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Phonon transport in a one-dimensional harmonic chain with long-range interaction
and mass disorder
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Atomic mass and interatomic interaction are the two key quantities that significantly affect the heat conduction
carried by phonons. Here, we study the effects of long-range (LR) interatomic interaction and mass disorder
on the phonon transport in a one-dimensional harmonic chain with up to 105 atoms. We find that while LR
interaction reduces the transmission of low-frequency phonons, it enhances the transmission of high-frequency
phonons by suppressing the localization effects caused by mass disorder. Therefore, LR interaction is able to
boost heat conductance in the high-temperature regime or in the large size regime, where the high-frequency
modes are important.
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I. INTRODUCTION

Due to the fast emergence of low-dimensional materials,
heat transport in nanostructures has attracted intensive interest
in recent years. In bulk materials, the heat conduction is a
diffusive process governed by Fourier’s law. On the other side,
in nanostructures, their size scales can be compared to the
mean free path or the coherence length of the phonons. Hence
the heat transport is no longer simply diffusive [1]. In fact, it is
affected by a mixture of many different factors, such as random
disorders, interaction ranges, and interfaces. As a result,
phonon transport at the nanoscale becomes a complicated
phenomenon. Since the nanostructure provides the basic
building block for constructing a phononic device [2] and
phonon-based quantum computing [3,4], a clear understanding
of the effects of these various factors on phonon transport is
highly demanded.

It is known that the atomic details of nanostructures are
important in understanding the heat transport carried by
phonons. Explicitly, atomic mass and interatomic interactions
are the two major factors affecting phonon transport. In
terms of atomic mass, phonons can be easily scattered by
impurities or mass disorders. In practice, mass-disordered
materials are common, due to either unavoidable impurity
contamination or intentional insertion of different atoms [5–8].
The effects of mass disorder on thermal transport recently
have been studied intensively using one-dimensional atomic
chain models [9–17]. It is commonly believed that mass
disorder causes localization of high-frequency modes, but it
only weakly affects the transmission of low-frequency modes.
In one-dimensional atomic chain with free boundary condition,
the smallest localized frequency ωc is size-dependent as
ωc ∝ N−0.5, where N is the number of atoms in the chain [16].
However, in terms of interatomic interactions, most of previous
studies were based on models taking into account only
nearest-neighbor (NN) interaction. In many situations, strong
long-range (LR) interaction is present and able to affect
phonon transport. For example, the ionic doping, such as
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lithium insertion in nanostructures for battery applications, can
produce long-range electrostatic potentials [18,19]. Strong a
long-range electric field can also be generated on fluorine-
terminated surfaces as dipole lattices [20]. Recently, in the
design of quantum computers, long-range interacting phonons
based on trapped ions have been used to create high-fidelity
qubits for information transport [3,4]. Currently, the effects of
LR interaction on phonon transport are not well understood.
In the classical regime, it has been shown that even a next-NN
interaction can change the size dependence of thermal conduc-
tivity when the phonons are scattered by anharmonicity [21].
However, when the phonons are scattered by mass disorder,
the LR effects on quantum thermal conductance remain
unexplored.

In this work, we employ a model of a harmonic one-
dimensional atomic chain with random masses to study the
effects of long-range interaction on mass-disordered heat
transport, as shown in Sec. II. Such a model is the simplest
one that is able to capture both LR interaction and mass
disorder. The more intricate scatterings due to anharmonicity
are ignored and thus we focus on the effects of LR interaction
on the phonons scattered only by mass disorder. Using the
nonequilibrium Green’s function (NEGF) technique, we reveal
the frequency dependence of phonon transmission and also the
size and temperature dependence of thermal conductance in
Sec. III. For systems without mass disorder, we found that LR
interaction is able to reduce the low-frequency transmission,
and hence reduce the thermal conductance. In contrast, for a
mass-disordered system in the presence of the LR interaction,
it is found, surprisingly, that LR interaction is able to release the
localized phonon modes arising from mass disorder and hence
increase the thermal conductance. Last, we studied different
types and strengths of LR interaction and analyzed their effects
on thermal conductance.

II. MODEL AND METHOD

We study heat transport through a system of a one-
dimensional atomic chain connected to two phonon leads, as
illustrated in Fig. 1. The leads are served as heat baths, pro-
viding temperature bias on the system. The total Hamiltonian
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FIG. 1. A schematic of a one-dimensional mass-disordered sys-
tem. The left and right leads are in equilibrium with different
temperatures to drive a heat current. The atoms in the center have
random mass disorder, labeled as red (dark gray). The atoms in the
center have long-range interactions.

can be written as

Htot = HL + HLC + HC + HCR + HR, (1)

where HL, HR , and HC are the Hamiltonians of the left
lead, right lead, and central region. HLC and HCR are the
coupling Hamiltonians between the central region and each
leads, respectively. The Hamiltonian of the central region is
given by

HC =
N∑

s=1

p2
s

2ms

+ V C(x1,x2, . . . ,xN ), (2)

where index s labels the atom in the center and N is the total
number of atoms, characterizing the size of the system. For
atom s, ms is its mass, xs is its displacement operator and ps

is its momentum. The first term denotes the kinetic energy
contribution. The second term represents the potential energy
due to interatomic interactions. Therefore the potential energy
depends on the entire set of atomic displacements. Here we
ignore the anharmonic effects so that the potential between
each pair of atoms, s and s ′, is quadratic 1

2kss ′ (xs − xs ′ )2, where
the spring constant kss ′ depends only on their relative distance.
As a result, the total potential can be written as

V C =
∑

1�s<s ′�N

1

2
kss ′ (xs − xs ′ )2 + 1

2
k′(x2

1 + x2
N

)
, (3)

where the atoms at the two ends (x1 and xN ) are connected
to the heat baths. We assume that both the mass disorder and
LR interaction occur only at the center so that the interaction
between the system and leads, and the interaction within each
lead, are short ranged so that only nearest-neighbor couplings
are taken into account. Here k′ is the spring constant coupled
to the bath and it is constrained by the condition that the total
Hamiltonian satisfies translational invariance. By rearranging
the terms, the potential energy can be written in the matrix
form as V C = 1

2xT KCx, where x is the column vector of
displacement operators and KC is the force constant matrix.

Using the NEGF framework, heat conductance at tempera-
ture T can be evaluated from the Landauer formula

σ =
∫ ∞

0

dω

2π
�ωT [ω]

∂f

∂T
, (4)

where f = [exp( �ω
kBT

) − 1]−1 is the Bose-Einstein dis-
tribution and T [ω] is the transmission coefficient. It
can be evaluated from the Caroli formula T [ω] =

Tr[Gr (ω)�L(ω)Ga(ω)�R(ω)]. Gr (Ga) is the retarded (ad-
vanced) Green’s function of the central region in the frequency
domain [13,22],

Gr [ω] = [
(ω + iη)2M − KC − �r

L(ω) − �r
R(ω)

]−1
(5)

and Ga(ω) = [Gr (ω)]†. Here M is the diagonal mass matrix, η
is a positive small number (η → 0+), and �r

α(ω) is the regarded
self-energy of lead α. The spectral function of the lead �α is
given by �α(ω) = −2Im[�r

α(ω)]. In this work, we choose our
baths as standard Rubin baths of force constant k so that the
regarded self-energy of each lead is given by [23]

�r
α(ω) = k′2[
 + k − k′ + kλ]−1, (6)

where 
 = m(ω + iη)2 − 2k and λ = (−
 ± √

2 − 4k2)/

(2k) are two shorthand notations. The choice of the plus or
minus sign is determined by the condition |λ| < 1.

In order to generate mass disorder in the central region, we
set each atomic site with a probability c to have an impurity
atom with mass m′. Consequently, a probability of 1 − c is
set for each atomic site with mass m. The atoms with mass m

are the same as those in the leads. When the number of atoms
N or the amount of ensembles is large, the concentration of
impurity atoms converges to c. For each N , we average over
100 ensembles of random configurations during the calculation
of the transmission coefficients in order to achieve satisfactory
convergent results.

In systems with long-range interaction, the spring constant
kss ′ decays with respect to the relative distance rss ′ between
the atoms s and s ′. In this work, we cut off the interaction
range until it is sufficiently small (less than 1% of NN
interaction strength). Here we consider two forms of long-
range interaction: the inverse-square decay kss ′ = k0(rss ′/a)−2

in analog to Coulomb interaction, and exponential decay
kss ′ = k0d

(1−rss′ /a) for the control of long-range interaction
strength. Here k0 is the NN spring constant, a is the lattice
constant, and d is the decay length to control the long-range
interaction strength. The atomic distance is rss ′ = |s − s ′|a.
For simplicity, we set k′ = k0 = k, so that if one only considers
the NN interaction without mass disorder, the system should
restore to an ideal atomic chain, in which all the modes can
transmit perfectly.

III. RESULTS AND DISCUSSION

A. LR effects in homogeneous lattice

We first investigate the properties of phonon transport when
there is no mass disorder in the central region by setting c = 0.
In the case of considering only NN coupling, the transmission
coefficient is equal to 1 for all the available modes, independent
of the number of atoms N in the central region.

Next, we take the LR interaction into account. First, we
consider the scenario that the LR interaction with interaction
strength decays inverse squarely with respect to the interatomic
distance. The transmission function, which is shown in Fig. 2,
presents significantly different behaviors in comparison with
NN coupling. It starts to oscillate with respect to frequency
and thus the transmission gets suppressed on average. The os-
cillation starts from high frequency, since in the low-frequency
limit ω → 0, the transmission should in principle converge to
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FIG. 2. Transmission coefficients in a one-dimensional homoge-
neous lattice with long-range interaction under inverse-square decay.
(a) The length and frequency dependence of transmission coefficients.
(b) The frequency dependence of transmission coefficients for a
system with nearest-neighbor (NN) coupling (solid line) and a system
with long-range (LR) coupling (dotted line). The parameters of the
spring constant k0 and mass m are chosen such that ω0 = √

k0/m =
1014 Hz, and this applies to all the figures below.

1 due to the translational invariance. The starting frequency
of oscillation decreases with increasing size, proportional to
N−0.5. For larger N , the oscillation becomes denser due to
the increasing number of resonance modes of the system.
At the high-frequency regime, the cutoff frequency for the
transmission function is invariant under LR interactions.

In order to understand the physical mechanisms of the
oscillations, we evaluated the oscillation peaks when the
system is weakly coupled to the two leads and found that they
coincide with the sharp peaks at the resonance frequencies of
the system. When the coupling becomes stronger, the peaks
start to broaden and shift, affected by the self-energies of the
leads. Hence, we conclude that such oscillations are due to the
interference between the resonance modes of the system and
the modes of the leads. The eigenmodes of the system will
filter and select the incoming modes from the leads, affecting
the transmission function.

To demonstrate that this oscillation of transmission function
is independent of the format of LR coupling, we also study
the harmonic chain in which LR interaction strength decays
exponentially with respect to interatomic distance kss ′ =
k0d

(1−rss′ /a). Here we keep k0 as a constant but vary d for
all the calculations. A larger d means that the spring constant
decays faster to zero, representing a weaker LR interaction, and
it will restore to NN coupling when d → +∞. The oscillation
in transmission coefficient is also observed in systems with
this type of LR interaction. Furthermore, we investigate the

FIG. 3. Plots of transmission coefficients in a one-dimensional
homogeneous lattice with long-range interaction under exponential
decay. The transmission coefficient is plotted against frequency for
(a) strong, (b) moderate, and (c) weak long-range interaction strength.
(d) The value of the transmission coefficients at the first dip counting
from the left-hand side is plotted against the long-range interaction
strength d . In this plot, the size is set to N = 20.

relationship between such oscillations and the strength of
long-range interaction by controlling the decay factor d in
the exponential form. The results are shown in Fig. 3. We find
that the LR interaction strength can significantly affect the
oscillation amplitude. A stronger LR interaction strength has
a greater capability to suppress the transmission coefficients.
In order to give a clear picture of their relationship, we plot
the transmission coefficient at the first dip of the oscillation
against d. We find that the transmission coefficient increases
exponentially with increasing d and converges to 1. Hence,
the size N controls the starting frequency and the density
of oscillation, while the LR interaction strength controls the
amplitude of the oscillations. We also notice that both N and
d do not affect the cutoff frequency, which is located around
ω = 2 × 1014 Hz. This scenario will change if we introduce
mass disorder, as illustrated in Sec. III B.

We then study the effects of LR interaction on thermal
conductance. We first look at its size dependence as shown in
Fig. 4(a). In case of NN coupling, the thermal conductance
does not depend on N as the transmission coefficient itself
is N independent. Interestingly, in the case of LR coupling
(inverse-square decay), though the weights of frequencies
in transmission function depend heavily on N , the thermal
conductance does not change significantly by changing the
length, in the tolerance of some fluctuations in the high-
temperature regime. In order to understand such behavior
better, we investigate its temperature dependence since the
effect of temperature is to scale the weights of different
modes to the thermal conductance. At low temperature, low-
frequency modes contribute more while at high temperature,
all modes contribute equally. However, from Fig. 4(b), we
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FIG. 4. Thermal conductance for both a long-range (LR) interact-
ing system with inverse-square decay of interatomic interaction and a
nearest-neighbor (NN) interacting system. (a) The length dependence
of thermal conductance at high temperature T = 10T0 (black or upper
lines) and low temperature T = 0.1T0 (red or lower lines), where
T0 = �ω0/kB ≈ 764 K. (b) The temperature dependence of thermal
conductance for short length N = 102 and long length N = 105. The
form of long-range interaction here is inverse-square decay.

still find that such length-independent behavior occurs at
all temperature regime. This phenomenon is mathematically
not obvious, but it can be physically explained. Since the
increase in length does not introduce a scattering process to the
phonons, all the phonons are only scattered at the interfaces
between the system and leads so that the thermal conductance
should be length independent. Such behaviors are expected
to disappear if there exist either anharmonic scattering or
mass-disorder scattering. However, it is interesting to find that
with LR interaction, though the system size is not able to alter
the overall thermal conductance, it does alter the transmission
of individual modes.

We also find that the thermal conductance of the one-
dimensional harmonic chain with NN coupling is always larger
than that with LR coupling for all ranges of atomic number N

and temperature T . However, this is only true when there
is no mass disorder so that the NN coupling system has
perfect transmission. When the system is mass disordered,
the system with LR interaction is more robust against the
reduction of transmission coefficient, resulting in a different
behavior in the thermal conductance. We elaborate this in
Sec. III B.

B. LR effects in system with mass disorder

We next study the effects of LR coupling in a mass-
disordered harmonic chain. The system is randomly doped
with atoms of mass m′ = 2m, with a concentration of c = 0.5.
The transmission coefficient of such a disordered system is
shown in Fig. 5 for both NN coupling [panel(a)] and LR
coupling [panel (b)]. In the case of NN coupling, the presence
of mass disorder makes the cutoff frequency ωc redshift
and it further decreases by increasing the length N . Such a
phenomenon has been previously predicted [15,16,24,25] and
it is known that the cutoff frequency and the system size satisfy
the relation ωc ∝ N−0.5. This effect is originated from the fact
that the high-frequency modes can be localized due to the mass
disorder [25,26]. However, once we introduce LR interaction
with inverse-square decay [Fig. 5(b)], the N dependence of
cutoff frequency changes with N . If we define β as ωc ∝ N−β ,
we then find that β > 0.5 when N < 102.5 while β ≈ 0.5
when N > 102.5. As a result, the LR coupling increases the
cutoff frequency, especially when N is large, which can be

FIG. 5. Transmission coefficients for a system with mass disor-
der. (a) System with only nearest-neighbor coupling and (b) system
including long-range interaction with inverse-square decay. The
impurity mass is m′ = 2m with concentration c = 0.5. (c) Plot of
transmission coefficients against frequency.
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clearly observed from Fig. 5(c) in case of N = 105 (red
lines). As discussed in Sec. III A, the increase in cutoff
frequency is not observed when there is no mass disorder.
This indicates that the LR coupling can boost the transmission
of high-frequency modes by releasing the localized modes
arising from phonon scattering by mass disorder. Physically
this is understandable because the localization induced by mass
disorder is a short-range phenomenon, the range of which
is only one lattice spacing. Since the long-range interaction
allows each atom to interact with more atoms, it smears out
the disorder. Thus the long-range interaction allows the local
modes to interact with atoms with a longer distance, opening
more channels for phonons to escape from localization and
hence enhancing the transmission possibility.

It is known that the mass disorder is able to localize
high-frequency modes, but its effect on low-frequency modes
is insignificant. As discussed previously, LR coupling can
suppress the low-frequency transmission through oscillations.
This phenomenon still exists in a mass-disordered system,
as shown in Fig. 5(c). These oscillations cannot be removed
by taking an ensemble average over different configurations of
mass disorders, indicating that it is intrinsic to the LR coupling.
In summary, the effect of LR coupling is to reduce the transmis-
sion of low-frequency modes but enhance the transmission of
high-frequency modes by suppressing the mode localization.
These effects will have important consequences on thermal
conductance.

Figure 6(a) shows the length dependence of thermal
conductance at different temperatures. For a fixed temperature,
T = 0.05T0 or T = 0.1T0, we find that in the regime of
short length, the thermal conductance of NN coupling is
larger than that of LR coupling. However, with an increase
of length N , the thermal conductance of a system consisting
of LR coupling will eventually surpass that of NN coupling.
This is because in the short length regime, the scatterings
at the boundaries between the central region and the leads
dominate over the mode localization caused by mass disorder.
The NN coupling system has perfect transmission over the
boundaries so it has a larger thermal conductance. However,
for large N , the mode localization becomes significant. The
LR interaction is able to suppress the localization effects and
thus the thermal conductance becomes larger. Since only the
high-frequency modes are localized, such an LR effect on the
thermal conductance is more significant at higher temperature.
This agrees with the fact that the crossover length decreases
with increasing temperature. If we focus on the large N regime,
the thermal conductance becomes temperature independent.
For the NN coupling system, the thermal conductance decays
as σ ∝ N−0.5 for all temperatures. This result is consistent
with the previous predictions [13,16,27] when anharmonic
scattering is not taken into consideration. For a fixed N , the
absolute value of the length dependence exponent with LR
coupling becomes less than 0.5. This is because LR coupling
causes the cutoff frequency to respond reluctantly to length.
However, the behavior at an infinitely large N limit is not
predictable from the current results.

Figure 6(b) shows the temperature dependence of thermal
conductance. For a fixed N , we find that there is a crossover
temperature at which the thermal conductance of the LR cou-
pling system surpasses that of the NN coupling system. This

FIG. 6. (a) Length dependence of thermal conductance at high
(black or upper lines), moderate (red or middle lines), and low (blue
or lower lines) temperatures. (b) The temperature dependence of
thermal conductance at lengths of N = 102.5 (black or upper lines),
N = 103 (red or middle lines), and 103.5 (blue or lower lines).

again agrees with the previous observation that the effect of
LR coupling is to reduce the low-frequency transmission while
enhancing the high-frequency transmission. The crossover
temperature decreases with the increase of N . We also find
that when N is larger, the thermal conductance saturates at a
lower temperature. This is because a larger N will make the
cutoff frequency ωc smaller. As a result, a low temperature is
enough to excite all the available modes in order to make the
heat conductance saturate. In the large N limit, the saturation
temperature tends to zero. This explains the observation in
Fig. 6(a) that the thermal conductance becomes independent
of temperature T .

In the low-temperature limit, we find that the thermal
conductance is independent of N , which agrees with the fact
that N only affects the high-frequency transmission. In this
region, we also find that the thermal conductance increases
linearly with T , σ ∝ T , for both cases. However, the LR
coupling can reduce the coefficient of linearity, which is
caused by the reduction of transmission for low-frequency
modes.
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C. Effects of LR interaction strength

In this section, we study the effects of different forms
and strengths of LR interaction. We focus on two forms of
long-range interaction: exponential decay and inverse-square
decay, as presented in Sec. II. In Fig. 7, we plot the thermal
conductance under various LR interaction strengths d = 2,4,

and 10. It is noted that a larger d means weaker LR interaction.
When plotting with respect to length N [Fig. 7(a)], we find that
systems with a strong LR interaction have a smaller thermal
conductance in the short length regime. However, when the
length is long enough (N > 104), the thermal conductance
of strong LR interaction system will eventually surpass that
of a weak LR interaction system. This is again due to
the competition between boundary scattering and impurity
scattering. This indicates that a system with a stronger LR
interaction has larger boundary scatterings as well as a stronger
capability of releasing the localized modes. When the system
size is longer, logσ gradually becomes linearly dependent on
logN . We find that it is more difficult for systems with stronger
LR interaction to approach this asymptotic behavior, indicating
that the boundary effects are more challenging to overcome in
a stronger LR interaction system.

FIG. 7. (a) The length dependence of thermal conductance at
different LR interaction strengths. The temperature is set at T =
0.1T0. (b) The temperature dependence of thermal conductance at
different LR interaction strengths. The length is set at N = 103.

Figure 7(b) shows the plot of thermal conductance with
respect to temperature. We find that systems with a stronger
LR interaction have a higher thermal conductance at a
high temperature but a lower thermal conductance at a
low temperature. This result further supports the previous
conclusion that a strong LR has a large capability to release
the localized modes. At a high temperature, the contribution of
high-frequency modes becomes important. Thus the relaxation
of localized modes has a more significant influence on thermal
conductance. As a result, in the high-temperature regime,
systems with a strong LR interaction have a larger thermal
conductance. On the other hand, at a low temperature, low-
frequency modes contribute more to thermal conductance.
This result is consistent with the previous prediction that
LR interaction is able to suppress the transmission of low-
frequency modes, resulting in a reduced thermal conductance
in the low-temperature regime.

Another important observation from Fig. 7 is that the
thermal conductance shows a similar behavior for both
inverse-square decay and exponential decay. The curve of
inverse-square decay is sandwiched between the exponential
decay curve of d = 2 and d = 4. Interestingly, these three
curves share the same crossover point when plotting against
temperature (at T ≈ 175 K). This phenomenon does not occur
for any three exponential decay curves, indicating that the
form of decay plays a role in the transition behavior but not
the overall trend.

IV. CONCLUSION

We have investigated the effect of long-range interaction
on the phonon transport in a one-dimensional harmonic
chain with and without mass disorder. It is found that the
long-range interaction is able to suppress the transmission
of low-frequency modes arising from boundary scatterings.
Meanwhile, it is able to enhance the transmission of high-
frequency modes by suppressing the mode localizations arising
from mass disorder. Consequently, long-range interaction is
able to reduce the thermal conductance in a short length system
while enhancing it for a long length one. The crossover length
increases with decreasing temperature. Similarly, a system
with long-range interaction is able to reduce the thermal
conductance in the low-temperature regime while enhancing
it in the high-temperature regime. We have also studied
the effects of different forms and strengths of long-range
interaction on the behavior of phonon transport and found that
the drawn conclusion is robust under these different conditions.
The presented temperature and size dependence of thermal
conductance is experimental measurable by using a trapped
ion technique [28].

Our work reveals insights into the phonon transport behav-
ior in a harmonic chain with LR interaction and mass disorder.
With such a numerical study, it is possible to go beyond the
disorder scatterings to investigate the LR interaction effects
with anharmonic scatterings. The anharmonicity couples the
phonon modes of different frequencies and it has been shown
that the anharmonic scatterings introduced effective extended
states and hence have great impacts on the localization

052123-6



PHONON TRANSPORT IN A ONE-DIMENSIONAL . . . PHYSICAL REVIEW E 94, 052123 (2016)

in one-dimensional classical chains [29]. Furthermore, the
anharmonicity will introduce another length scale, the mean
free path of the phonons. Our work reveals the effect of LR
interaction in the case when the mean free paths of the phonons
are much longer than the interaction range. Hence future
investigations on effects of long-range interaction when the
mean free path approaches the interaction range are of great
interest. In the classical regime, detailed investigations have
been performed in anharmonic chains with LR interactions
in order to change the heat current and improve the thermal
rectification properties [30–32], implying that using LR inter-

action provides a promising routine for thermal management.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the Science
and Engineering Research Council (No. 152-70-00017). The
authors gratefully acknowledge financial support from the
Agency for Science, Technology and Research (A*STAR),
Singapore and the use of computing resources at the A*STAR
Computational Resource Centre, Singapore.

[1] G. Zhang and B. Li, J. Chem. Phys. 123, 014705 (2005).
[2] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev.

Mod. Phys. 84, 1045 (2012).
[3] S.-L. Zhu, C. Monroe, and L.-M. Duan, Phys. Rev. Lett. 97,

050505 (2006).
[4] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A.

Janacek, N. M. Linke, D. N. Stacey, and D. M. Lucas, Phys.
Rev. Lett. 113, 220501 (2014).

[5] D. L. Nika and A. A. Balandin, J. Phys.: Condens. Matter 24,
233203 (2012).

[6] M. M. Sadeghi, M. T. Pettes, and L. Shi, Solid State Commun.
152, 1321 (2012).

[7] G. Zhang and Y.-W. Zhang, Phys. Status Solidi (RRL) 7, 754
(2013).

[8] T. Lu, J. Zhou, N. Li, R. Yang, and B. Li, AIP Adv. 4, 124501
(2014).

[9] H. Zhao, L. Yi, F. Liu, and B. Xu, Eur. Phys. J. B 54, 185 (2006).
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