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Local discretization method for overdamped Brownian motion on a potential
with multiple deep wells
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We present a general method for transforming the continuous diffusion equation describing overdamped
Brownian motion on a time-independent potential with multiple deep wells to a discrete master equation. The
method is based on an expansion in localized basis states of local metastable potentials that match the full
potential in the region of each potential well. Unlike previous basis methods for discretizing Brownian motion
on a potential, this approach is valid for periodic potentials with varying multiple deep wells per period and can
also be applied to nonperiodic systems. We apply the method to a range of potentials and find that potential wells
that are deep compared to five times the thermal energy can be associated with a discrete localized state while
shallower wells are better incorporated into the local metastable potentials of neighboring deep potential wells.
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I. INTRODUCTION

Brownian motion on a potential has been used to describe
many nonequilibrium systems with thermal fluctuations, in-
cluding electrical circuits (Josephson effect) [1–3], colloidal
condensed matter systems such as supercooled liquids and
soft materials [4], ion channels [5–7], and molecular motors
[8–11]. When the potential is characterized by multiple deep
wells, it is physically intuitive that the continuous diffusion
equation for the system can be approximated by a simpler
discrete master equation describing infrequent hopping transi-
tions between wells. In this paper, we develop a discretization
method that expands the continuous diffusion equation on a
localized basis of states to formally derive a discrete master
equation. This approach can be applied to a wide range of
time-independent potentials with multiple deep wells.

The standard theoretical description of overdamped Brown-
ian motion on a time-independent potential is via a continuous
diffusion equation that governs the probability density P (x,t)
at position x and time t [8,9]:

∂P (x,t)

∂t
= LP (x,t), (1)

L = 1

γ

∂

∂x

[
�

∂

∂x
+ ∂V (x)

∂x

]
, (2)

where L is the evolution operator, V (x) is the potential, � =
kBT , kB is the Boltzmann constant, T is the temperature,
and γ is the friction coefficient. In the limit of deep potential
wells, the continuous diffusion equation can be approximated
by a discrete master equation describing infrequent hopping
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between adjacent wells:

dpn(t)

dt
= κn,n−1pn−1(t) + κn,n+1pn+1(t)

−(κn+1,n + κn−1,n)pn(t), (3)

where pn is the probability of the system being confined in
the nth well of the potential V (x) and κn,n′ (with |n − n′| = 1)
is the rate of hopping between neighboring wells. The master
equation is significantly simpler than the original continuous
diffusion equation and can be used to calculate measurable
properties of the system such as the drift velocity and diffusion
[12], kinetics [13], dwell time statistics [14–17], and (in the
context of molecular motors) energy coupling [18–21].

Attempts to transform the continuous diffusion equation (1)
to a discrete master equation (3) have had varying levels of
mathematical rigor and applicability. It has been suggested that
the master equation can be made consistent with the diffusion
equation by matching system properties such as the dynamic
structure factor [22–24], the eigenvalues [25], or the ratio
between forward and backward hopping [26]. Alternatively,
a master equation can be written to describe hopping between
nearest-neighbor spatial cells and the hopping rates calcu-
lated using local steady-state solutions [27,28]. Yet another
approach, interpreting the master equation in terms of hopping
between neighboring deep potential wells, determines the
hopping rates using first passage times or splitting probabilities
[6,29,30]. In contrast, we use the classical analog of the
tight-binding method where we expand on a localized basis
of states to transform the continuous diffusion equation to a
discrete master equation. This method formally connects the
hopping rates κn,n′ of the master equation to the potential and
allows the regime of validity of the master equation to be
determined explicitly.
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The tight-binding method was originally developed for the
quantum system of an electron in a solid [31]. In that case, the
continuous Schrödinger equation describing the system evolu-
tion is systematically transformed to a discrete equation by ex-
panding in a basis of localized states. There are two approaches
to deriving the tight-binding model. One approach exploits the
periodicity of the potential by using localized Wannier states
formulated in terms of Bloch eigenfunctions of the system
[32–36]. The other approach uses atomic orbitals of an isolated
atom as a set of basis states for the electron [31,37]. In previous
work, we developed the Brownian-motion analog of the
Wannier-state method [21,38,39]. This works well for periodic
potentials with a single dominant minimum per period [21,38]
or for bichromatic periodic potentials with multiple similar
wells per period [39]. However, the Wannier-state approach is
not suitable for nonperiodic potentials or periodic potentials
with varying multiple deep wells per period. In this paper, we
develop a Brownian-motion analog of the atomic-orbital tight-
binding method that can be used to derive a discrete master
equation for general potentials with multiple deep wells.

To develop an atomic-orbital tight-binding method for
Brownian motion on a potential, we expand the continuous
evolution equation in localized eigenfunctions of local po-
tentials defined around each deep potential well. The local
potential for each well matches the full potential in the
region of that well. When defining the local potentials and
basis states, we consider the following. First, unlike the
quantum case, the evolution operator for Brownian motion
on a potential is not self-adjoint. Therefore, a biorthonormal
basis must be constructed using not only the eigenfunctions
ψk(x) of the evolution operator L, i.e., Lψk(x) = −νkψk(x)
with eigenvalues νk , but also the adjoint eigenfunctions ψ

†
k (x)

of the adjoint operator

L† = 1

γ

[
�

∂2

∂x2
− ∂V (x)

∂x

∂

∂x

]
, (4)

i.e., L†ψ†
k (x) = −ν

†
kψ

†
k (x) with adjoint eigenvalues ν

†
k = νk

[8]. Second, choosing confining local potentials around each
potential well, i.e., taking the local potentials to positive
infinity at their boundaries, would mean that the ground-state
eigenvalue is zero (ν1 = ν

†
1 = 0) and while the eigenfunctions

ψk(x) would be localized, the ground adjoint eigenfunctions
ψ

†
1(x) = 1 would not be localized [8]. Both the eigenfunctions

and their adjoints must be localized in order to assign
probability to a particular well (see Sec. III). Therefore, to
construct a fully localized biorthonormal basis, we define
local metastable potentials around each potential well. Each
local metastable potential matches the full potential in the
region around its minimum, including both adjacent maxima,
and goes to minus infinity at its boundaries. This approach
ensures the localization of the basis states and their adjoints. By
expanding in the eigenfunctions of local metastable potentials,
we systematically derive a discrete master equation for
Brownian motion on a potential with multiple deep potential
wells. We evaluate the applicability of the method numerically
for a range of different potentials.

This paper is organized as follows. In Sec. II we construct
a localized basis for Brownian motion on a time-independent
potential with multiple deep potential wells using eigenfunc-

V
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FIG. 1. A potential with multiple wells (solid) showing the local
metastable potentials defined by Eq. (5) (dashed) for the nth (a) and
(n + 1)th (b) potential wells.

tions of local metastable potentials. In Sec. III we expand the
probability density on the localized basis and transform the
continuous evolution equation to a discrete master equation.
In Sec. IV we apply the method to particular periodic and
nonperiodic potentials. We conclude in Sec. V.

II. LOCALIZED BASIS

We consider the continuous diffusion equations (1) and (2)
with a time-independent potential characterized by multiple
deep wells, as shown in Fig. 1. For each potential well n, we
define a local metastable potential V M

n (x) with a minimum
at x = xn and adjacent maxima at x = an and x = bn. Each
metastable potential is defined in terms of the full system
potential V (x) as

V M
n (x) =

{
V (x) An < x < Bn

−∞ x = An, x = Bn

, (5)

where the boundaries An and Bn of the potential are chosen
arbitrarily with xn−1 � An < an and bn < Bn � xn+1. The
metastable potentials V M

n (x) and V M
n+1(x) overlap in the

interval An+1 < x < Bn around the common maximum bn =
an+1.

The eigenfunction expansion of overdamped Brownian
motion on a metastable potential is well known [8]. Briefly,
the eigenfunctions ψn,m(x) and adjoints ψ

†
n,m(x) of the nth

metastable potential are given by

LM
n ψn,m(x) = −νn,mψn,m(x), (6)

LM†
n ψ†

n,m(x) = −νn,mψ†
n,m(x), (7)
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FIG. 2. A metastable potential with differing barrier heights high
(solid), mid (dash), and low (dot) (a). The ground eigenfunction (b)
and the ground adjoint function (c) for the metastable potential in (a).

where LM
n and LM†

n are, respectively, the evolution operator
and its adjoint for the metastable potential V M

n (x) on the
nth well. In Eqs. (6) and (7), νn,m are the eigenvalues of the
nth metastable potential and m � 1 labels the eigenvalues in
that potential (with increasing magnitude). For a given n, the
eigenfunctions ψn,m(x) and adjoints ψ

†
n,m(x) form a complete

biorthogonal set on the interval An � x � Bn [8], i.e.,∑
m

ψ†
n,m(y)ψn,m(x) = δ(x − y), (8)

for An � x � Bn and An � y � Bn. It is convenient to
normalize the eigenfunctions by∫ Bn

An

dx ψ
†
n,m′ (x)ψn,m(x) = δmm′ , (9)

and we normalize the ground (m = 1) eigenfunctions such that∫ Bn

An

dx ψn,1(x) = 1. (10)

Figure 2 shows the form of ψn,1(x) and ψ
†
n,1(x) for a metastable

potential with characteristic length L and a range of potential
barrier heights. Both the ground eigenfunctions and their
adjoints are localized for potentials that are deep compared
to the thermal energy �. As the potential minimum becomes
deeper, the eigenfunctions ψn,1(x) become more localized and
the adjoints ψ

†
n,1(x) become closer to unity at the potential

minimum x = xn. Approximate analytical forms of ψn,1(x)
and ψ

†
n,1(x) are given in Appendix A. In the limit of an

infinitely deep metastable potential, the eigenfunctions and
their adjoints coincide with the eigenfunctions and adjoints of
the confined system that matches the metastable potential in
the region of the deep well.

The probability density P M
n (x,t) for the metastable poten-

tial V M
n (x) can be expanded in the complete biorthonormal

basis of eigenfunctions as

P M
n (x,t) =

∑
m

cn,m(t)ψn,m(x), (11)

where the expansion coefficients

cn,m(t) =
∫ Bn

An

dx ψ†
n,m(x)P M

n (x,t), (12)

decay in time according to

cn,m(t) = cn,m(0)e−νn,mt . (13)

The probability current for the nth metastable potential is

JM
n (x,t) = J M

n P M
n (x,t), (14)

J M
n = − 1

γ

[
�

∂

∂x
+ ∂V M

n (x)

∂x

]
, (15)

where J M
n is the current operator for the nth metastable

potential and the evolution and current operators are related
by

LM
n = − ∂

∂x
J M

n . (16)

Inserting the expansion Eq. (11), the probability current
Eq. (14) can be written as

JM
n (x,t) =

∑
m

cn,m(t)Jn,m(x), (17)

where the probability current for the mth eigenfunction of the
nth metastable potential is

Jn,m(x) = J M
n ψn,m(x). (18)

By definition, the probability current Jn,m(x) does not vanish
at the boundaries An and Bn and this is important in the
transformation of the continuous diffusion equation to a
discrete master equation in Sec. III. Using the eigenequation
Eq. (6), with Eqs. (16) and (18), we find that

∂

∂x
Jn,m(x) = νn,mψn,m(x). (19)

Integrating Eq. (19) from An to Bn, we derive for the ground
(m = 1) state

Jn,1(Bn) − Jn,1(An) = νn,1, (20)

where we have used the normalization Eq. (10). Physically,
Eq. (20) states that the decay rate of the ground eigenfunction
of a metastable potential equals the sum of the outward eigen-
function current at the boundary of the metastable potential.
In the deep well regime, the boundary currents Jn,1(An) and
Jn,1(Bn) are well approximated by Kramers’ escape rate over
the left and right potential maxima, respectively, as shown in
Appendix A, and the lowest eigenvalue νn,1 is related to the
inverse mean escape time from the metastable potential [8].
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We define localized states of the full system in terms of the
eigenfunctions of the local metastable potentials as follows:

ωn,m(x) =
{
ψn,m(x) An � x � Bn

0 x < An, x > Bn

, (21)

ω†
n,m(x) =

{
ψ

†
n,m(x) An � x � Bn

0 x < An, x > Bn

. (22)

The localized states ωn,m(x) and ω
†
n,m(x) are continuous and

for each n form a biorthonormal set, i.e.,∫ ∞

−∞
dx ω

†
n,m′ (x)ωn,m(x) = δmm′ . (23)

The ground eigenfunctions ψn,1(x) satisfy the normalization
Eq. (10) so the ground localized states satisfy∫ ∞

−∞
dx ωn,1(x) = 1. (24)

The states ωn,m(x) and ω
†
n,m(x) also form a complete set on

the interval An � x � Bn due to the completeness relation
Eq. (8). Therefore, the full state basis, including ωn,m(x) and
ω
†
n,m(x) for all n and m, is complete for the full system and

is overcomplete in the overlapping intervals An+1 � x � Bn.
Formally, ∑

n,m

ωn,m(y)ω†
n,m(x) = δ(x − y), (25)

for any x and y.
The probability current for the state ωn,m(x) is

Jω
n,m(x) = Jωn,m(x), (26)

where the current operator is

J = − 1

γ

[
�

∂

∂x
+ ∂V (x)

∂x

]
. (27)

The probability current can be written piecewise as

Jω
n,m(x) =

{
Jn,m(x) An < x < Bn

0 x < An, x > Bn

. (28)

Due to the absorbing boundary conditions, Jω
n,m(x) is discon-

tinuous at the boundaries An and Bn, as shown in Fig. 3. The
limits can be taken at the boundary as follows:

lim
x→A−

n

J ω
n,m(x) = 0, lim

x→A+
n

J ω
n,m(x) = Jn,m(An), (29)

lim
x→B+

n

J ω
n,m(x) = 0, lim

x→B−
n

J ω
n,m(x) = Jn,m(Bn), (30)

where Jn,m(An) and Jn,m(Bn) are the boundary probability
currents for the eigenfunctions of the nth metastable potential.

III. DISCRETE MASTER EQUATION

The localized states ωn,m(x) and ω
†
n,m(x) defined in Sec. II

form a complete basis. Therefore, we expand the probability
density of the full system as

P (x,t) =
∑
n′,m′

pn′,m′ (t)ωn′,m′(x), (31)

V
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FIG. 3. A potential with multiple wells (solid) showing a sym-
metric metastable potential (dashed) (a). The ground localized state
(b) for the metastable potential in (a) and the current (c) for the state
in (b).

where

pn,m(t) =
∫

dx ω†
n,m(x)P (x,t). (32)

Inserting expansion Eq. (31) into the evolution equation (1),
multiplying to the left by ω

†
n,m(x) and integrating, we transform

the evolution equation to∑
n′,m′

Mn,n′,m,m′
dpn′,m′ (t)

dt
=

∑
n′,m′

σn,n′,m,m′pn′,m′ (t), (33)

where the biorthonormality and overcompleteness of the states
is measured by the overlap matrix

Mn,n′,m,m′ =
∫

dx ω†
n,m(x)ωn′,m′ (x), (34)

and the coupling constant is

σn,n′,m,m′ =
∫

dx ω†
n,m(x)Lωn′,m′ (x). (35)

We evaluate the coupling constant as follows. The state
ωn′,m′ (x) vanishes outside the boundaries An′ and Bn′ and
Lωn′,m′ (x) is discontinuous at these boundaries. Therefore,
the coupling constant can be written as

σn,n′,m,m′ = lim
�x→0

{∫ Bn′−�x

An′+�x

dx ω†
n,m(x)Lωn′,m′(x)

+
∫ An′+�x

An′−�x

dx ω†
n,m(x)Lωn′,m′(x)

+
∫ Bn′+�x

Bn′−�x

dx ω†
n,m(x)Lωn′,m′ (x)

}
. (36)
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In the first term on the right-hand side of Eq. (36), we use the
replacement Lωn′,m′(x) = −νn′,m′ωn′,m′ (x). In the second and
third terms we use the chain rule and the current properties
Eqs. (29) and (30). This gives

σn,n′,m,m′ = −νn′,m′Mn,n′,m,m′

+ω†
n,m(Bn′)Jn′,m′ (Bn′) − ω†

n,m(An′)Jn′,m′ (An′)

+ lim
�x→0

{∫ An′+�x

An′−�x

dx Jω
n′,m′ (x)

dω
†
n,m(x)

dx

+
∫ Bn′+�x

Bn′−�x

dx Jω
n′,m′ (x)

dω
†
n,m(x)

dx

}
. (37)

Taking n = n′, the states ωn,m(x) and ω
†
n,m′ (x) are biorthonor-

mal by Eq. (23), ω
†
n,m(Bn) = ω

†
n,m(An) = 0 due to the ab-

sorbing boundary condition for the metastable potentials, and
dω

†
n,m(An)/dx ≈ dω

†
n,m(Bn)/dx ≈ 0. Therefore, Mn,n,m,m′ =

δmm′ and σn,n,m,m′ = −νn,mδmm′ . For n �= n′, only adjacent
regions overlap so, when |n − n′| � 2, Mn,n′,m,m′ = 0 and
σn,n′,m,m′ = 0. Therefore, ωn,m(x) only couples with itself and
states in nearest-neighbor wells. Using these properties of the
coupling constant and the overlap matrix, Eq. (33) simplifies
to

dpn,m(t)

dt
= −νn,mpn,m(t) +

∑
n′=n±1,m′

σn,n′,m,m′pn′,m′ (t)

−
∑

n′=n±1,m′
Mn,n′,m,m′

dpn′,m′ (t)

dt
. (38)

In the deep-well regime, the interwell hopping rates are
the same order as the decay rates of the ground states and
there is a separation of time scales between the evolution of
the ground states from the rest, i.e., νn,m>1 � νn′,1 for all n

and n′. In this regime, the higher states can be adiabatically
eliminated, as follows. We assume that the evolution of the
higher states is dominated by the first term in Eq. (38) and that
the higher states rapidly decay to their steady state p̃n,m(t).
Setting dp̃n,m>1(t)/dt = 0, we have for the higher states

p̃n,m>1(t) = 1

νn,m

∑
n′=n±1

σn,n′,m,1pn′,1(t)

1

νn,m

∑
n′=n±1,m′>1

σn,n′,m,m′ p̃n′,m′(t)

− 1

νn,m

∑
n′=n±1

Mn,n′,m,1
dpn′,1(t)

dt
, (39)

and for the ground states

dpn,1(t)

dt
= −νn,1pn,1(t) +

∑
n′=n±1

σn,n′,1,1pn′,1(t)

+
∑

n′=n±1,m′>1

σn,n′,1,m′ p̃n′,m′ (t)

−
∑

n′=n±1

Mn,n′,1,1
dpn′,1(t)

dt
. (40)

Substituting Eq. (39) for the higher states into Eq. (40) shows
that the terms on the second-line of Eq. (40) are smaller than
the other terms on the right-hand side and can be neglected to
first order in ε = νn,1/νn′,m>1. This can be made rigorous via
a perturbation treatment in the small parameter ε.

Two additional assumptions are required to unambiguously
assign probability to individual potential wells and derive a
consistent master equation. First, we assume that the ground
states are localized to a single potential well and do not overlap.
Formally, the ground states form a biorthonormal set (see
Appendix A), i.e.,

Mn,n′,1,1 ≈ δnn′ . (41)

Equation (40) can then be written in the form of a master
equation for the lowest m = 1 band, i.e.,

dpn(t)

dt
=

∑
n′=n,n±1

κn,n′pn′ (t), (42)

where we have dropped the m = 1 index in pn,1(t) and κn,n′ =
σn,n′,1,1 is given by Eq. (37). Second, we assume that the ground
adjoint states ω

†
n,1(x) are localized to a single potential well

and are approximately flat and equal to unity in that region.
Formally, the ground adjoint states satisfy

ω
†
n,1(Bn−1) ≈ 1,

dω
†
n,1(Bn−1)

dx
≈ 0, (43)

ω
†
n,1(An+1) ≈ 1,

dω
†
n,1(An+1)

dx
≈ 0, (44)

so that the nth adjoint state is flat and equal to unity at
the boundaries Bn−1 and An+1 of the adjacent metastable
potentials (see Figs. 1 and 2). These boundaries Bn−1 and
An+1 lie inside the maxima of the nth metastable potential.
Equations (43) and (44) are satisfied in the deep well regime,
as suggested by Fig. 2 and Appendix A. Using Eqs. (43) and
(44) to evaluate the coupling constant Eq. (37) yields

κn,n = −νn,1, (45)
κn,n−1 = Jn−1,1(Bn−1), (46)

κn,n+1 = −Jn+1,1(An+1). (47)

Using the current property Eq. (20), we find that∑
n′=n,n±1

κn′,n = −νn,1 + Jn,1(Bn) − Jn,1(An) = 0. (48)

The identity Eq. (48) ensures that the master equation
conserves probability, i.e.,

∑
n pn(t) is constant, and allows

the lowest-band master equation Eq. (42) to be written in the
form of Eq. (3).

In summary, we have shown that the master equation Eq. (3)
is a valid description of the system for time scales associated
with the lowest band when (i) the decay rates of the higher
states ωn,m>1(x) are much larger than both the decay rates of
the ground states ωn,1(x) (i.e., νn,1 � νn′,m>1) and the rates
of interwell hopping; (ii) the ground states ωn,1(x) form a
biorthonormal set; and (iii) the adjoint ground states satisfy
Eqs. (43) and (44). All these conditions are satisfied in the
limit of deep potential wells where V (an) − V (xn),V (bn) −
V (xn) � � for all n.
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IV. APPLICATION

In this section, we numerically evaluate the applicability
of the local discretization method for example periodic and
nonperiodic potentials. First, we consider a regular periodic
system where the potential wells have equal barrier height.
Then we treat two systems where the potential wells have
significantly different barrier heights. These latter cases can-
not be treated by existing Wannier-state-based tight-binding
approaches [21,38,39]. For each potential considered, we
establish the validity of the discrete master equation by
checking the three required assumptions: (i) we compare
the decay rates of the higher states ωn,m>1(x) with the
decay rates of the ground states ωn,1(x) by calculating the
ratios (νn,2 − νn,1)/νn,1; (ii) we check the biorthonormality of
adjacent ground localized states by calculating

Mn,n′ =
∫

dx ω
†
n,1(x)ωn′,1(x), (49)

and comparing it to the identity matrix using the Frobenius
norm [40]; (iii) we compare the ground adjoint state ω

†
n,1(xn)

at x = xn to unity and its derivative at x = xn to zero. In our
calculations we choose the boundaries for the metastable states
at An = xn−1 and Bn = xn+1.

To confirm that the master equation is a good approximation
to the full continuous diffusion equation, we calculate the
eigenvalues λME

m of the master equation (42) and the eigenval-
ues λFP

m of the original evolution equation (1). To compare the
eigenvalues, we calculate the ratios �m = |λFP

m − λME
m |/λFP

m .
For m = 1, λFP

1 = 0 so we take �1 = |λME
1 γL2/�|. We also

calculate the probability density P ME(x,t) = ∑
n pn(t)ωn,1(x)

given by solving the master equation and the probability
density P FP (x,t) determined by solving the original evolution
equation (1) using an eigenfunction expansion. At each time
point, the accuracy of the master equation can be measured by
the integrated difference

�P (t) =
∫

dx |P FP (x,t) − P ME(x,t)|. (50)

At the steady state t = tSS , we calculate the steady state
probability density difference �P (tSS) where P FP (x,tSS)
is the lowest eigenfunction of the continuous system and
P ME(x,tSS) is calculated using the lowest eigenvector of the
master equation.

A. Regular periodic system

We consider a three-well periodic potential of the form

V (x) = A
2

cos(3qx), (51)

where q = 2π/L and we impose periodic boundary conditions
at x = 0 and x = L. The three wells in each period have
the same barrier height |A| and we define localized states
for each potential well using the ground eigenfunctions of
the metastable systems formed on each well (as described in
Sec. II). The master equation for the three-well system has the
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FIG. 4. The validity of master equation treatment Eq. (52) for
the potential V (x) = (A/2) cos(3qx) as a function of A, as indi-
cated by (νn,2 − νn,1)/νn,1 (a), ‖M − I3‖/‖I3‖ (b), ω

†
n,1(xn) − 1 (c),

dω
†
n,1(xn)/dx (d), �1 = |λME

1 γL2/�| (plus), �2 = |λFP
2 − λME

2 |/
λFP

2 (cross) (e), and �P (tSS) = ∫
dx|P FP (x,tSS)−P ME(x,tSS)| (f).

form

dp1(t)

dt
= −(κ2,1 + κ3,1)p1(t) + κ1,2p2(t) + κ1,3p3(t),

dp2(t)

dt
= κ2,1p1(t) − (κ1,2 + κ3,2)p2(t) + κ2,3p3(t),

dp3(t)

dt
= κ3,1p1(t) + κ3,2p2(t) − (κ1,3 + κ2,3)p3(t), (52)

and has three eigenvalues λME
m with λME

2 = λME
3 . The hopping

rates are in good agreement with Kramers’ escape rate for deep
wells (see Appendix B).

Figure 4 shows that increasing the barrier height A
improves the validity of the master equation: (i) it increases
the separation between the eigenvalues νn,1 and νn,2 for each
metastable system, (ii) it improves the agreement between the
matrix M of Eq. (49) and the identity matrix I, and (iii) the
ground adjoint state ω

†
n,1(x) becomes closer to unity and its

derivative becomes closer to zero at x = xn. The exponential
dependence of these metrics on barrier height is expected (see
Appendix A).

For large |A|, the eigenvalues of L separate into bands
with the lowest band containing λFP

1 , λFP
2 , and λFP

3 .
Figure 4(e) shows that increasing the barrier height improves
the agreement between the eigenvalues λME

n derived from
the master equation and the eigenvalues λFP

n derived from
the original continuous equation. The ratio �3 is not shown
because λME

2 = λME
3 and λFP

2 = λFP
3 . We also find that

increasing the barrier height improves the agreement between
the probability density calculated via the master equation and
via the continuous equation. In particular, �P (t) decreases
(increases) with time for large (small) values of A. Figure 4(f)
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FIG. 5. Irregular three-well periodic potential Eq. (53) for
A/� = 12, FL/� = 6, and B/� = 0 (dot), B/� = 3 (dash), and
B/� = 6 (solid) (a). Localized state ω1,1(x) (b) and adjoint state
ω

†
1,1(x) (c) for the first potential well. Combined localized state of the

first and second potential wells (d) and associated adjoint state (e).

shows the integrated probability function difference �P (tSS)
at the steady state for varying A.

As expected, we find that the master equation is valid for
long times and deep wells. In particular, based on a threshold of
a 1% difference between the eigenvalues of the master equation
and the continuous equation, we find that the master equation
provides a good description of the long-time dynamics of the
system for A/� � 5.

B. Irregular periodic systems

For irregular periodic potentials that have wells with
different depths, the appropriate master equation depends
on the number of deep wells. To illustrate, we consider the
three-well periodic potential

V (x) = A
2

cos(3qx) + B sin(2qx) − Fx. (53)

Figure 5(a) shows the irregular three-well potential Eq. (53)
for different values of B. In each case, the potential has three
wells per period. However, as B increases the barrier between
the first and second potential wells decreases while the barrier
between the second and third potential wells increases. This
means that for smallB, defining a localized state for each of the
three potential wells yields a valid master equation. However,
for large values of B, the system is better approximated by
a two-well system where the first two wells are combined
to define one localized state and the third well defines the
other. We establish the validity of these two alternative master
equation treatments, as follows.

First, we consider a localized basis with three states, i.e.,
we define a localized ωn,1(x) state for each of the three
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FIG. 6. The validity of three-state master equation treatment
Eq. (52) for the potential Eq. (53) with A/� = 12 and FL/� = 6 as
a function of B, as indicated by (ν1,2 − ν1,1)/ν1,1 (a), ‖M − I3‖/‖I3‖
(b), ω

†
1,1(x1) − 1 (c), dω

†
1,1(x1)/dx (d), �1 (plus), �2 (cross), �3

(dimon) (e), and �P (tSS) (f).

potential wells. This results in a master equation of the form
of Eq. (52). As B increases the localized state ω1,1(x) becomes
broader and the adjoint state ω

†
1,1(x1) becomes increasingly

different from unity with an increasing derivative, as shown in
Figs. 5(b) and 5(c), respectively. Figure 6 shows that increasing
B adversely affects all the assumptions required for the validity
of the master equation, reduces the agreement between the
eigenvalues of the master equation and those of the original
evolution equation, and reduces the agreement between the
steady-state probability density given by the master equation
and by the original equation. For B � 3.5 the first potential
well (i.e., the shallowest well) is deeper than 5�, the difference
between the eigenvalues of the master equation and the original
equation is less than 1%, and the three-state master equation
is valid for describing the system dynamics for long times.
This indicates that when a potential well is deeper than
approximately 5�, it can be treated as a localized state in
a discrete master equation.

Second, we consider a localized basis with two states, i.e.,
we define one localized state that encompasses both the first
and second potential wells and a second localized state for
the third well. The local potential for the first two wells is
a metastable potential that covers both the first and second
potential wells and adjacent maxima. The localized state and
its adjoint for the first and second wells is shown in Figs. 5(d)
and 5(e). The master equation derived from the localized basis
with two states has the form

dp1(t)

dt
= −κ2,1p1(t) + κ1,2p2(t),

dp2(t)

dt
= κ2,1p1(t) − κ1,2p2(t), (54)
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and has two eigenvalues λME
1 and λME

2 . ForB = 0, we find that
the ground state for the combined well has a clear two-peak
structure and the adjoint state is not well approximated by unity
across the combined well. However, increasingB decreases the
barrier height between the first and second wells and increases
the barrier heights of both the combined metastable potential
for the first and second wells and the metastable potential for
the third well. As shown in Fig. 7, increasingB improves all the
assumptions required for the validity of the two-state master
equation (54). Therefore, increasingB improves the agreement
between the eigenvalues of the master equation and the lowest
two eigenvalues of the original equation and improves the
agreement between the steady-state probability density given
by the master equation and by the original equation. Unlike
the three-state master equation Eq. (52), the two-state master
equation Eq. (54) does not capture the third eigenvalue λFP

3 .
In summary, for the irregular three-well potential Eq. (53),

the appropriate master equation depends on the number of
deep wells. For small B, all three wells of the potential are
deep and have their own localized states. However, for large
B, the n = 1 well becomes too shallow to be described by its
own localized state and is better incorporated into a combined
well encompassing the first and second potential wells. The
number of localized states involved in the long-time evolution
of the system is indicated by the eigenvalue spectrum of the
original evolution equation. We find that, for small B, the
lowest three eigenvalues λFP

1 , λFP
2 , and λFP

3 are well separated
from all the higher eigenvalues λFP

m>3 of the system. However,
for large B, the lowest two eigenvalues λFP

1 and λFP
2 are

comparatively close while the eigenvalue λFP
3 is closer to the

higher eigenvalues λFP
m>3 than the lower two. This means that,

for small B, three states contribute to the long-time evolution
of the system whereas, for large B, the third eigenfunction

has damped out leaving only two states contributing to the
long-time evolution of the system. Based on a threshold of a
1% difference between the eigenvalues of the master equation
and the continuous equation, we conclude that for B � 3.5
the three-state master equation is valid while for B � 2 the
two-state master equation is valid. In the overlapping region
2 � B � 3.5, either approach can be used.

C. Nonperiodic system

The local discretization method can also be applied to non-
periodic potentials. For example, we consider the nonperiodic
potential

V (x) = A
2

cos(qx) + Bx2, (55)

where q = 2π/L (L is periodicity of the periodic part). Due
to the harmonic envelope function Bx2, each potential well
has asymmetric barrier heights and the difference between the
two barrier heights increases with the distance from the origin
at x = 0. For 9 � A/� � 12 and B/� = 6, the potential has
six wells with minima deep compared to 5�. We label these
1 � n � 6 and define a localized state for each deep well. For
n = 1 and n = 6, the metastable potentials are slightly altered
from the usual definition to account for shallow potential wells
up to the boundary. We write

V M
1 (x) =

⎧⎪⎨
⎪⎩

∞ x = −Ã

V (x) −Ã < x < B1

−∞ x = B1

, (56)
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and

V M
6 (x) =

⎧⎪⎨
⎪⎩

−∞ x = A6

V (x) A6 < x < Ã

∞ x = Ã

. (57)

The boundary at x = −Ã and x = Ã has been arbitrarily
chosen sufficiently far from the origin to have no impact on the
long-time evolution of the system. Figure 8 shows the potential
Eq. (55) and the states ωn,1(x) and their adjoints ω

†
n,1(x) for

n = 1, 2, and 3.
The master equation for the six localized states has the form

dpn(t)

dt
=

∑
n′=n,n±1

κn,n′pn′ (t), (58)

where n = 1 − 6, the sum is over nearest neighbors with
n = 1 coupling only to n = 2 and n = 6 coupling only to
n = 5. Equation (58) has six eigenvalues where λME

3 = λME
4

and λME
5 = λME

6 . Figure 9 shows that the eigenvalues of the
master equation are in good agreement with the six lowest
eigenvalues of the original evolution equation. Unlike in the
case of the irregular periodic potential of Sec. IV B, for the
nonperiodic potential Eq. (55) there is no obvious gap in the
eigenvalue spectrum of the original evolution equation (see
Fig. 9). Therefore, the separation of time scales between the
dynamics of the higher states and the dynamics of the lower
states is not pronounced and the master equation is only valid
when all the higher states have damped out.

V. CONCLUSION

We have derived a general discretization method for the
continuous evolution equation for overdamped Brownian
motion on a time-independent potential with multiple deep
wells. This approach is based on an expansion in a set of
localized basis states and is the Brownian-motion analog of the
atomic orbital approach to the tight-binding model of quantum
mechanics. For the Brownian motion case, the basis states are
eigenfunctions of metastable potentials defined around each
potential well. Expanding in these states provides a systematic
derivation of a discrete master equation that is valid in the limit
of deep potential wells.

The local discretization method is able to deal with a wide
range of time-independent potentials with deep wells. A key
advantage of the method is that it provides explicit measures
for testing the validity of the derived discrete master equation.

We have applied the local discretization method numerically
for regular periodic, irregular periodic, and nonperiodic poten-
tials. The results show that, for potentials with wells deeper
than 5kBT , the long-time dynamics of the system is well
approximated by a discrete master equation. For multiwell
potentials with wells of significantly different depth, care
should be taken when applying discretization approaches. In
particular, potential wells shallower than 5kBT should not be
allocated their own localized state but rather are best treated
by incorporating them into neighboring deep wells.

In the local discretization method, the rates of hopping
between neighboring potential wells are derived formally.
These hopping rates take into account the full details of the
potential and, in the limit of deep wells, are consistent with
alternative methods based on first passage times or splitting
probabilities [6,29,30]. In particular, for deep wells, the ground
localized states of the metastable potentials are in good
agreement with the Boltzmann distribution and the hopping
rates are given by the established Kramers’ escape rate.

We have presented a one-dimensional treatment in this
paper. However, in principle, the local discretization method
can be extended to multidimensional cases. In more than one
dimension, the metastable potentials have a closed boundary
surface and key results such as Eq. (20) generalize to∮

dS Jn,1(x) · n̂ = νn,1, (59)

where n̂ is the outward normal to the surface. Writing the
left-hand side of Eq. (59) as a sum of discrete contributions
would require localized current flow over saddle points and
this suggests additional requirements for the application of a
discrete master equation in multiple dimensions. The details
of this are left for future work.
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APPENDIX A: ANALYTICAL APPROXIMATIONS TO THE
METASTABLE EIGENFUNCTIONS AND RELATION TO

KRAMERS’ ESCAPE RATE

We consider a deep metastable potential V (x) with min-
imum at xn, neighboring adjacent maxima at an and bn,
and boundaries at An and Bn, as shown in Fig. 1. To first
order in νn,1γL2/� � 1 (where L ∼ bn − an) the lowest
eigenfunction and its adjoint can be approximated as [8]

ψn,1(x) = N e−V (x)/�ψ
†
n,1(x), (A1)

ψ
†
n,1(x) = 1 − In(x)

In(Bn)
− γ νn,1

�

[
Dn(x) − In(x)Dn(Bn)

In(Bn)

]
, (A2)

where An � x � Bn,

N =
∫ Bn

An

dy e−V (y)/�, (A3)

νn,1 = 1

γ

In(Bn) − In(An)

Dn(Bn)In(An) − Dn(An)In(Bn)
, (A4)

052127-9



P. T. T. NGUYEN, K. J. CHALLIS, AND M. W. JACK PHYSICAL REVIEW E 94, 052127 (2016)

and for notational convenience we define

In(x) =
∫ x

xn

dy eV (y)/�, (A5)

Dn(x) =
∫ x

xn

dy

∫ y

xn

dz e[V (y)−V (z)]/�. (A6)

For deep potentials, the main contribution to ψn,1(x) arises
close to the minimum at x = xn. Making a quadratic expansion
about this point the dominant term is

ψn,1(x) ≈
√

V ′′(xn)

2π�
e−V ′′(xn)(x−xn)2/2�, (A7)

where V ′′(x) is the second derivative of the potential with
respect to x. Similarly, the main contribution to the integrand
of In(x) arises close to the maxima of the potential. Making a
quadratic expansion about the two maxima we have

ψ
†
n,1(x) ≈

{
1
2 erfc[

√|V ′′(an)|/2�(an − x)], An < x < xn

1
2 erfc[

√|V ′′(bn)|/2�(x − bn)], xn > x > Bn

,

(A8)

where erfc is the complementary error function and we have
assumed that √

|V ′′(an)|/2�(xn − An) � 1, (A9)√
|V ′′(an)|/2�(xn − an) � 1, (A10)√
|V ′′(bn)|/2�(bn − xn) � 1, (A11)√
|V ′′(bn)|/2�(Bn − xn) � 1. (A12)

For deep potential, the adjoint eigenfunction ψ
†
n,1(x) given by

Eq. (A8) is equal to unity across the center of the metastable
potential around xn and then rapidly falls to zero past the two
maxima on either side (see Fig. 2). For x close to xn and far
from an and bn, we can approximate

ψ
†
n,1(x) ≈

⎧⎨
⎩

1 −
√

�
2π |V ′′(an)|

e−|V ′′ (an )|(x−an )2/2�

(x−an) , an � x < xn

1 −
√

�
2π |V ′′(bn)|

e−|V ′′ (bn )|(x−bn )2/2�

(bn−x) , xn < x � bn

.

(A13)
<?vsk 6pt ?>Evaluating the overlap integral between nearest
neighbors in this limit we find

∫ Bn

An+1

dx ψ
†
n+1,1(x)ψn,1(x) ≈

√
β�e−β(bn−xn)2

π |V ′′(bn)|(bn − xn)
, (A14)

<?vsk 6pt ?>where β = |V ′′(bn)|V ′′(xn)/2�[|V ′′(bn)| +
V ′′(xn)]. We can also approximate

In(Bn) ≈
√

π�

2|V ′′(bn)|e
V (bn)/�, (A15)

In(An) ≈
√

π�

2|V ′′(an)|e
V (an)/�, (A16)

Dn(Bn) ≈ π�√
V ′′(xn)|V ′′(bn)|e

[V (bn)−V (xn)]/�, (A17)

Dn(An) ≈ π�√
V ′′(xn)|V ′′(an)|e

[V (an)−V (xn)]/�. (A18)

We now write

νn,1 ≈ rKL
n + rKR

n , (A19)

where

rKL
n =

√
V ′′(xn)|V ′′(an)|e−[V (an)−V (xn)]/�

2πγ
, (A20)

and

rKR
n =

√
V

′′(xn)|V ′′(bn)|e−[V (bn)−V (xn)]/�

2πγ
, (A21)

are Kramers’ escape rates over the left and right barrier,
respectively. In comparison νn,2 ∼ V

′′
(xn)/γ in the same limit.

This order of magnitude estimate for νn,2 is based on assuming
a harmonic shaped confining potential and that the finite height
of the barriers only weakly perturbs this state. Using V (x) =
−�V cos[2π (x − xn)/L]/2, where �V ∼ V (an) − V (xn) ∼
V (bn) − V (xn) and L ∼ bn − xn ∼ xn − an as a proxy for the
potential, we determine that

νn,1 ∼ (�V/γL2)e−�V/�, (A22)

νn,2 ∼ (�V/γL2), (A23)

ψ
†
n,1(xn) − 1 ∼

√
�/�V e−�V/�, (A24)

dψ
†
n,1(xn)

dx
∼

√
�/�V L2e−�V/�, (A25)

Mn,n±1 ∼ e−�V/�, (A26)

justifying the approximations in Sec. III for deep wells.

APPENDIX B: NUMERICAL COMPARISON BETWEEN
THE HOPPING RATES FOR THE REGULAR PERIODIC

POTENTIAL AND KRAMERS’ ESCAPE RATE

For the regular periodic potential Eq. (51) we have calcu-
lated the hopping rates Eqs. (45)–(47). As shown in Fig. 10,
the hopping rates are in good agreement with Kramers’ escape
rate rKL

n = rKR
n of Eqs. (A20) and (A21).
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FIG. 10. Hopping rate (crosses) and Kramers’ escape rate (dots)
of regular system for A/� � 1 on a linear scale (a) and on a
logarithmic scale (b).
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