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Patterning in systems driven by nonlocal external forces
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This work focuses on systems displaying domain patterns resulting from competing external and internal
dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems
subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby,
we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces.
By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature
versus external field and we determine all possible modulated phases (domain patterns) as a function of the
external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary
mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of
materials.
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I. INTRODUCTION

Several physical and chemical systems exhibit macroscopic
patterning [1,2], ranging in diversity from superconducting
films to reaction-diffusion (Turing) mixtures and to liquids
forming Rayleigh-Bénard instabilities [3]. At equilibrium,
domain shapes and patterns, which can be understood as
spatially modulated phases, are computed from the minimiza-
tion of a free-energy functional [3,4]. However, no generally
accepted theoretical framework exists applying to dissipative
systems driven by external forces [5,6], whereas numerical
simulations operating at the atomic scale are unable to predict
the experimentally observed macroscopic patterns [7].

Heterogeneous systems forming under the action of ther-
modynamic forces (phase transformations) or mechanical in-
stabilities [2] have been studied thanks to the Landau-Ginzburg
(LG) free-energy functional. Moreover, the dynamics of
diffusional transformations is well described by the Cahn-
Hilliard (CH) evolution equation [2,3,8]. In this framework, the
mean-field description of an evolving system is made in terms
of the relevant conserved order parameter η(x,t), representing
by example the atomic density [4], the atomic composition [2],
or the local deviation of the monomer density from its average
value [8]. On the other hand, the LG free energy F (η(x,t))
describes short-range atomic interactions, splitting into bulk
and interfacial contributions to the free energy. Both terms are
functions of the order parameter and its derivatives [2,4]:

F (η(x,t)) =
∫ [

f (η(x,t)) + κ

2
|∇η(x,t)|2

]
dx, (1)

where f (η(x,t)) is the free-energy density, the parameters of
which are generally fitted to satisfactorily reproduce equilib-
rium phases and κ is related to the energetic cost of emerging
interfaces. Nucleation and growth of heterogeneous phases
during the evolution toward equilibrium are then obtained

solving the CH equation:

∂η(x,t)

∂t
= M∇2

[
δF (η(x,t))

δη(x,t)

]
, (2)

where M is the mobility of species assumed to be order
parameter independent [9] and the fluctuations of the order
parameter are neglected [1,10]. Elastic or coulombic nonlocal
interactions deriving from an effective pairwise interaction
potential, W (x − x ′), can be additively introduced in F (η(x,t))
[8,11], as shown by Leibler [12], and Ohta and Kawasaki
[8] for the case of block copolymers at equilibrium. For an
evolution governed by the CH equation, the nature, the number,
and the energy barriers associated with the equilibrium phases
depend only on the extrema of F (η(x,t)). Besides, previous
works clearly show that the existence of ordered and disordered
phases at thermodynamic equilibrium can be determined
solely from the study of the quadratic term of this free-energy
functional [1,2,8,9,13].

In this work, the LG functional and the CH evolution
equation are used for predicting microstructures forming in
systems driven by nonlocal external forces within the classical
phase field theory framework. Two distinct methods have been
used for determining ordered states and their limits, the linear
stability analysis and the study of the structure factor [14]. The
linear stability analysis can only be performed in the vicinity of
the steady states, which requires numerically minimizing the
kinetic equation governing the evolution of the system driven
by non local external forces. An alternative to this numerical
approach consists in computing the structure factor and esti-
mating the modulation wave vector k0 associated with steady
states [15,16]. However, this last method is computationally
expensive and is based on crude approximations, restricted to
the O(N ) model describing only second-order phase transition
[17] and constraining the form of f (η(x,t)) [15]. The present
work, though proceeding by analogy with the work by Ohta
et al. [8], differs from it and other studies [14–16,18], as here
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the forces acting on the considered system are external and
cannot be only related with a competition between short-
and long-range order interactions and does not involve any
assumptions about the symmetry of f (η(x,t)). Moreover, we
show that the number, the modulation of ordered steady states,
and their limits emerge from the analysis of the quadratic
term of a Lyapounov functional, without explicitly solving the
kinetic equation describing the competition between different
dynamics.

II. DIFFERENT NONLOCAL EXTERNAL FORCES

In the following, to predict the microstructure in systems
driven by nonlocal forces, focus is made on systems whose
evolution involves the competition between the phase separa-
tion and the disordering induced by nonlocal external forces
[2,8].

A. Diblock copolymers

When two incompatible polymer chains Ai and Bj of
lengths i and j are mixed, their evolution toward equilibrium
leads to a phase separation into two coexisting phases.
When these chains are covalently bounded at their ends, a
diblock copolymer AiBj forms and phase separation cannot
occur. This interaction can be modeled within the phase field
framework assuming an effective force field conjugated to the
order parameter η(x,t) expressed as the average deviation from
the uniform distribution of monomers A and B [12]. This effect
is accounted for by adding a new dynamic to the CH equation
describing the phase separation:(

∂η(x,t)

∂t

)ext

= −�η(x,t), (3)

where � related with the effective force field is a frequency
defining the time scale of this dynamics.

B. Chemically reactive mixtures

For binary reactive mixtures, the demixing via a spinodal
decomposition is counterbalanced by a chemical reaction

between two components A
�1−→

←−
�2

B, where �j are the reaction

rate constants associated with the chemical reaction. Alike the
case of diblock copolymers, the system evolution is dictated
by an external force as(

∂η(x,t)

∂t

)ext

= −�η(x,t), (4)

where � is the sum of the reaction rate constants and η(x,t) is
related to the local variation of the A concentration. Such an
equation can also be derived directly from a master equation
based on the Ising model on lattice gas Hamiltonian with
reaction [19].

C. Immiscible alloys under irradiation

The phase field approach has been also used for describing
the behavior of alloys with positive heat of mixing under irra-
diation [16]. The positive heat of mixing insures that a spinodal
decomposition occurs in these alloys out of irradiation. On the

other hand, The slowing down of particles in the alloys under
irradiation tends to spatially mix atoms regardless of their
chemical identity. This process counterbalances the spinodal
decomposition driving the system into steady states [18]. For
alloys under irradiation, � is a function of the mass, the
energy, the flux of impinging particles, and the density of the
target. The ejection of atoms from their equilibrium position
can be modeled with a probability density function pR(x) ∝
exp(−|x|

R
), where R is associated with a characteristic length

scale [20]. The external dynamics can be written as
(

∂η(x,t)

∂t

)ext

= −�

[∫
pR(x − y)η(y)dy − η(x,t)

]
, (5)

where η(x,t) is equal to the difference between the atomic
fractions of the two components. In this description, � and R

define the characteristic time and length scales of the problem.
Assuming the characteristic length scale of the problem

is infinite, i.e., R→∞, Eqs. (3) and (4) are recovered from
Eq. (5). This last equation including characteristic length and
time scales can be understood as a master equation describing
the action of external non local forces in diffusive processes.
Within this framework, �pR(x) is the transition rate for the
external dynamics. Equation (5) then appears to be quite
general and can be applied to a large class of dissipative
systems.

III. PATTERNING FORMATION

Within the phase field theory framework, the CH equation
describes the formation of mesoscopic domains in the long
wave limit and Eq. (5) is formally similar to an effective
nonlocal singular pairwise interaction potential describing
long-range interactions. In the present approach, the com-
petition between two dynamics is dictated by the ratio �

M
.

The steady states resulting from this competition then depend
explicitly from this ratio, i.e., the mobility. This is the main
difference between this work and previous extensions of the
phase field approach applied to describe mesoscopic patterns
produced at equilibrium in systems submitted to nonlocal
forces.

A. Lyapounov functional

The mathematical expression describing the competition
between the spinodal decomposition and dynamics driven by
external forces, ( ∂η(x,t)

∂t
)
ext

for these dissipative systems can be
rewritten as

∂η(x,t)

∂t
= M∇2

[
δF (η(x,t))

δη(x,t)

]
+

(
∂η(x,t)

∂t

)ext

. (6)

This equation expresses the competition between different
dynamics that act in parallel. Because dynamics acts at
different time scale, the balance between these two dynamics
creates unexpected ordered steady states, which do not appear
in the equilibrium phase diagram. Including the external
dynamics due to nonlocal interactions in the CH equation,
a Lyapounov functional can be calculated [8,11]:

∂η(x,t)

∂t
= M∇2

[
δL(η(x,t))

δη(x,t)

]
, (7)
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with

L(t) = F (η(x,t)) + �

2M

∫∫
η(x,t)g(x − y)η(y,t)dxdy,

(8)

where g(x) is the Green function for the Laplace equation,
∇2g(x) = pR(x) − δ(x), and accounts for external forces. It
can be shown that L(t) is a decreasing function of time
with a lower bound, i.e., it is a Lyapounov functional [21]
defining the global stability of this dissipative system. The free-
energy functional F (η(x,t)) is now replaced by a Lyapunov
functional in Eq. (7), describing dynamics of dissipative
systems satisfying Eq. (5). The dynamics behavior of systems
described by Eq. (7) consists in relaxation toward the minimum
of L(t) leading to the formation of patterns associated with
ordered steady states. Since L(t) is a Lyapunov functional, no
steady states associated with limit cycles nor chaotic evolution
of the order parameter can emerge in these systems [1].

It should also be noticed that no faithful analogy can be
established with this approach and the usual way of including
long-range interaction to the short-range order in the Landau
expansion at equilibrium [8,11]. In this last approach, the
Lyapunov does not contain any information on the time
scale. In our present approach, the characteristic time scale
associated with the two dynamics �

M
highlights the impact of

two dynamics on the pattern formation. Steady states resulting
from the minimization of Eq. (8) are then not independent of
the different dynamics as it is the case at the equilibrium. When
� and M differ by orders of magnitude, there is no balance
between competitive dynamical phenomena leading therefore
either to demixion or to a homogeneous disordered state. When
� ≈ M , the two dynamics compete and unexpected modulated
steady states could emerge.

B. Existence of steady states

As in the equilibrium case [8,11], the analysis of the
quadratic term of the Lyapunov functional characterizes
the force-driven steady states. By introducing explicitly the
temperature in L(t), it becomes possible to compute a phase
diagram describing the number and the nature of steady states
as a function of the control parameters and the temperature.

Going one step further requires defining explicitly the
free-energy functional. A choice compatible with the case
studies explored in this work is the Landau free-energy
functional known to successfully apply to binary mixture
[2]. The Landau free energy is based on a mean-field
approximation. Therefore, this approximation does not in-
troduce any substantial errors since mesoscopic phases are
associated with the long wave limit in the phase field approach.
Improvement of the free-energy model was to only change
the Landau expansion coefficients changing the dimension of
the mesoscopic structures without affecting their appearance.
The second-order coefficient of the Landau-Ginzburg expan-
sion can be written as a2(T ) = −aTcτ where Tc is the absolute
instability temperature of the system in the absence of external
forces [2], τ = Tc−T

Tc
is the reduced temperature, and a is a

positive constant [4].

Introducing characteristic length and time scales x ′ = x
l0

,

t ′ = t
t0

, with l0 =
√

κτ
a4α2 , t0 = κτ 2

Ma2
4	α4 , 	 the atomic volume,

η± the values of the order parameter associated with the min-
ima of the homogeneous free energy density, and α = η+−η−

2 ,
the Lyapounov functional takes the following dimensionless
form (reduced units are used hereafter with the superscript
“prime” dropped for sake of simplicity):

L(t) =
∫ [

−τ (1 − 3λ2)

2
ψ2 − √

τλψ3 + ψ4

4
+ |∇ψ |2

]
dx

+ W

2

∫∫
ψ(y,t)g(x − y)ψ(x,t)dxdy, (9)

where W = t0� is the reduced exchange frequency and is
directly related to different dynamics in competition, λ =
η++η−
η+−η−

and ψ(x,t) = η(x,t)
√

τ

α
is the reduced order parameter.

The quadratic term of the Lyapunov functional can be
written in the Fourier space as

b̂(k,τ ) = −τ (1 − 3λ2) + k2 + Wĝ(k). (10)

Note that the contribution of the external force to the
behavior of the system is entirely contained in b̂(k,τ ) and
is characterized by the amplitude W .

When all the b̂(k,τ ) are positive, the disordered steady
state is stable with respect to infinitesimal fluctuations and,
conversely, it becomes unstable upon b̂(k,τ ) reaching negative
values. A necessary condition for b̂(k,τ ) to reach its minimum
at k = k0 is given by

∂b̂

∂k
(k0(τ ),τ ) = 0. (11)

When b̂(k0(τ ),τ ) is positive, only the disordered phase exists.
When b̂(k0(τ ),τ ) is negative, an ordered phase with a modula-
tion wave vector k0(τ ) emerges. The number of wave vectors k0

solution of Eq. (11) determines the number of different ordered
steady states. On the other hand, the absolute instability
temperature T W

c = Tc(1 − τW
c ) [22] defines the temperature

range associated with these ordered steady states, with τW
c

solution of

b̂
(
k0

(
τW
c

)
,τW

c

) = 0. (12)

From this implicit equation, the limit between the ordered
and disordered steady states can be drawn as a function of the
control parameters describing external forces and temperature.
This limit is different from the one obtained from the linear
stability analysis of Eq. (7) which involves k2b̂ instead of b̂

[18]. This limit and the wave vectors k0 of the ordered phases
result from the instability of L(t → ∞) and only depend on
Eq. (7), i.e., the dynamics of the problem, via ĝ(k).

IV. APPLICATIONS OF THE METHOD

The above consideration provides a procedure effective for
predicting the occurrence of steady states under external forces
and their domains of existence at different temperatures, thus
bypassing the complexity of calculating the values of the order
parameter. In the following, first is re-examined the case of
a diblock copolymer subject to long-range order forces by
calculating its equilibrium phase diagram, and retrieving the
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FIG. 1. (a) Phase diagram in diblock copolymers as a function

of W . The red line displays the absolute instability temperature T W
c

Tc

versus W . The value Wc = 1
4 defines the limit of the ordered steady

state. (b) The modulation wave vector k0 versus W in the ordered
phase at T = 0.

classical results of [8,15]. Then, the procedure is applied to
chemically reactive mixtures and to phase separating binary
mixtures under irradiation, both representing systems evolving
under nonlocal external forces.

A. Diblock copolymers

In this system, the finite block length competes with the
demixing of the constituent monomers, resulting in lamellar,
hexagonal, or micellar structures [23] in 2D and gyroids,
hexagonally packed cylinders, and bcc structure in 3D. In
this case, R→∞ and M , � are temperature independent. On
the other hand, the decomposition of diblock copolymer is
assumed to be a second-order phase transition. This last point
implies that η+ = −η− and then λ = 0. Since this system is
at thermodynamical equilibrium, the Lyapounov functional
reduces to the classical free-energy functional [8]. W is
proportional to the inverse of the squared diblock copolymer
size, is independent from the temperature, and ĝ(k) = k−2

as already reported in the literature [8]. We also obtain the
ordered and disordered phases as functions of the control
parameter W and temperature T , illustrated by the plots in
Fig. 1(a). As expected, previous results from [8] are recovered.
From Eq. (11), only one disordered and one ordered steady
state can exist in the (W,T ) plane. The limit between these
two steady states is defined by the line T W

c = Tc(1 − 2W
1
2 ).

For T > T W
c , only a fully homogeneous disordered steady

state exists [domain (II) in Fig. 1(a)]. For T � T W
c , only one

ordered steady state emerges [domain (I) in Fig. 1(a)] with a
modulation wave vector k0 = W

1
4 [Fig. 1(b)] in agreement

with previous calculations based on the calculation of the
structure factor [14]. For the special case where W = 0, the
spinodal decomposition is recovered. The key point in this
approach is to introduce naturally a critical value Wc = 1

4 . For
W > Wc, Eqs. (11) and (12) have no solution and only the
disordered phase (II) exists in the (W,T ) plane [Fig. 1(a)].
This analysis extends previous results obtained only for the
O(n) model [14] constraining the symmetry of f (η(x,t)) and
clearly points out that the disordered phase exists even below
Wc for nonzero temperature T < Tc.

B. Chemically reactive mixtures

In a binary reactive mixture, chemical reactions are respon-
sible for the mixing of species. Assuming the decomposition

FIG. 2. (a) Phase diagram in chemical reactive mixtures as
a function of W0. The red line displays the absolute instability

temperature T W
c

Tc
versus W0 defining the limit between ordered (I)

and disordered (II) phases. (b) The modulation wave vector k0 versus
W0 in the ordered phase calculated for T = 0 (E0 = 0.1).

to be a second-order phase transition, T η+ = −η− and then
λ exhibits a null value. A steady-state pattern results from
the balance between this effect and the demixing process
associated with a spinodal decomposition [15]. Steady states
in this forced system [3] are determined from the analysis of
the Lyapunov functional. Given the Arrhenius dependence of
the reaction rate �, W (τ ) = W0 exp(− E0

(1−τ ) ) is temperature

dependent (E0 = Ea

kBTc
is the reduced activation energy and

kB is the Boltzmann constant). As is the case for diblock
copolymers, ĝ(k) = k−2 and the solutions of Eq. (11) show
that only ordered (I) and disordered (II) phases exist. The
critical temperature T W

c is then determined from the unique
solution of the implicit equation −τW

c + 2W (τW
c )

1
2 = 0. As

T W
c never vanishes, the ordered phase always exists and is

no longer limited by a critical intensity level of the external
force W0.

Figure 2(a) displays an example of the T W
c line in the

(W0,T ) plane (E0 = 0.1). Solving Eqs. (11) and (12) yields
the explicit dependence of the wave vector k0 = W (τ )

1
4 =

W
1
4

0 exp(− Ea

4kBT
) with the temperature T . For T = 0, k0 van-

ishes and only a spinodal decomposition occurs irrespective
the values of W0. For T > 0, k0 never vanishes, and one ordered
steady state exists below T W

c with modulation wave vector k0,
Fig. 2(b).

C. Immiscible alloys under irradiation

In a AB binary alloy, irradiation induces mixing of species
opposing the driving force of the spinodal decomposition.
Thereby, the steady states produced differ from thermodynam-
ical equilibrium states [24]. As already commented above, two
control parameters W and R quantify the irradiation effects.
W relates to the efficiency of species mixing and is a function
of the mass, the energy, the flux of impinging particles, and the
density of the target [16]. R is associated with the mean range
of atomic displacements in the target triggered by incident
particles impacts [16,18]. Both are assumed to be temperature
independent. On the other hand, atomistic simulations indicate
that ĝ(k) = R2

1+k2R2 with a good approximation [16,25]. Solving
Eqs. (11) and (12), a twofold solution is obtained:

k0(τ ) = 0, − τW
c (1 − 3λ2) + WR2 = 0, (13)
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FIG. 3. Irradiation phase diagram in immiscible alloys. (a) Evo-
lution of the absolute instability temperature surface T W

c as a function
of R, W , and the temperature T . (b) Evolution of the modulation wave
vector of the ordered phases versus W and R at T = 0. (c) Limits
of different domains computed for T = 0 are drawn (red lines) as
functions of W and R (λ = 0, see text) and compared with previous
results [18] (blues stars). The dashed line displays the separation
between the spinodal decomposition and the ordering process.

and

k0(τ ) = (W
1
2 − R−2)

1
2 ,

−τW
c (1 − 3λ2) + 2W

1
2 − R−2 = 0. (14)

Solutions of Eqs. (13) and (14) determine not only the
value of T W

c , i.e., the limit between the ordered and disordered
steady states, but also the number of ordered steady states
below T W

c . Figure 3(a) displays the variation of the surface
T W

c

Tc
as a function of R and W (for λ = 0). Above this surface,

T > T W
c , only the fully disordered phase associated with a

homogeneous distribution of A and B atoms exists. Below
this surface, T < T W

c , ordered steady states can be created
under irradiation for nonvanishing W values. The number
of these ordered steady states and their modulation wave
vectors k0 are directly related to the function ĝ(k). The two
possible values for k0 given by Eqs. (13) and (14) clearly
appear in Fig. 3(b). For WR4 < 1, k0 = 0 is the unique
solution and the spinodal decomposition occurs [black surface
in Fig. 3(b)]. The associated steady state is given by a random
distribution of precipitates in a homogeneous matrix. For

WR4 > 1, k0 = (W
1
2 − R−2)

1
2 and the ordered steady-state

results in a microstructure with precipitates of size proportional
to k−1

0 . This analysis clearly implies that the demixion of the
homogeneous disordered state under irradiation leads either to
a spinodal decomposition (k0 = 0) or to an ordering process
(k0 
= 0) in agreement with previous experimental results [26].
The surface WR4 = 1 determines the partition between these
two ordered steady states. Below T W

c , irradiation disrupts
coarsening during the spinodal decomposition enabling tai-
loring the microstructure with precipitate sizes proportional
to k−1

0 . The different steady states and their limits are plotted
versus R and W for T = 0 in Fig. 3(c) and can be compared
with previous results obtained for T = 0 [18]. The (W,R)
plane can be split into three distinct areas: a disordered domain
(II) and an ordered domain resulting either from a simple
spinodal decomposition (k0 = 0) (III) or a modulated steady
state, which does not exist in absence of irradiation (I). The
phase limits (red line) between the homogeneous phase (II)
and the ordered phases [(I) and (III)] defined, respectively, by

W = [ 1+R2(1−3λ2)
2R2 ]

2
and W = 1−3λ2

R2 are identical to previous
results [18] (blue stars) confirming our analysis. The separation
between the two ordered domains (I) and (III) defined by
WR4 = 1 (dashed black line) cannot be understood as a
phase limit since precipitates exist in both phases. The
point (Wc,Rc) = ((1 − 3λ2)2,(1 − 3λ2)−

1
2 ) resulting from the

intersections of the two ordered domains cannot be understood
as a critical point as it has been previously reported in previous
works [18].

V. CONCLUSION

In summary, this work presents a method to predict pattern
formation in a demixing systems subject to nonlocal external
forces, based on a Lyapounov functional that embodies their
long-time evolution. Our method generalizes the approaches
used for equilibrium systems with long-range order interac-
tions [8]. The existence of the functional guaranties that no
chaotic steady states nor limiting cycles can appear [1]. A
clear physical interpretation of the nature and the number
of steady states and their limits as a function of the control
parameters and the temperature T emerges from the analysis
of the quadratic term of this Lyapounov functional. This
approach allows us to determine the ordered steady states of
various systems, in fair agreement with numerical simulations
[14,16,18] and experimental results [3,27,28]. The method
is promising for microstructural engineering consisting in
selecting the external force strength at a given temperature for
fixing the amplitude of the modulation wave vector of the or-
dered phase as is needed by the application, e.g., optimization
of the mechanical response. Finally, the method could help
predicting ordered phases in systems under external forces
such as superconducting, Langmuir, or epitaxial ferroelectric
films processed by ion bombardment or ball milling.
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