be large:

C(t,τ ) ≈
√

π (4Dt)2−α

Z�(α)�(1 + α)
x2−α

∫ ∞

0
dy e−y2

y2

× 1F1

(
3

2
,α + 1,y2

)
�(α,y2x), (67)

where x = τ/t . Then, by using Eqs. (10) and (13), we find the
spectrum

〈
Stm (ω)

〉 = t3−α
m

2
√

π (4D)2−α

Z�(α)�(α + 1)

∫ 1

0
dx x3−α cos(ω̃x)

×
∫ ∞

x
1−x

dy y−2
∫ ∞

0
dz e−z2

y2

× 1F1

(
3

2
,α + 1,z2

)
�(α,z2y). (68)

This is computed numerically by first evaluating the integral
over y explicitly and then evaluating the remaining two
integrals numerically by using Mathematica where the upper
boundary for the z integral is taken to be 105 instead of ∞.
The numerical results for α = 1.75 (D = 0.4) and α = 2.5
(D = 0.25) present good agreement with Langevin simulation
results for not too large frequencies (see Fig. 6). Initially, the
particle is situated at the origin x(t = 0) = 0. Therefore, at
short time the particle is not affected by the logarithmic tail of
the potential. We thus expect a deviation from theory at high
frequencies.

We obtain for 1 < α < 2 in the limit x � 1

C(t,τ ) ≈
√

π (4Dt)2−α

Z�(α)�(1 + α)

[
�(α + 1)√
π (2 − α)

+
√

π�(α − 2)�(α + 1)�(α)

4�2
(
α − 1

2

) x2−α

]
, (69)

where Z = √
π�(α − 1)/�(α − 1/2) is a normalization con-

stant. For 2 < α < 3, the autocorrelation function in the limit
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τ � t is stationary [23]

C(t,τ ) ≈ π�(α − 2)(4Dτ )2−α

4Z�2
(
α − 1

2

) . (70)

The corresponding power spectrum in discrete frequencies
ωtm = 2πn � 1 for both cases 1 < α < 2 and 2 < α < 3 is,
moreover,〈

Stm (ω)
〉
ωtm=2πn

= 2 sin

(
πα

2

)
�(3 − α)

×
[
−π�(α − 2)(4D)2−α

4Z�2(α − 1/2)

]
ωα−3. (71)

We conclude that for both cases 1 < α < 2 and 2 < α < 3,
the critical exponents are β = 3 − α, z = 0, η = 1, and μ =
3 − α. The total measured power, for both cases, is∫ ωmax

ωmin

〈
Stm (ω)

〉
dω ∝ const + t2−α

m , (72)

where ωmin ∼ 1/tm and ωmax is time independent. When
1 < α < 2, the total power increases with the time tm, i.e.,
it diverges when tm → ∞, since this case corresponds to
high temperature or shallow potential (1 < U0/kBT < 3)
and thus the particle exhibits subdiffusion. When 2 < α <

3 (i.e., 3 < U0/kBT < 5) we find that the total measured
power in the frequencies range (ωmin,ωmax) converges to a
constant, i.e., effectively the particle is bound. Therefore, its
critical exponents are η = 2 − α for 1 < α < 2 and η = 0 for
2 < α < 3.

X. SUMMARY AND DISCUSSION

We have extended the Wiener-Khinchin theorem to non-
stationary spectra by deriving two general relations between
time- and ensemble-averaged autocorrelation functions and
the aging power spectrum [34,35]. Just like the original
Wiener-Khinchin theorem, it is by itself not a prediction for
any specific system but rather a general connection between
different properties (spectrum and correlation function) of
the same system. The connection to the real system is then
established by specifying the correlation function from a
model and comparing it to the observed spectrum. We have
moreover established the generic occurrence of 1/f β noise
for nonanalytic ensemble-averaged autocorrelation functions
and derived the corresponding five critical exponents. We have
evaluated these exponents for three models: blinking quantum
dot, single-file diffusion, and diffusion in a logarithmic
potential. The nonstationary spectrum retains all the important
properties of the stationary one, in particular its interpretation
as a density of Fourier modes.

We emphasize that the five exponents are not adjustable
parameters but general features of the spectrum, which are
fixed by the underlying microscopic theory. They are thus
measurable observables, although the relevant variable should
change over several orders of magnitude for a reliable
estimation. Importantly, the exponents satisfy scaling relations
and are thus not independent. In particular, for a process
with constant variance, i.e., C(t ; τ = 0) = const so ϒ = 0,
these five exponents are determined by a single exponent
V . For example, in the blinking-quantum-dot model with

infinite mean “on” times the latter exponent V is related to
α which describes the power-law decay of the sojourn time.
For processes with a time-dependent variance, namely ϒ 	= 0,
only two parameters ϒ and V determine the five exponents.
We hope that our work will promote measurements of the
different exponents of the 1/f β spectrum since they reveal the
true complexity of the observed phenomena.

The nonstationarity of the autocorrelation function does not
necessarily imply that the spectrum in the 1/f β regime is time
dependent. Indeed, we have found that the 1/f β spectrum of
single-file diffusion and diffusion in a logarithmic potential
are time independent. This happens because in these models,
ϒ = V. Namely, the property of the autocorrelation function
determines if the aging exponent z is zero or not. Therefore, by
measuring time-independent 1/f β noise, one cannot conclude
that the process is stationary. This is well known for Brownian
motion where the underlying process is nonstationary and the
power spectrum is of the f −2 type. One way to reveal the
nonstationarity is to present the data as S/(tϒ+1

m ) versus ω̃ =
ωtm and see if a scaling solution is found. Another way is to
search for the oscillations [see Eq. (23)].

In addition, we have shown how the power spectrum for the
single-file system depends on the initial condition. This theme
could be further investigated, for example, in KPZ models [33],
or when the measurement of blinking dots does not start at the
beginning of the process, i.e., the effect of a waiting time on
the power spectrum is important [10,56,82].
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APPENDIX A: RELATION OF THE AGING POWER
SPECTRUM TO FOURIER MODES

Following [1] we consider a signal I (t) which is observed
over an interval [0,tm]. Expand I (t) in a Fourier series as

I (t) =
∞∑

n=−∞
ane

ıωnt , (A1)

where the natural frequencies are defined ωn = 2πn/tm, and
the Fourier coefficients are

an = 1

tm

∫ tm

0
I (t)e−ıωnt dt, (A2)

then, Itm (ω) = antm (see Sec. II in the main text). We define
the spectrum for finite time as〈

Stm (ω)
〉 ≡ tm〈|an|2〉, (A3)

where the measurement time tm is assumed to be long.
We consider the blinking-quantum-dot model with long

waiting time. Thus, the ensemble-averaged signal is simply a
constant 〈I (t)〉 = 1/2 (when starting in the “on” state this
is valid in the long time limit [22]). The average Fourier
coefficient then is

〈an〉 = 〈I 〉δn0. (A4)

When a suitable filter is used, one may select a large number
of the Fourier modes related to frequencies lying in the interval
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�ω, and hence observe a smooth power spectral density:

Stm (ω)�ω =
( ∑

ωn∈�ω

an

)2

=
∑

n

|an|2 +
∑

n

∑
m	=n

ana
∗
m,

(A5)

where the number of modes in an interval �ω is tm�ω/(2π ).
To recover Eq. (A3), one should prove that the Fourier
coefficients {an} are mutually independent, i.e.,

〈ana
∗
m〉 = 〈an〉〈a∗

m〉 = 0, (A6)

where n 	= m (a topic left for future work). The last equality
is a direct outcome of Eq. (A4).

1. Zero-frequency contribution

We briefly remind the reader of some basic properties of
Wienerian processes, using an example. Consider a process
I (t) with a stationary autocorrelation function

〈I (t)I (t + τ )〉 = [〈I 2〉 − 〈I 〉2]e−τ + 〈I 〉2. (A7)

Following the Wiener-Khinchin theorem [Eq. (1)], we obtain
the spectrum

〈S(ω)〉 = 2π〈I 〉2δ(ω) + [〈I 2〉 − 〈I 〉2]
2

1 + ω2
. (A8)

In experimental situations, the zero-frequency power is not
usually reported in the total power estimation. Therefore, we
expect to observe

H+ =
∫ ∞

0+
S(ω)dω = π [〈I 2〉 − 〈I 〉2]. (A9)

Including the zero point gives

H− =
∫ ∞

0−
S(ω)dω = π [〈I 2〉 + 〈I 〉2]. (A10)

Now, we have two ways to estimate 〈I 2〉 from the power
spectrum. The first one is to shift the stationary process I (t)
in such a way that 〈I 〉 = 0. The second one is to use the total
power of a stationary process following the Wiener-Khinchin
theorem [1]∫ ∞

0
〈S(ω)〉dω = 1

2

∫ ∞

−∞
〈S(ω)〉dω = πC(0) = π〈I 2〉, (A11)

where 〈S(ω)〉 is an even function of frequency.

2. Continuous versus natural-frequencies spectrum

In its discrete form, one may compute by the Euler-
Maclaurin formula∫ ∞

0

〈
Stm (ω)

〉
dω ≈

∞∑
n=1

〈
Stm (ωn)

〉
�ω + 1

2
�ω

〈
Stm (0)

〉
, (A12)

where ωn are the natural frequencies defined above. Using
S(0)�ω = |a0|2 and S(ωn)�ω = |an|2 we find the total power∫ ∞

0
〈S(ω)〉dω ≈ 2π

( ∞∑
n=1

〈|an|2〉 + 1

2
〈|a0|2〉

)
. (A13)

Following Parseval’s identity

∞∑
n=−∞

|an|2 = 1

tm

∫ tm

0
|I (t)|2dt (A14)

and symmetry, i.e., an = a−n, we find

∞∑
n=1

〈S(ωn)〉�ω + 1

2
�ω〈S(0)〉 = π

1

tm

∫ tm

0
〈|I (t)|2〉dt. (A15)

For a stationary process, the mean-squared displacement is
time independent 〈I 2〉 = C(0) and 〈|a0|2〉 = 〈I 〉2. Further,
from ergodicity and (A14),

∑ |an|2 = 〈I 2〉, therefore,

∞∑
n=1

〈S(ωn)〉�ω = π (〈I 2〉 − 〈I 〉2) = πC(0) − π〈I 〉2, (A16)

i.e., the total spectrum measurement provides the variance of
the signal.

In a nonstationary process, we obtain

∞∑
n=1

〈
Stm (ωn)

〉
�ω = π

〈
I 2
tm

〉 − π
〈(
Itm

)2〉
= πtϒm ϕTA(0) − π

〈(
Itm

)2〉
, (A17)

where the last equality is based on the scaling assumption (9),
i.e., 〈I 2

tm〉 = tϒm ϕTA(0) and (. . .) is the time average defined as

〈|a0|2〉 = 〈(
Itm

)2〉 =
〈[

1

tm

∫ tm

0
I (t)dt

]2〉
. (A18)

In this case,
∞∑

n=−∞
〈|an|2〉 = 1

tm

∫ tm

0
〈|I (t)|2〉dt = tϒm ϕTA(0). (A19)

We conclude that the time-dependent spectrum in its discrete
form conserves the basic properties one expects the power
spectrum to fulfill.

3. Illustration in blinking-quantum-dot model

We use the blinking-quantum-dot model to demonstrate
numerically the estimation of the total power. Here, we present
three methods of estimating the autocorrelation function from
the power spectrum. We compare our results with the analytic
results (see Fig. 7). Summing over the natural frequencies
ωn = 2πn/tm where n ∈ N,

Pexact = 1

2

∞∑
n=−∞

〈
Stm (ωn)

〉
�ω

=
∞∑

n=−∞

〈
Stm (ωn)

〉 π
tm

= π/2, (A20)

where in this model φEA(0) = ϕTA(0) = π/2 and ϒ = 0 [see
Eq. (41)].

The first method of evaluation of the total power is using
the approximate spectrum (43) for 〈Stm (ω)〉. It gives

P I = cos
(

πα
2

)
(2π )α−2ζ (2 − α)

2�(1 + α)
+ π

4
(2 − α), (A21)
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FIG. 7. Comparison between the three estimation methods with
the exact value of the total power in the blinking-quantum-dot model.

where ζ (k) = ∑∞
n=1 n−k is the Riemann zeta function. The

last term π (2 − α)/4 is related to the contribution from n = 0.
The deviation from the exact value (A20) may be caused
by the deviations of the approximate natural frequencies
spectrum (43) from the exact spectrum (42) for small n. It
means that the 1/f noise formula (43) is not sufficient for a
precise estimate of the total power (see Fig. 7).

As a second method for the estimation of the total power
one may use the exact expression for the spectrum (42). The
problem with this method is that there is no analytic expression
for the infinite summation. To proceed, we use a cutoff ωN =
2πN/tm, where N = 103, for the large frequencies:

P II =
103∑
n=1

{
sinc2(πn)

4
+ Im[M(1 − α; 2; 2ıπn)]

4πn

}

+ π (2 − α)

4
. (A22)

A large deviation from the exact value is observed when α

is larger than ≈0.7 since, when α approaches 1, the terms
〈Stm (ωn)〉 at n > N contribute to the total power.

The third method is a combination of the two previous ones:

P III =
103∑
n=1

{
sinc2(πn)

4
+ Im[M(1 − α; 2; 2ıπn)]

4πn

}

+ cos
(

πα
2

)
(2π )α−2

2�(1 + α)

∞∑
n=103+1

n−2+α + π

4
(2 − α).

(A23)

Comparing this estimation to the exact result Pexact = π/2
we find deviations of 0.005%. Comparison between the three
methods is given in Fig. 7. We use Mathematica for the
numerical estimation of the summations.

APPENDIX B: ON EQ. (11)

We here show how to estimate the autocorrelation function
from the power spectrum. Equation (10) in the discrete

0 0.2 0.4 0.6 0.8 1

0.2

0.25
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x = τ/tm

ϕ
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)

FIG. 8. The simulation results (open circles) for Eq. (B3) in the
blinking-quantum-dot process with heavy tailed PDF sojourn times
[Eq. (40)]. We examine three different exponents: α = 0.3 (upper,
green), α = 0.5 (middle, blue), and α = 0.8 (lower, pink). The solid
lines represent the theory of time-averaged autocorrelation function
[Eq. (41)]. The measurement time is 105 and the ensemble average
was taken over 104 realizations.

form is

〈
Stm (ω)

〉 ≈ 2tϒ+1
m

N−1∑
n=1

(1 − n�x)ϕTA(n�x) cos(ωtmn�x)

+ tϒ+1
m ϕTA(0)�x, (B1)

where we use the Euler-Maclaurin formula with the discrete
variable xn = n�x and �x = 1/N where N is large. Now, we
multiply by cos(ωtmj�x) and integrate over frequencies∫ π/(tm�x)

0
dω cos(ωtmn�x)

〈
Stm (ω)

〉
≈ πtϒm (1 − n�x)ϕTA(n�x), (B2)

where n 	= 0. Therefore, using ω̃ = ωtm, we obtain

1

π (1 − x)

∫ Nπ

0
dω̃ cos(ω̃x)

〈
Stm (ω̃)

〉 ≈ tϒ+1
m ϕTA(x). (B3)

Now, we would like to decrease the x steps of the numeric
integration for a certain measurement time tm, or equivalently
increasing N . Where N → ∞ we recover Eq. (11) in the text.

In Fig. 8, we show the estimation of the time-averaged
autocorrelation function for a blinking-quantum-dot model
where the sojourn times {τi} are distributed with the PDF
Eq. (40). We first find the power spectrum using the method
presented in Appendix C. We then apply Eq. (B3) to
our “experimental” data to find ϕTA(x) which is presented
in Fig. 8.

The ensemble-averaged autocorrelation function might be
found by Eq. (19), using the measured sample spectrum
directly. Another method to obtain φEA(x) is by taking the
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derivative of Eq. (13):

φEA(y) = ϕTA

(
y

1 + y

)
[(ϒ + 1)(1 + y)ϒ − ϒy(1 + y)ϒ−1] − ϕ′

TA

(
y

y + 1

)
y(1 + y)ϒ. (B4)

For ϒ = 0, e.g., in the blinking-quantum-dot model, we use

φEA(y) = ϕTA

(
y

1 + y

)
− y

d

dy

[
ϕTA

(
y

y + 1

)]
. (B5)

Thus, in principle, from estimation of ϕTA(x) using power spectrum, one may obtain φEA(x).

APPENDIX C: POWER SPECTRUM FOR BLINKING-QUANTUM-DOT MODEL

We substitute Eq. (41) in (16) and obtain

〈
Stm (ω)

〉/
tm =

∫ 1

0

ω̃x sin(ω̃x) + cos(ω̃x) − 1

ω̃2x2
dx︸ ︷︷ ︸

I

−1

2

∫ 1

0

sin(πα)

π
B(x; 1 − α,α)

ω̃x sin(ω̃x) + cos(ω̃x) − 1

ω̃2x2
dx︸ ︷︷ ︸

II

. (C1)

The first term I contributes

I =
∫ 1

0

ω̃x sin(ω̃x) + cos(ω̃x) − 1

ω̃2x2
dx = 1

2
sinc2

(
ω̃

2

)
.

(C2)

For the second term II, we integrate by parts and obtain

II = sin(πα)

π
B(1; 1 − α,α)

1 − cos(ω̃)

ω̃2
− sin(πα)

π

1

ω̃2

×
∫ 1

0
dx[1 − cos(ω̃)]x−α−1(1 − x)α−1. (C3)

By definition, the Kummer confluent function M(a,b; z) for
imaginary variable is

�(b)

�(a)�(b − a)

∫ 1

0
du eıω̃uua−1(1 − u)b−a−1 ≡ M(a,b; ıω̃).

(C4)

Taking the integration over ω̃ on both sides of Eq. (C4), with
a = 1 − α and b = 1, gives

1

�(1 − α)�(α)

∫ 1

0
dx x−α(1 − x)α−1 eıω̃x − 1

ıx

=
∫ ω̃

0
dω̃1M(1 − α,1,ıω̃1) = ω̃M(1 − α,2; ıω̃), (C5)

and then taking the imaginary part

1

�(1 − α)�(α)

∫ 1

0
dx x−α−1(1 − x)α−1[cos(ω̃x) − 1]

= Im[ω̃M(1 − α,2; ıω̃)]. (C6)

Hence, we conclude that

II = 1

2
sinc2

(
ω̃

2

)
− 1

ω̃
Im[M(1 − α,2; ıω̃)]. (C7)

Evaluating I − II/2 in Eq. (C2) gives Eq. (42) in the main text.

APPENDIX D: SIMULATION METHODS

We use the sample power spectrum definition, i.e., Stm (ω) =
|Itm (ω)|2/tm. In each system, we generate the time series of
the signal I (t) and use discrete Fourier transform to find
Itm (ω) and its complex conjugate Itm (ω)∗. The simulation
was done by MATLAB standard fast Fourier transform (FFT)
function. At last, we average over the realizations set to find the
ensemble average 〈Stm (ω)〉. The power spectrum simulation in
the renewal process may be faster by using the method below
instead of using the FFT function.

1. Blinking-quantum-dot simulation

As was mentioned in the text, the process is defined with
two states Ioff = 0 and Ion = 1, with random sojourn times in
each state {τi}. The system switches states alternately, “off”
↔ “on”, every time tn = ∑

i τi . The random sojourn times τi

are generated with τ = x−1/α where x is random uniformly
distributed in the interval (0,1). With that generation process
we find

ψ(τ ) = ατ−1−α, τ > 1 (D1)

i.e., τ0 = 1, and its Laplace transform is

ψ(s) = αE1+α(s), (D2)

where E1+α(s) ≡ ∫ ∞
1 t−1−α exp(−st)dt . When s → 0 we find

ψ(s) = 1 − �(1 − α)sα. (D3)

The power spectrum for a single realization is defined as

tmStm (ω) =
∫ tm

0
I (t) exp(−ıωt)dt

∫ tm

0
I (t) exp(ıωt)dt. (D4)

Since Ioff = 0 and Ion = 1, as was mentioned above, we find

tmStm (ω) =
∑
odds

∫ ti+1

ti

exp(−ıωt)dt
∑
odds

∫ tj+1

tj

exp(ıωt)dt.

(D5)
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Calculating the integrals and rearranging the equation give

tmStm (ω) = 1

ω2

∑
i,j

e−ıω(ti+1−tj+1) + e−ıω(ti−tj )

− e−ıω(ti−tj+1) − e−ıω(ti+1−tj ). (D6)

Using Eq. (D6) simplifies the simulations since finding the
renewal times ti = ∑j

k=1 τk is faster than finding the entire
sequence of I (t) and using FFT. At last, we average over the
realizations set.

2. Single-file diffusion simulation details

In the single-file process we generate the signal x(t) by
using the method in [26]. We used the diffusion coefficient

D = 0.5 and the average distance between nearest particles as
a = 1.

3. Langevin equation with logarithmic potential

We generated x(t) in processes which are modeled with
Eq. (64), with discretization of the Langevin equation. Namely,
for single realization we use

x(t + dt) = x(t) − x(t)

1 + x2(t)
dt + η(dt), (D7)

where the random variable η(dt) is normally distributed
with zero mean and variance 2Ddt . Notice that we
used friction coefficient ξ = 1 and external potential U =
ln(1 + x2)/2.
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