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Scaling relations in the diffusive infiltration in fractals
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In a recent work on fluid infiltration in a Hele-Shaw cell with the pore-block geometry of Sierpinski carpets
(SCs), the area filled by the invading fluid was shown to scale as F ∼ tn, with n < 1/2, thus providing a
macroscopic realization of anomalous diffusion [Filipovitch et al., Water Resour. Res. 52, 5167 (2016)]. The
results agree with simulations of a diffusion equation with constant pressure at one of the borders of those
fractals, but the exponent n is very different from the anomalous exponent ν = 1/DW of single-particle diffusion
in the same fractals (DW is the random-walk dimension). Here we use a scaling approach to show that those
exponents are related as n = ν(DF − DB ), where DF and DB are the fractal dimensions of the bulk and the border
from which diffusing particles come, respectively. This relation is supported by accurate numerical estimates in
two SCs and in two generalized Menger sponges (MSs), in which we performed simulations of single-particle
random walks (RWs) with a rigid impermeable border and of a diffusive infiltration model in which that border
is permanently filled with diffusing particles. This study includes one MS whose external border is also fractal.
The exponent relation is also consistent with the recent simulational and experimental results on fluid infiltration
in SCs, and explains the approximate quadratic dependence of n on DF in these fractals. We also show that
the mean-square displacement of single-particle RWs has log-periodic oscillations, whose periods are similar
for fractals with the same scaling factor in the generator (even with different embedding dimensions), which is
consistent with the discrete scale invariance scenario. The roughness of a diffusion front defined in the infiltration
problem also shows this type of oscillation, which is enhanced in fractals with narrow channels between large
lacunas.
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I. INTRODUCTION

Anomalous diffusion is frequently observed in transport
in porous media and was the subject of intense theoretical
research in recent decades [1–5]. In such media, the mean-
square displacement R of a tracer particle scales in time t as

R ∼ tν, (1)

where, in the case of subdiffusion, ν < 1/2. The random-walk
dimension

DW = 1

ν
(2)

is consequently larger than 2. In normal or Fickean diffusion,
ν = 1/2 (DW = 2); superdiffusion is characterized by ν >

1/2, but such case is not discussed here. The delay in material
transport in a porous medium is caused by irregularities such as
impenetrable barriers and dead ends. The anomaly is observed
if this delay has no characteristic time scale [2], which is
in turn related to the absence of a characteristic length scale
of the irregularities and explains the frequent observation of
subdiffusion in self-similar fractals.

Several approaches to study anomalous diffusion are based
on direct solutions of the transport problems inside structures
that represent those media under certain approximations. Many
of these structures are deterministic fractals [6], which are
generated by recursive application of a rule for generation
of porous and solid phases. Well-known examples are the
Sierpinski carpets (SCs), whose construction is illustrated in
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Figs. 1(a) and 1(b). Their relatively simple geometry (e.g.,
if compared with stochastically generated fractals) facilitates
quantitative or qualitative connections between structural and
transport properties. Random walks were already intensively
studied in fractal lattices with the geometry of SCs, with finite
or infinite ramification, and in randomized versions of the
SCs [7–19].

In infiltration of a fluid or a solute in a porous medium, an
external surface is in contact with a reservoir of the species
that is transported in the pores. These features are observed in
a large variety of systems, such as hydration of rocks, water
or dye absorption in soils or rocks, injection of liquids in
fractures or nanoporous solids, etc. In some cases, models
of convective or advective motion and diffusion are studied
in deterministic or randomized fractals [20–27]. However, in
several other cases, diffusion is the dominant mechanism
in the infiltration problem, which motivates the study of
anomalous diffusion models and the study of the geometry
of porous or fractured media [23,28–35]. The infiltration of
randomly moving particles in planar and three-dimensional
lattices was also illustrated in Ref. [36]; this motivated the
gradient percolation problem, in which two lattice borders
were kept with fixed concentrations of particles [37–39].

Fluid infiltration in fractals was considered in a recent work
by Voller [33], who studied the diffusive motion inside several
SCs keeping one external border with constant pressure. The
fraction of the area occupied by the fluid, which here we call
the filling F , scales as

F ∼ tn, (3)

with n < 1/2, consistently with anomalous subdiffusion.
Subsequently, a Hele-Shaw cell was designed by Filipovitch
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FIG. 1. Panels (a) and (b) show the first two stages of construction
of SC1 and SC2, respectively. The generator (stage m = 1) is a square
divided in b2 subsquares with k of them removed (blue): In SC1,
b = 3 and k = 1; in SC2, b = 5 and k = 9. In each stage of the
construction, each remaining square is replaced by the generator;
thus b is the scaling factor of this process. A SC with dimension
DF = ln (b2 − k)/ ln b is obtained after infinite iterations. In panel
(a), the pore sites of the SC1 lattice are shown as green dots in the
stage m = 2. Panels (c) and (d) show the generators of MS1 and
MS2, respectively, in which a cube is divided in b3 subcubes and k of
them (in blue tones) are removed: in MS1, b = 3 and k = 7; in MS2,
b = 5 and k = 27, but the division of this generator is shown only in
one external face of the main cube and one face of the removed cube
to facilitate visualization. In each stage of the construction of a MS,
each remaining cube is replaced by the generator, so that a fractal with
dimension DF = ln (b3 − k)/ ln b is obtained after infinite iterations.

et al. [34] to reproduce the pore-block geometry of the SCs
and used to study infiltration of glycerin. The exponents
n measured in the experimental apparatus were consistent
with the previous simulation values, thus providing a clear

macroscopic demonstration of the relation between structural
disorder and subdiffusion. Hereafter, these processes are called
diffusive infiltration.

In two- or three-dimensional unobstructed lattices, n has
the normal diffusion value 1/2. However, the exponents n

and ν are very different in the same fractal. For instance, in
the fractal in Fig. 1(a), simulations of random walks (RWs)
give ν ≈ 0.476 [8,9,19], while the infiltration simulations give
n = 0.419 [33] and the corresponding experiments give n =
0.423 [34]. Although the works on diffusive infiltration in SCs
consider only their first three or four stages of construction,
the finite sizes seem to have small effects of n.

The main aim of the present work is to relate the anomalous
exponents of single-particle diffusion in the bulk (ν) and of
the diffusive infiltration from the border (n) of deterministic
fractals. We consider SCs whose dimensions are between 1 and
2, and Menger sponges (MSs) whose dimensions are between
2 and 3. Numerical simulations are used to obtain accurate
estimates of ν and n and a scaling approach is used to show
that their ratio depends only on the bulk fractal dimension
and on the fractal dimension of the boundary from which
the particles come. We also define a diffusion front in this
infiltration problem, show that averaged fronts in SCs have
shapes similar to those of the experiments in the Hele-Shaw
cells, and briefly discuss their roughening in the SCs and MSs.
We stress that our work is concerned with unbiased RWs for
both problems; thus it is not expected to describe systems in
which convective or advective transport is relevant.

This paper is organized as follows. Section II presents the
models of fractal lattices, diffusion processes, and information
on the simulation work. Section III shows simulation results for
single-particle diffusion and diffusive infiltration in SCs and
MSs. Section IV presents an approach to connect the scaling
exponents of those problems. In Sec. V, the roughening of
the diffusion fronts is analyzed. In Sec. VI, our results and
conclusions are summarized.

II. FRACTAL LATTICES, DIFFUSION MODELS, AND
THEIR SIMULATION

The construction of the SCs studied here is shown in
Figs. 1(a) and 1(b); they are respectively called SC1 and
SC2. Their fractal dimensions are D

(1)
F = ln 8/ ln 3 and D

(2)
F =

ln 16/ ln 5, respectively. These values up to five decimal places
are shown in Table I.

A lattice is defined with sites at the vertices of the squares
produced at each step of the construction of the SC. In each
stage m, the unit size is defined as the distance between nearest
neighbor sites; thus the lateral size of the lattice (number of
sites in one border) is L = bm + 1, where b is the scaling factor
of the generator.

The solid sites of the lattice are those located inside the
lacunas. The remaining sites form the pore network. The
distribution of pore sites is illustrated in the stage m = 2 of
SC1 in Fig. 1(a). Note that many pore sites are in the borders
of the lacunas. Hereafter we refer to this pore network as the
SC; it actually has the same fractal dimension of the region
remaining after infinite iterations of the construction rule. The
particles executing RWs in the SC can occupy only pore sites.
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TABLE I. Bulk and border dimensions of each fractal, best estimates of exponents, and corresponding estimates of ν(DF − DB ) for the
test of Eq. (9). Simulation data were obtained in this work except where indicated.

Fractal DF DB ν (simulation) n (simulation) ν(DF − DB )

SC1 1.89279 1 0.475 ± 0.003 (Ref. [8]) 0.424 ± 0.004 0.424 ± 0.003
SC2 1.72271 1 0.455 ± 0.003 (Ref. [8]) 0.334 ± 0.014 0.329 ± 0.002
MS1 2.72683 1.89279 0.467 ± 0.005 0.389 ± 0.002 0.389 ± 0.004
MS2 2.84880 2 0.479 ± 0.013 0.407 ± 0.014 0.407 ± 0.012

An impenetrable border of the lattice is located at the y axis
(x = 0), as shown in Fig. 2(a). This means that no particle can
jump to points with x < 0. Periodic boundary conditions are
considered in the y direction. These conditions do not affect
the geometric properties of the fractals.

The first step of our work is to study single-particle infiltra-
tion in the SCs, with starting positions randomly chosen in the
y axis. This is equivalent to the infiltration of noninteracting
particles starting at that axis at t = 0, as proposed in a recent
model of diffusion in porous deposits [40]. In one time unit, the
particle randomly chooses one nearest-neighbor site to jump
to, and moves to that site only if it is also a pore site; otherwise,
the particle does not move. Figure 2(a) illustrates the first steps
of a particle in SC1.

We simulated 107 single-particle RWs in the stages m = 6
to m = 9 of SC1 and m = 7 of SC2. The maximal time of each

(a)

(b)

x

x

FIG. 2. (a) Some steps of a particle (red) in the single-particle
diffusion model in SC1 (white pores, blue solid). The lower dark line
is the impenetrable border (x = 0). (b) Configuration of the diffusive
infiltration model in SC1 after some steps, with particles filling the
border x = 0.

walk was tMAX = 107 in the largest lattices. These conditions
ensure that no walker reaches the border at x = L.

The model of diffusive infiltration in the SCs is defined
analogously to the model in planar and cubic lattices shown
in Ref. [36]. The y axis (line x = 0) is permanently filled
with mobile particles that execute RWs with excluded volume
interactions, i.e., with at most one particle per site. In one time
unit, each particle executes an average of one step trial to a
randomly chosen nearest-neighbor site. The step is allowed if
the target site is a pore site and is not occupied by another
diffusing particle; otherwise, the particle does not move. If a
particle leaves the y axis, another particle immediately refills
the available position. This creates a pressure for the particles
to move to the positive x direction. Figure 2(b) illustrates the
beginning of this process in SC1.

In our simulations, 50 independent configurations of diffu-
sive infiltration were generated in stages m = 7 of SC1 and
m = 5 of SC2, with maximal times tMAX = 105. Simulations
in m = 6 of SC1 were also performed to confirm the absence
of finite-size effects.

The generators of the MSs studied here are shown in
Figs. 1(c) and 1(d); these fractals are respectively called MS1
and MS2. Those images differ from usual presentations of
these fractals because they highlight the solid region (dark)
of the generator, with the remaining region being the porous
one. The fractal dimensions of the porous regions are D

(1)
F =

ln 20/ ln 3 for MS1 and D
(2)
F = ln 98/ ln 5 for MS2. The values

up to five decimal places are also shown in Table I.
Lattice sites are located at the vertices of the cubes produced

at each step of the construction of the MS and the distance
between nearest-neighbor sites is taken as the size unit. At
stage m, the lateral size of the lattice is L = bm + 1, where b

is the scaling factor of the generator. The solid sites are located
inside the lacunas at each stage and the remaining sites are pore
sites, which may be occupied by particles executing RWs. An
impenetrable border of the MS lattice is located at the yz

plane (x = 0) and periodic conditions are considered in the
directions y and z.

In single-particle infiltration in MSs, each particle is
released at a randomly chosen pore site of the border x = 0
(yz plane) and, in each time unit, chooses one nearest-neighbor
site and jumps to that site only if it is also a pore site; 106 RWs
were generated in stages m = 6 of MS1 and m = 4 of MS2,
with tMAX = 105.

In diffusive infiltration in MSs, all pore sites of the
border x = 0 are permanently occupied by mobile particles
and each particle executes an average of one step trial per
unit time; when a pore site at x = 0 becomes empty, it is
instantaneously refilled. In stages m = 6 of MS1 and m = 4 of
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MS2, we produced 20 configurations of diffusive infiltration,
with maximal times tMAX = 104.

A diffusion front {h} is defined in the diffusive infiltration
problem. The front height at position y of a SC [(y,z) of a MS]
is an average of the displacements x of all particles with that
position. In general, at a given substrate position i, the front
height hi is

hi(t) ≡ 2

Ni

σ=Ni∑
σ=1

xσ , (4)

where Ni is the number of particles with that substrate position
and σ runs over all those particles. If this definition is used for
a configuration with no vacancy between particles (solid-on-
solid aggregates), then hi is equal to the position x of the top
particle at position i; this is the usual definition of the interface
in film growth and/or kinetic roughening models, and justifies
the factor 2 in Eq. (4).

The roughness of the diffusion front, W (t), was calculated
for selected times. It is defined as the rms fluctuation of
{h}, averaged over the substrate positions and over different
configurations of the front at time t . Finite-size effects on W

are expected only when 〈h〉 ∼ Lz or longer, where z > 1 is the
dynamical exponent of the front roughening [41]. However, the
infiltration simulations are restricted to 〈h〉 < L; thus W is not
expected to depend on L, i.e., roughening is in the growth
regime [41].

III. SIMULATION RESULTS

A. Infiltration in Sierpinski carpets

Figure 3 shows the time evolution of the mean square
displacement in the x direction in single-particle diffusion in
SC1 (m = 9) and SC2 (m = 7). The linear fits of each data set
are shown.

FIG. 3. Mean square displacement as a function of time of single
particle RWs in stage m = 9 of SC1 (red squares) and m = 7 of SC2
(blue triangles). For clarity, we show only data points in intervals
�0.05 of log10 t . Solid lines are least squares fits of all the data
generated in the range 103 � t � 107.

The mean square displacement oscillates in both cases,
but the oscillations are visible only in the data for SC2. The
diffusing particle may take a long time to go around the border
of lacunas, whose sizes increase as the particle travels to more
distant points. The amplitude of oscillations are much smaller
in SC1 because its lacunas are relatively small if compared to
those of SC2. These oscillations are log-periodic, similar to
those observed in simulations of RWs in the bulk of SCs [14],
and are a consequence of the discrete scale invariance of those
fractals [42,43].

The estimates ν = 0.478 ± 0.003 for SC1 and ν = 0.45 ±
0.01 for SC2 are obtained by performing linear fits in several
time ranges in the simulated interval. Fits of the data in smaller
stages of construction of those fractals confirm that finite-size
effects are negligible.

These estimates are very close to those obtained from
simulations of RWs starting at random points of the bulk of
the SCs: ν = 0.475 ± 0.003 [8] and 0.476 ± 0.005 [9,19] in
SC1; ν = 0.458 ± 0.004 [12] and 0.455 ± 0.003 [8] in SC2.
This comparison is important because it shows that the long
time properties of single-particle RWs in the SCs do not
depend on the initial positions of those particles nor on the
boundary conditions. We understand that this is consistent
with the uniqueness of Brownian motion in a Sierpinski carpet
demonstrated in Ref. [15], which is related to the uniqueness
of the Laplacian definition in that fractal. The most accurate
estimates of ν for each fractal are shown in Table I.

The diffusive infiltration in SC1 is illustrated in Fig. 4(a),
which shows a region near the filled border of that lattice at time
t = 8000. Figure 4(a) also shows an averaged diffusion front
{H }, in which H (9j ) (position y = 9j , with integer j � 0)

FIG. 4. (a) Configuration of the diffusive infiltration in SC1 at
t = 8000, with lacunas (solid) in light green, empty (pore) region in
white, and diffusing particles in red. The blue curve is the averaged
diffusion front {H }. (b) Diffusion front (not averaged) {h} in the same
positions y of the above picture.
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is the average of the heights hi [Eq. (4)] from i = 9j − 4
to i = 9j + 4. This is an average over 9 substrate positions,
which is the second smallest size of the lacunas in the lattice.
This averaging highlights the long wavelength fluctuations.
Instead, the diffusion front {h}, which is shown in Fig. 4(b),
also has short wavelength fluctuations of large amplitude.

The averaged diffusion front has a structure of rounded
mounds separated by gaps, with the mounds located between
the third level lacunas. The main depletion of that front is close
to the fourth-level lacuna (the largest one at the left side).
This morphology resembles that observed in infiltration of
glycerin in the Hele-Shaw cells in Ref. [34], which reinforces
the connection with that system. The experimental front is
smoother, but this is probably related to interfacial tension
effects and to the small stage of the SC used in the cell.

The filling F (t) is the number of moving particles at time
t per lattice site. Figure 5 shows the time evolution of F in
SC1 (m = 7) and SC2 (m = 5) and linear fits of each data
set. Considering fits in various time ranges, we obtain the
estimates n = 0.424 ± 0.004 and n = 0.334 ± 0.014, respec-
tively, which are reproduced in Table I.

The value of n in SC1 is very close to the estimate
n = 0.419 of Ref. [33] for infiltration simulated with a
diffusion equation; in SC2, n = 0.319 was obtained in that
work, which differs 4.5% from our estimate. The experiments
of glycerin infiltration in the Hele-Shaw cells of Ref. [34]
give n = 0.423 and n = 0.334, respectively, which are both in
excellent agreement with our results. These results suggest a
universal scaling in the diffusive infiltration problem in SCs.

The exponents n are much smaller than the estimates of
ν in the same SCs. The differences are −11.5% for SC1 and
−27.1% for SC2, both much larger than error bars of the
estimates of both exponents.

We also performed simulations of single-particle RWs and
of diffusive infiltration in free square lattices, i.e., without

FIG. 5. Filling of stage m = 7 of SC1 (red squares) and m = 5 of
SC2 (blue triangles) as a function of time in the diffusive infiltration
model. Only data points with difference �0.05 in log10 t were plotted.
Solid lines are least squares fits of all the data generated in the range
102 � t � 105.

FIG. 6. Mean square displacement as a function of time of single-
particle RWs in stage m = 6 of MS1 (red squares) and m = 4 of MS2
(blue triangles). Only data points with differences �0.05 in log10 t

were plotted. Solid lines are least squares fits of all the data generated
in the range 102 � t � 105.

obstacles. Even with a small number of configurations in a
lattice of lateral size 1024 and with maximal simulation time
105, we obtained n ≈ ν ≈ 0.5 with good accuracy.

B. Infiltration in Menger sponges

Figure 6 shows the time evolution of the mean square
displacement in the x direction of single-particle diffusion
in MS1 (m = 6) and MS2 (m = 4), with linear fits of each
data set. The log-periodic oscillations due to the discrete scale
invariance [14,42] are also observed here, and their amplitudes
are also larger in the fractal with larger lacunas (MS2).

Fits of the data in various time intervals yield the estimates
ν = 0.467 ± 0.005 for MS1 and ν = 0.479 ± 0.013 for MS2,
which are also reproduced in Table I. Previous estimates
of ν in MSs were obtained only from lower and upper
bounds [7,18]; thus they had lower accuracy than the present
ones. Simulations in smaller stages of MS1 and MS2 give
approximately the same estimates, indicating that finite-size
effects are small.

Note that the exponent ν in the MSs follows the same trend
of decrease with the fractal dimension that was observed in
the SCs in Ref. [9]. Moreover, those exponents are near the
normal diffusion value 1/2, which is also observed in fractals
without dead ends and dimensions between 1 and 2, such as
the SCs [12].

The diffusive infiltration is illustrated in Figs. 7(a) and 7(b),
which show cross sections of MS1 near the filled boundary
at t = 2000. In the plane z = 250 [Fig. 7(a)], the density of
obstacles near the filled boundary is low; thus it is easier
for particles to reach larger distances. In the plane z = 360
[Fig. 7(b)], the density of blocks near the boundary is large,
which confines many particles; however, note that three
particles have already reached an upper porous region of this
plane by migrating through other planes.
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FIG. 7. Configurations of diffusive infiltration at t = 2000 in
planes (a) z = 250 and (b) z = 360 of MS1. Colors are the same
as in Fig. 4.

Figure 8 shows the time evolution of the filling F in MS1
(m = 6) and MS2 (m = 4). Linear fits of the data with 102 �
t � 104 are shown. We also analyzed fits in different time
ranges to obtain the estimates n = 0.389 ± 0.002 and n =
0.407 ± 0.014, respectively. They are presented in Table I.
Again, we also observe that the exponents ν and n are very
different.

We also simulated single-particle RWs and the diffusive
infiltration model in simple cubic lattices. With a small number
of configurations and maximal time 105, we obtained n ≈ ν ≈
0.5, which is consistent with normal diffusion in both cases.

IV. SCALING APPROACH

A scheme of the diffusive infiltration in a fractal is shown
in Fig. 9, with a characteristic length 〈h〉 filled by the diffusing
species. L is the lateral size of the lattice, whose dimension
is DF and whose filled boundary has dimension DB . For
SCs, the boundary is a filled line, thus DB = 1; for MS2,
the boundary is a plane, thus DB = 2. However, for MS1, the
filled boundary has the geometry of SC1; thus it has dimension
DB = ln 8/ ln 3 ≈ 1.89279.

The diffusing front is expected to advance with the same
scaling of single-particle diffusion because the more advanced

FIG. 8. Filling of stage m = 6 of MS1 (red squares) and m = 4 of
MS2 (blue triangles) as a function of time in the diffusive infiltration
model. Only data points with differences �0.05 in log10 t were
plotted. Solid lines are least squares fits of all the data generated
in the range 102 � t � 105.

particles move in a region with low density, in which the main
constraints are the irregularities of the fractal network and not
the excluded volume interactions. For this reason, we expect

〈h〉 ∼ tν . (5)

The value of 〈h〉 calculated in our simulations are consistent
with this scaling, but fluctuations are much larger than those
of single-particle diffusion.

The filled region can be divided in hypercubes of edge 〈h〉;
one of them is highlighted in Fig. 9. The total filling of each
hypercube is

FH ∼ 〈h〉DF , (6)

assuming that 〈h〉 is sufficiently large for the fractality of the
medium to be observed. If L � 〈h〉, the number of hypercubes

L

D

D

F

B

<h>

<h>

FIG. 9. Scheme of diffusive infiltration from a border character-
ized by fractal dimension DB to a medium characterized by fractal
dimension DF with lateral size L. 〈h〉 is the average thickness of the
diffusion front.
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in the boundary is

NH ∼
(

L

〈h〉
)DB

. (7)

The total filling consequently scales as

F = NHFH ∼ LDB 〈h〉DF −DB ∼ LDB tν(DF −DB ). (8)

This gives an exact relation between the single-particle
diffusion exponent and the diffusive infiltration exponent:

n = ν(DF − DB) = DF − DB

DW

, (9)

where Eq. (2) was also used.
Table I shows the values of ν(DF − DB) obtained from the

best available estimates of ν and the exact dimensions DF

and DB . They are in excellent agreement with the estimates
of n obtained in simulations. Note that Eq. (9) implies
n = ν = 1/2 for systems in which bulk and boundary are
regular lattices with integer dimensions, since DB = DF − 1,
and single-particle diffusion is normal in those cases. Also note
that the successful application to systems whose boundaries
are compact (SCs and MS2) and fractal (MS1) is a strong
support to this scaling approach.

In Ref. [9], it was shown that the exponent ν in SCs has
an approximately linear dependence on DF if this dimension
is not much smaller than 2. Combination of this relation with
Eq. (9) gives an approximately quadratic dependence of n

on DF . Indeed, such a quadratic relation was obtained by
Filipovitch et al. [34] in the experiments of fluid infiltration
in SCs. For many other fractals in which the RW exponent
is known, Eq. (9) can predict the anomalous properties of
diffusive infiltration and, if experiments are available, it may
help to evaluate the applicability of a given fractal model.

V. ROUGHENING OF THE INFILTRATION FRONTS

The roughness of the diffusion front was measured in all
fractals at selected times, from t = 50 to t = 36 000 in SCs

and from t = 50 to t = 6400 in MSs. Figure 10(a) shows W

as a function of t in SC1, MS1, and in the square lattice;
Fig. 10(b) shows the same quantities in SC2, MS2, and in the
simple cubic lattice.

In square and cubic lattices, the linear fits of the data
shown in Figs. 10(a) and 10(b) give W ∼ tβ with a growth
exponent β ≈ 0.25. The movement of the particles in the
diffusion front is completely random, and thus the height
of each position y in the SCs (yz in MSs) randomly
fluctuates around the average value 〈h〉. This is characteristic
of random uncorrelated deposition, in which W ∼ 〈h〉1/2 [41].
Since 〈h〉 ∼ t1/2 in diffusive infiltration in those lattices,
we obtain β = 1/4, which is consistent with the simulation
results.

The infiltration problem defined here has similarities with
that of gradient percolation, in particular the existence of
lattice borders with fixed concentration of particles; see, e.g.,
Ref. [36]. However, a very important difference is the existence
of a fixed concentration gradient along the x direction in
that case; instead, in the present problem, the concentration
gradient is continuously varying between the filled border
and the diffusion front. In the gradient percolation problem,
the diffusion front is defined as the interface of a cluster
of connected particles, which also differs from the present
definition. Thus, even if correlations in particle positions were
introduced in our model (e.g., to represent surface tension
effects), the roughening might be different from that of the
gradient percolation front [38,39].

Despite the simplicity of the diffusive infiltration front
in regular lattices and the fact that the uncorrelated growth
extends to the fractal media, some interesting features can be
observed in the latter case. As shown in Figs. 10(a) and 10(b),
the roughness oscillates in all fractals. As the front reaches
the lower borders of a set of parallel lacunas of a given
size, the front can advance only in the regions between those
lacunas, which leads to large differences in the heights at the
confined and nonconfined regions; see, e.g., Figs. 4(a), 7(a)
and 7(b). However, when the front reaches the upper borders
of those lacunas, it enters a more homogeneous region, in

FIG. 10. Roughness of diffusion fronts in: (a) SC1 (red squares), MS1 (green triangles), and square lattice (blue crosses); (b) SC2 (red
squares), MS2 (green triangles), and simple cubic lattice (blue crosses). The data in the square (cubic) lattice is displaced 0.2 (0.5) units to the
bottom to avoid intersection with other data sets. Dashed lines are least squares fits of data in square and cubic lattices, both with slope 0.257.
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F. D. A. AARÃO REIS PHYSICAL REVIEW E 94, 052124 (2016)

FIG. 11. Configurations of diffusive infiltration at (a) t = 1000
and (b) t = 5000 in SC2, with the corresponding averaged fronts.
Colors are the same as in Fig. 4.

which lateral diffusion slows down the increase of height
differences.

This effect is enhanced in lattices with large lacunas,
which is the case of SC2 and MS2. For instance, Fig. 11(a)
shows an infiltration profile in SC2 at t = 1000, in which
the front has bypassed the second level lacunas but did not
reach the larger ones. Correspondingly, Fig. 10(b) shows a
plateau in the log W × log t plot at t ∼ 1000. On the other
hand, Fig. 11(b) shows an infiltration profile at t = 5000, in
which particles enter the gaps between the third-level lacunas.
Correspondingly, Fig. 10(b) shows a rapid increase of W

at t ∼ 5000. The main contribution to the roughness is that
from the long wavelength fluctuations, which are the height
differences between the evolving regions (in the gaps) and the
blocked regions (below the large lacunas). This is not a kinetic
roughening feature, but an effect of the channeled geometry
of the medium. For this reason, it is meaningful to estimate a
growth exponent β in these cases.

The roughness oscillations are also log-periodic, which is
related to the discrete scale invariance of the medium. An
important feature is that the periods have approximately the
same value for the fractals with the same scaling factors in
the generators, even having very different DF and different
embedding dimensions: b = 3 for SC1 and MS1 [Fig. 10(a)]
and b = 5 for SC2 and MS2 [Fig. 10(b)]. The relevance
of the scaling factor of the generator is consistent with the
approach of Ref. [42] to explain these oscillations in kinetic
models.

Other growth models have also been studied in substrates
with the geometry of SCs [44–47]. The roughness oscillations
were also observed in the simulations of ballistic deposition
in SCs [44]. However, a comparison with our results is not
possible because the front kinetics and the substrate effects
are very different. For instance, here the front grows in the

plane in which the SC is embedded; thus it finds different
disordered environments in the lateral directions during the
growth, while those works consider growth parallel to the SC
plane, so that the lateral disorder is the same for the growing
columns at all heights.

VI. CONCLUSION

Although diffusion in deterministic fractals has been
intensively studied for a long time, as reviewed in Refs. [2,4],
interesting features and applications frequently appear as
shown in recent works, e.g., Refs. [16–18,43,48–50]. The
simulation of infiltration of a diffusing fluid in a Sierpinski
carpet and subsequent experimental realization of this process
in a Hele-Shaw cell provide a very interesting macroscopic
illustration of that phenomena [33,34]. However, the signif-
icant discrepancy between the anomalous exponent of filled
area and the exponent of single-particle diffusion in the same
fractals was not explained. The main aim of this work was to
fill this gap.

We performed numerical simulations of the infiltration of
randomly moving particles from a permanently filled border
in deterministic fractals embedded in dimensions 2 and 3,
viz. Sierpinski carpets (SCs) and Menger sponges (MSs).
The exponent n of the time scaling of the infiltrated area
or volume was measured and confirms the accuracy of the
previous infiltration simulations [33] and experiments [34],
which were obtained in smaller stages of construction of SCs.
Single-particle diffusion starting from the same border was
also studied numerically and the exponent ν of the mean
square displacement scaling was measured. In SCs, the values
of ν agree with previous estimates in the bulk of those
fractals; in MSs, they improve previous estimates, since they
were based only on lower and upper bounds and had large
uncertainties.

A scaling approach is proposed to relate exponents n

and ν, considering the fractal dimensions of the infiltrated
region and of the region from which the diffusing particles
come. The numerical results are in excellent agreement with
this approach. Thus, if the dimensions characterizing the
porous medium and its boundaries are known, then the
single-particle diffusion exponent ν (which was calculated for
a variety of fractals in more than three decades) is sufficient
to determine the scaling properties in the diffusive infiltration
problem.

We also showed that the roughness of the diffusion fronts
has log-periodic oscillations in time, which is characteristic of
random walks and other kinetic models in fractals [14,42,43].
The same oscillations are observed in the mean-square
displacement of single-particle RWs. In SCs and MSs whose
generators have the same scaling factor, the periods are
approximately the same, despite the very different dimensions
of those fractals, which shows the relevance of the discrete
scale invariance.
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