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We study work extraction from the Dicke model achieved using simple unitary cyclic transformations keeping
into account both a nonoptimal unitary protocol and the energetic cost of creating the initial state. By analyzing the
role of entanglement, we find that highly entangled states can be inefficient for energy storage when considering
the energetic cost of creating the state. Such a surprising result holds notwithstanding the fact that the criticality
of the model at hand can sensibly improve the extraction of work. While showing the advantages of using a
many-body system for work extraction, our results demonstrate that entanglement is not necessarily advantageous
for energy storage purposes, when nonoptimal processes are considered. Our work shows the importance of better
understanding the complex interconnections between nonequilibrium thermodynamics of quantum systems and
correlations among their subparts.
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I. INTRODUCTION

In the last decades there has been a tremendous interest in
the thermodynamical analysis of devices, the conversion of
heat into work and the extraction of work from a substance,
with a substantial effort in the study of quantum heat engines,
i.e., machines operating on a quantum system [1–14]. One
of the aims is the identification of strategies for the efficient
storage of energy. One of the first steps towards the realization
of a quantum heat engine was made recently, with the proposal
and demonstration of a single-ion heat engine in the clas-
sical regime [15–17]. Experiments studying nonequilibrium
thermodynamics in the quantum regime have been realized
recently verifying the Jarzynski relation [18,19] and measuring
entropy production resulting from processes implemented in
quantum systems [20].

Whether or not quantum fluctuations and quantum correla-
tions are effective resources, when it comes to the efficiency
of a heat engine, is still an open point. An enhancement of
work extraction when using two- or three-qubit entangled
working media has been shown experimentally [21]. However,
the enhanced extraction from entangled states is effective only
for small quantum systems [22].

For a machine using a classical working medium on the
verge of a phase transition, a boost in the efficiency has been
predicted [23]. On the other hand, the study of many-body
quantum heat engines is still in its infancy [24–27], and we
need to understand whether a many-body quantum system can
give an improvement in this respect as compared to a sequence
of many heat engines each operating with a single particle.
Thus it is timely to proceed towards a systematic study of
such devices. The level of control over cold-atomic systems
suggests that they could be extremely valuable as a test bed
for such devices. An emblematic example is the experimental
realization of the Dicke model in an intracavity atomic system
[28]. The technology available at hand is mature enough to
assess the thermodynamics of such system in the fully quantum
regime. Also, the presence of a superradiant phase transition
has been shown to play a role in the work output of a such an
engine [29].

In this paper we take a significantly different approach
with respect to previous studies. We quantify the relation

between the energy extracted and the energy initially stored,
for practical cyclic processes putting constrains on the opti-
mality of the protocol, motivated by the experimental control
available over the system. We then compare such practical
protocols with the optimal ones. We find that the quantum
phase transition can improve the extraction of work. However,
by considering the energetic cost of creating the initial state,
and through an analysis of the role of entanglement, we
show that highly entangled states can be inefficient for energy
storage. Our results show the existence of a nontrivial link
between nonequilibrium thermodynamics and entanglement
for nonoptimal unitarily operating devices.

II. WORK EXTRACTION FORMALISM

We assume to drive cyclically a quantum system with a time-
dependent periodic Hamiltonian Ĥ (t), with ti and tf the initial
and final time of the evolution, respectively, without contact
to external reservoirs. Since work extraction from equilibrium
state is forbidden by Thomson’s formulation of the second law
[30], we consider initial out-of-equilibrium states.

Suppose the initial state and the initial Hamiltonian are
ρ̂(ti) = ∑

j rj |rj 〉〈rj | and Ĥ (ti) = ∑
j εj |εj 〉〈εj |, where the

ordering r1 � r2 � · · · , and ε1 � ε2 � · · · is assumed. Due to
unitarity all of the eigenvalues of the initial state are preserved
at any time. The least energetic final state is ρ̂(tf )pass =∑

j rj |εj 〉〈εj |. This final state commutes with the Hamiltonian

Ĥ (ti), and so it is stationary, and the ordering of the eigenvalues
is such that no work can be further extracted from it, making
it passive. Correspondingly we have the maximum extraction
of work by the amount E = ∑

ij rj εi(|〈rj |εi〉|2 − δij ), called
ergotropy [31].

III. DICKE MODEL

We consider the Dicke model: an emblematic model in
quantum optics [32], also widely used as a benchmark for
studying the behavior of quantum many-body systems with
a quantum phase transition [33–36]. The Dicke Hamiltonian
describes the coupling between an ensemble of N two-level
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atoms and a single cavity mode and reads (� = 1)

Ĥ = ω0Ĵz + ωâ†â + λ√
2j

(â + â†)(Ĵ+ + Ĵ−), (1)

where ω0 is the single atom two-level energy splitting, ω

is the cavity frequency, and λ is the atom-cavity interaction
strength [37]. However, the Dicke model is implemented
experimentally with a hybrid cold-atomic system in an
optical cavity [28], in which case the parameters must be
interpreted differently as explained later in this article. The
operators Ĵi (i = x,y,z) are collective angular momentum
operators, which allow us to describe the atomic ensemble as a
pseudospin of length j = N/2. We can define the mean fields
as 〈â〉 = α, 〈Ĵ−〉 = β, 〈Ĵz〉 = w, and we write semiclassical
equations of motion for them derived from the Heisenberg
equations, replacing operators with expectation values. The
critical coupling λcr = √

ωω0/2 defines the separation point
between the two fixed-point solutions of the semiclassical
equations: for λ < λcr, the so-called normal phase, the mean
fields are null; while for λ > λcr, the so-called superradiant
phase, both the atoms and field acquire macroscopic mean
fields of both signs. With a standard Holstein-Primakoff

transformation Ĵ+ = b̂†
√

2j − b̂†b̂, Ĵ− =
√

2j − b̂†b̂b̂, Ĵz =
b̂†b̂ − j [38], we can introduce the fluctuations operators δâ =
â − α, δb̂ = b̂ − β̃/

√
N , where α and β̃ = 〈b̂〉 are chosen as

the steady-state mean fields. Explicitly, we get

Ĥ = ω̃0

2

(
Â2

x + Â2
y

) + ω

2

(
P̂ 2

x + P̂ 2
y

) + 2̃λP̂xÂx − 2μÂ2
x

= ε−d̂†d̂ + ε+ĉ†ĉ + 1

2
(ε− + ε+ − ω − ω̃0), (2)

where the eigenvalues ε+ and ε− and the coef-
ficients ω̃0 ,̃λ,μ in Eq. (2) are reported in Ap-
pendix A, and the quadrature operators are de-
fined by P̂x = (δâ† + δâ)/

√
2, P̂y = i(δâ† − δâ)/

√
2, Âx =

(δb̂† + δb̂)/
√

2, Ây = i(δb̂† − δb̂)/
√

2. In the last line of
Eq. (2) we have introduced the polariton operators d̂ and ĉ,
which are connected to the local modes operators δâ and δb̂

via the matrix equation δ â = M · d̂, where we have used the
vector notation δ â = (δâ,δâ†,δb̂,δb̂†)T and d̂ = (d̂,d̂†,ĉ,ĉ†)T .
The approach to the phase transition, in terms of Eq. (2), is
signaled by the change of the parameters (see Appendix A), or
by the softening of the polariton frequency ε+, corresponding
to different Holstein-Primakoff approximations for each phase
[39]. In what follows we assume a constant value of the
atomic frequency ω0. In Ref. [28] the Dicke model is found
as an effective Hamiltonian model describing a system that
consists of a Bose-Einstein condensate (BEC) loaded into
a high-finesse optical cavity, transversally pumped with a
standing-wave laser far-off resonant with respect to the atomic
transition. The mapping to the Dicke model is realized with ω

given by the detuning between the pump frequency ωp and the
cavity mode frequency ωc, dispersively shifted by the atomic
system ω = ωp − ωc + Ng2

0/2	a , where 	a = ωp − ωa is
the pump-atom detuning, and g0 is the atom-cavity coupling.
Thus ω can be changed by varying the pump frequency ωp.

The coupling parameter is λ = N/2
√

g0
p/	a , where 
p

is the pump Rabi frequency. A variation of λ can be obtained

quenching the intensity of the pump, controlled via 
p. A
variation of the pump frequency ωp instead determines a
variation of two parameters of the effective Dicke model, ω

and λ. To realize an independent variation of ω such that it
does not affect λ, we can realize simultaneously two protocols
ωp1 → ωp2 and 
p1 → 
p1 (ωp2 − ωa)/(ωp1 − ωa). We thus
assume the independent maneuverability of such parameters.

The practical realizability of the closed version of the Dicke
model calls for a clarification. In fact, the Â2 term is typically
overlooked in the minimal-coupling Hamiltonian, where Â

is the potential vector operator of the electromagnetic field. If
instead this term is included, the phase transition was shown to
be prohibited [40], while this is instead reachable for a system
of genuine spins interacting with radiation [41], or in the open
system scenario [42]. However, the theoretical analysis of the
closed model from one hand is necessary, as explained above,
to apply the formalism of work extraction introduced here, and
on the other hand it serves as a groundwork before making a
proper comparison with the open version, necessary to analyze
the experimental results coming from the setup in Ref. [28].

IV. MEAN FIELD CONTRIBUTION TO THE WORK

The fixed points (αs,βs) of the semiclassical equations are
local minima of the mean energy E := 〈Ĥ 〉, as a function of α

and β. This means that the system starting slightly off the fixed
point is in a classical nonequilibrium state, and, according to
Thomson’s formulation of the second law, a cyclic variation
of the parameters can determine a classical contribution to the
work extraction, which would be macroscopic and would com-
pletely mask the quantum contribution. However, as we are
interested in studying the contribution to the work extraction
coming from the quantum fluctuations of the system, we start
the protocol from the fixed point, so that the extracted energy is
due only to the quantum fluctuations. This should not be con-
fused with an initial ground state, as in our description we con-
sider quantum fluctuations on top of the classical mean fields.

Consider a time-dependent protocol, starting from mean
fields corresponding to a fixed point in the normal phase,
i.e., for λ < λcr. If we realize a general protocol so as to
remain inside the normal phase, the mean fields will stay
fixed in time. If instead we bring the system from the normal
to the superradiant phase and then back, the mean fields
will still remain fixed, but inside the superradiant phase this
point is unstable. For a very small change of the initial
values, the mean fields evolve with a corresponding positive
work exchange. A positive work coming from the mean
fields would also be present for a cycle starting and ending
inside the superradiant phase. Therefore, for work extraction
purposes that originate from quantum fluctuations, we must
limit ourselves to protocols within the normal phase. This
result agrees with what was done in Ref. [43], where the
authors found that crossing the two phases is not interesting
from the point of view of the statistics of the work, due to the
macroscopic generation of excitations.

One of the main goals of this work is the study of the role
of the quantum contribution to the extraction of work while
approaching the phase transition. In order to do this, however,
many questions can be asked, one of which is related to the
choice of the best time protocol to use for this analysis. The
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FIG. 1. (a) Four different cyclic time protocols, where the dotted
black line is an instantaneous quench, the solid blue line is a linear
quench, the dotted red line is a quadratic quench, and the solid green
line is a quartic quench. (b) Work-energy ratio, for the protocols
reported in (a), as a function of the renormalized coupling parameter.
The initial state is an eigenenergy Fock state |m = 10〉d |n = 0〉c in
the polariton basis.

answer to this is, however, not trivial because the work-energy
ratio depends nontrivially on many factors. In particular, the
initial point, in the parameter space (λ,ω), plays a crucial
role. This is in fact responsible for the best protocol, to be
used to optimize the work extraction, being dependent on the
particular initial point. We report in Fig. 1(a) four different time
protocols (instantaneous quench, linear, quadratic, quartic),
corresponding to which we evaluate the work-energy ratio.

Figure 1(b) shows clearly how for different initial points
the best time protocol correspondingly changes. In particular
for λ1 the best protocol, in the sense of the one giving the most
negative ratio, is the instantaneous quench. For λ2 the best
protocol is the linear, for λ3 the quadratic and for λ4 the quartic.
For this reason we choose to fix the time protocol, to the
instantaneous quench, to analyze coherently the approach to
the phase transition for a given protocol and compare it with
different initial states.

We have considered the following cycles: (i) preparation
of an initial state, (ii) instantaneous quench Ĥi → Ĥf (i = A

and f = B, or i = C and f = D with reference to Fig. 2)
and evolution under Ĥf for tf , and (iii) instantaneous quench
Ĥf → Ĥi . The average value of the work done in quenching
the Hamiltonian can be written as 〈W 〉 = 〈ψ(ti)|(ĤH (tf ) −
Ĥ (ti))|ψ(ti)〉 [44], where ĤH (t) = Û †(t)Ĥ (t)Û (t) is the
Hamiltonian in the Heisenberg representation, and Û (t) is
the evolution operator describing the process. We show in
Appendix B how to get an analytical expression of the average
work. The validity of the sudden quench is explained in

Û(t)

βa βb

W

B

A C

D

Δ
ω

Δλ λ

ω

FIG. 2. Diagrammatic representation of the cycles. Initially the
system is prepared in a locally thermal state, at inverse temperatures
βa and βb. The cyclic unitary transformation Û (t) in the parameter
space (λ,ω) is highlighted on the right: quench A(C) → B(D),
evolution in B(D), quench B(D) → A(C), with a final extraction
of work.

Ref. [45]: the time scale of the change of the parameters should
be smaller than the time scale of the internal evolution, given
roughly by 1/ε+. The softening ε+ → 0 at the phase transition,
and the consequent freezing of the internal dynamics, indeed
is compatible with the sudden quench.

V. RESULTS FOR LOCALLY THERMAL STATES

In order to emulate, in our unitary framework, the effects
of two thermal reservoirs, we consider the scenario sketched
in Fig. 2. An initial locally thermal state is prepared, where
the two local modes have different inverse temperatures
βa = 1/kBTa and βb = 1/kBTb, where kB is Boltzmann’s
constant, and the two oscillators are coupled, effectively
realizing Hamiltonian (2). Afterwards, a cyclic unitary process
is applied, which can result in an extraction of work. We want
to check whether the natural flow of energy, due to the initial
state chosen here, can help us improve the extraction of energy.
We define locally thermal states ρ̂ βa βb = ρ̂ βa ⊗ ρ̂ βb , where the
thermal states are ρ̂ βj = e−βj Ĥj /Zj , with partition functions
Zj = Tr[exp(−βj Ĥj )] (j = a,b). The local Hamiltonians are
Ĥa = ω δâ†δâ, Ĥb = ω0 δb̂†δb̂.

The ergotropy for a locally thermal state ρ̂ βd βc in the
polariton partition is

E(ρ̂ βd βc ) = E(ρ̂ βd βc ) − E
(
ρ̂ βd βc

pass

) = 0, (3)

where E(ρ̂) denotes the average energy of the state ρ̂ since,
despite not being a thermal state because of the different local
temperatures of the polariton modes, it is, however, a passive
state. The ergotropy of the locally thermal state ρ̂ βa βb is instead

E(ρ̂ βa βb ) = E(ρ̂ βa βb ) − E
(
ρ̂ βa βb

pass

)
= εc

(〈ĉ†ĉ〉βa βb
− 〈

nT
b

〉) + εd

(〈d̂†d̂〉βa βb
− 〈

nT
a

〉)
,

(4)

where 〈
nT

a

〉 = 1

eβaω − 1
,

〈
nT

b

〉 = 1

eβbω0 − 1
, (5)

and

〈ĉ†ĉ〉βa βb
= Tr[ĉ†ĉ ρ̂ βa βb ] �= 〈

nT
b

〉
,

〈d̂†d̂〉βa βb
= Tr[d̂†d̂ ρ̂ βa βb ] �= 〈

nT
a

〉
, (6)
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making the ergotropy of state ρ̂ βa βb different from zero. In
fact, defining the covariance matrix σ

βa βb

ab of state ρ̂ βa βb in the
phase space basis δ â as(

σ
βaβb

ab

)
ij

= 1
2 〈δ âiδ âj + δ âjδ âi〉, (7)

where the averages are zero by definition of fluctuation
operators, we have

σ
βa βb

ab =

⎛⎜⎜⎝
0

〈
nT

a

〉 + 1
2 0 0〈

nT
a

〉 + 1
2 0 0 0

0 0 0
〈
nT

b

〉 + 1
2

0 0
〈
nT

b

〉 + 1
2 0

⎞⎟⎟⎠.

(8)

Thus, from the properties of symplectic transformations we
have

σ
βa βb

dc = M−1 · σ
βa βb

ab · (M−1)T . (9)

Finally, the following relations are obtained:

〈d̂†d̂〉βa βb
= (

σ
βa βb

dc

)
21, 〈ĉ†ĉ〉βa βb

= (
σ

βa βb

dc

)
43. (10)

This results in the impossibility to extract energy from locally
thermal states of noninteracting systems, while this is possible
for interacting systems. This has motivated the study of the
energetics of correlations in interacting systems [46].

In Fig. 3 we report the ratio between the total work and the
average initial energy, for locally thermal states at different
temperatures of the local mode a, as a function of the coupling
parameter λ, which has been renormalized with respect to the
critical value of the initial Hamiltonian. This renormalization
causes a shift of the effective transition point, since the
Hamiltonian after the quench is characterized by a different
value of the critical coupling. The work-energy ratio can be
thought of as an efficiency of energy storage. In Figs. 3(a) and
3(b) we report the case of two-strokes cycles with 	ω = ω

(A-B cycle in Fig. 2), and two-strokes cycles with 	ω = 0.1 ω

and 	λ = −0.1 λcr (C-D cycle in Fig. 2), respectively. The
green curves in the insets are the work-ergotropy ratio.

The extraction regime is witnessed by a negative sign of
the work. The oscillations of the work, as a function of the
coupling, are a consequence of the free evolution part of the
cycle and show the importance of choosing appropriate initial
values of the coupling parameter to start the cycles from, in
order to extract work. For increasing temperature of one of the
local modes, the fraction of work extracted to the initial energy
decreases. However, the closer we are to the phase transition,
the better the extraction of work is, as shown by the height of
the negative peaks of the work-energy ratio. Thus the phase
transition helps retrieving the energy previously stored.

On the other hand the work-ergotropy ratio, reported in the
insets of Fig. 3, does not heavily depend on the temperature,
for the particular regime of parameters considered, with values
of the negative peaks −1 � 〈W 〉/E � −0.5. As the ergotropy
is peaked around the phase transition, a nonoptimal process
will be more inefficient close to the transition, and this is
witnessed by the decrease in absolute value by approaching
the phase transition. This shows some of the consequences of
the second law, inasmuch as despite being close to optimality
(work-ergotropy close to one in absolute value) there is a
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FIG. 3. Panel (a): Work-energy ratio for the A-B cycle in Fig. 2,
with 	ω/2π = ω/2π = 15 MHz and ω0/2π = 8.3 kHz. (b) Work-
energy ratio for the C-D cycle in Fig. 2, with 	ω = 0.1 ω,	λ =
−0.1 λcr. The free evolution time at point B is τB = 0.003 s. Dashed
purple: ρ̂

βaβb

1 , solid red: ρ̂
βaβb

2 , dashed black: ρ̂
βaβb

3 , solid blue:
ρ̂

βaβb

4 , where βJ = 1/kBTJ , with Tb = 0.01 K, T 1
a = 10−1 K, T 2

a =
10−1.5 K, T 3

a = 10−2.5 K, T 4
a = 10−3 K. The green curve is the work-

ergotropy ratio.

fraction of the initial energy, spent to create the state, that
we are not able to extract.

VI. RESULTS FOR LOCALLY PASSIVE
ENTANGLED STATES

Previous studies have shown the importance of quantum
correlations for work extraction purposes, analyzing, for
example, the role of discord in work extraction from a d-level
system [47]. We now want to take into consideration the role
of entanglement, studying its role in the work extraction for
nonoptimal processes. We evaluate the entanglement between
the two modes via the logarithmic negativity of a two-mode
Gaussian state [48–50]. At this aim we recall the position and
momentum quadratures of the fluctuation operators of the two
modes

P̂x = 1√
2

(δâ† + δâ), P̂y = i√
2

(δâ† − δâ),

Âx = 1√
2

(δb̂† + δb̂), Ây = i√
2

(δb̂† − δb̂), (11)

where P̂i refers to the photons, Âi to the atoms (i = x,y). In
the case in which the first moments are null, as is it our case,
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FIG. 4. Entanglement in the polariton partition d − c for four
locally passive entangled states, with different values of β = 1/KBT .
Dotted black: T = 10−4, solid blue: T = 2 × 10−4, dotted red: T =
3 × 10−4, solid green: T = 4 × 10−4.

the covariance matrix for the quadratures is simply given by

Sij = 1
2 〈ûi ûj + ûj ûi〉, (12)

with û the vector û = (P̂x,P̂y,Âx,Ây)
T

. It is useful to write
the matrix explicitly as

S =
(

P X
X T A

)
, (13)

where X refers to the correlations between the two modes. If
we now introduce the quantity

�(S) = det P + det A − 2 det X, (14)

we can define

ν− = 1√
2

√
�(S) −

√
�(S)2 − 4 det S. (15)

The logarithmic negativity is then obtained as

EN = max(0, − log 2ν−), (16)

which is a measure of the quantum entanglement, for a
Gaussian state defined by matrix S, in the partition of modes
a and b. Analogously we can evaluate the entanglement in
the partition of the polariton modes d and c, via appropriate
replacements of the relative operators, and this is indeed
what we consider in the following. In particular, we consider
entangled states of the polaritonic modes that result in passive
single-mode states. With this premise any work extraction can
only be ascribed to entanglement. Consider the state∣∣ψent

dc

〉 = 1√
Ndc

∞∑
n=0

exp [−β(ε+ + ε−)n/4]|n〉d |n〉c, (17)

withNdc = {1 − exp [−β(ε+ + ε−)n/2]}−1, whose marginals
operators are passive states.

In Fig. 4 we show the entanglement for four locally passive
entangled states defined in Eq. (17) for different values of the
parameter β. These plots show that for the particular definition
of this state, for a fixed value of β, the entanglement does not
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FIG. 5. (a) Work-ergotropy ratio for the locally passive entangled
state in Eq. (17) for the A-B cycle in Fig. 2, with 	ω/2π = ω/2π =
15 MHz, and ω0/2π = 8.3 kHz. (b): Total work for the same cycles
as in panel (a).

vary significantly with the coupling λ. In fact, for our regime of
parameter ε− 	 ε+, and so the state is dependent almost only
on ε−, which is almost independent on the coupling λ. This is
particularly useful as it allows us to use the entanglement as a
parameter, which increases as we go from panel (a) to (d), to
analyze its role in the extraction of work.

In Fig. 5(a) we report the work-ergotropy ratio, and in
Fig. 5(b) the total work, for two-strokes cycles. If we were able
to perform optimal work extraction, we would extract more
work for more entangled states. This is true also in the case
of the nonoptimal protocols considered here [cf. Fig. 5(b)].
However, Fig. 5(a) shows that if we consider the fraction of
extracted work to the maximum extractable, the behavior is
reversed: the ratio is smaller for more entangled states. This
behavior becomes more interesting if we consider that this
figure of merit is also an efficiency of energy storage, as for
the initial pure state here chosen the ergotropy is equal to the
average energy of the initial state. This is true even for the best
case in which the state is a maximally entangled state (i.e.,
β → 0).

VII. CONCLUSIONS

We have shown a nontrivial role played by entanglement
and quantum phase transitions, for extraction and storing of
energy, when considering both a nonoptimal process and the
energetic cost of creating the initial state. We have studied, for
the emblematic example of the Dicke model, the advantages
(and lack thereof) arising from the use of a many-body
quantum system as a working medium. If entanglement is
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the only resource for work extraction, the phase transition
improves work extraction due to entanglement achieving a
maximum at the phase transition. This intuition could lead
us to prepare initially entangled states with high degrees
of entanglement, to extract an increasing amount of work.
However, we have shown that even for the best case in
which the state approaches a maximally entangled state, the
energy spent to create this state overcomes the gain in the
possible extraction of work. Our results provide guidelines
for the development of the new technology based on quantum
machines.
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APPENDIX A: DIAGONALIZATION OF THE DICKE
HAMILTONIAN

Here we show the details of the diagonalization of the Dicke
Hamiltonian. The parameters of the Hamiltonian are given by

ω̃0 = ω0 − 2λαsβs

N3/2
√

1 − βs
2

N2

,

μ = λαsβs

N3/2
√

1 − βs
2

N2

[
1 + βs

2

2
(
N2 − βs

2
)]

,

λ̃ = λ
1 − 2 βs

2

N2√
1 − βs

2

N2

,

E0 = ωα2
s + ω0

(
βs

2

N
− N

2

)
+ 4λ

αsβs√
N

√
1 − βs

2

N2
,

(A1)

where the steady-state mean fields are

αs =
{

0 for λ < λcr,

∓ λ
√

N
ω

√
1 − (

λcr
λ

)4
for λ > λcr,

(A2)

and

βs =
{

0 for λ < λcr,

±N
2

√
1 − (

λcr
λ

)4
for λ > λcr.

(A3)

Then we apply a transformation that renormalizes the
effective masses of the oscillators by going into the phase
space [39]

x̂ = 1√
2ω

(δâ† + δâ), p̂x = i

√
ω

2
(δâ† − δâ),

ŷ = 1√
2ω̃0

(δb̂† + δb̂), p̂y = i

√
ω̃0

2
(δb̂† − δb̂). (A4)

After this transformation we get

Ĥ = 1

2

{
ω2x̂2 + p̂2

x + (
ω̃0

2 − 4μω̃0
)
ŷ2 + p̂2

y

+ 4̃λ
√

ωω̃0x̂ŷ − ω̃0 − ω
} + E0. (A5)

Then we rotate the system coordinate with the transformation
(we will indicate the Bogoliubov angle as γ (B))

x̂ = q̂1 cos γ (B) + q̂2 sin γ (B),

ŷ = −q̂1 sin γ (B) + q̂2 cos γ (B) (A6)

and similar transformations apply to the momentum operators.
In the new representation the interaction is removed if we
choose the angle γ (B) such that

tan(2γ (B)) = 4̃λ
√

ωω̃0

ω̃0
2 − 4μω̃0 − ω2

. (A7)

The Hamiltonian for the two decoupled oscillators is

Ĥ = 1

2

{
ε−q̂2

1 + p̂2
1 + ε+q̂2

2 + p̂2
2 − ω − ω̃0

} + E0, (A8)

where the energies are

ε± =
√

1

2
(z + 2ω2 ± sign(z)

√
z2 + 16̃λ2ωω̃0), (A9)

with z = ω̃0
2 − 4μω̃0 − ω2. Then again we apply the trans-

formation

q̂1 = 1√
2ε− (d̂† + d̂), p̂1 = i

√
ε−

2
(d̂† − d̂),

q̂2 = 1√
2ε+ (ĉ† + ĉ), p̂2 = i

√
ε+

2
(ĉ† − ĉ), (A10)

and we end up finally with the Hamiltonian

Ĥ = ε−d̂†d̂ + ε+ĉ†ĉ + 1

2
(ε− + ε+ − ω − ω̃0) + E0

(A11)

In the phase space the diagonalization is obtained with the
transformation δ â = M · d̂, with δ â = (δâ,δâ†,δb̂,δb̂†)T and
d̂ = (d̂,d̂†,ĉ,ĉ†)T . The symplectic matrix M is

M =

⎛⎜⎝A+ A− B+ B−
A− A+ B− B+
C+ C− D+ D−
C− C+ D− D+

⎞⎟⎠, (A12)
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where the coefficients are

A± = 1

2
cos(γ (B))

(√
ω

ε−
±

√
ε−
ω

)
,

B± = 1

2
sin(γ (B))

(√
ω

ε+
±

√
ε+
ω

)
,

C± = −1

2
sin(γ (B))

(√
ω̃0

ε−
±

√
ε−
ω̃0

)
,

D± = 1

2
cos(γ (B))

(√
ω̃0

ε+
±

√
ε+
ω̃0

)
.

(A13)

APPENDIX B: SUDDEN QUENCH CYCLE

In the case of a cycle in which the strokes are realized
with successive sudden quenches, it is possible to obtain
analytical expressions for the average work. In what follows
we will consider explicitly the case of a pure initial state, just
for convenience of calculation, but everything can be easily
transposed to the case of a general mixed initial state with the
proper averages taken.

Suppose that we want to realize a four strokes cycle (A-B-
C-D), and we initially prepare the state of the system in the
state |ψA〉 where A labels the starting point of the cycle in the
parameter space. For a sudden quench the unitary evolution
operator is the identity Û (t) = 1̂, so that for the average work
we have

〈W 〉AB = 〈ψA|(ĤB − ĤA)|ψA〉 = E0B − E0A

+〈ε−
B d̂

†
Bd̂B + ε+

B ĉ
†
BĉB〉 − 〈ε−

A d̂
†
Ad̂A + ε+

A ĉ
†
AĉA〉

+ 1

2
(ε−

B − ε−
A + ε+

B − ε+
A − ωB

+ωA − ω̃0B + ω̃0A). (B1)

In order to calculate this expression we use the relation between
mode operators at different points in the parameter space

d̂B = M−1
B MA d̂A + M−1

B (αA − αB), (B2)

which allows us to express the terms d̂
†
Bd̂B and ĉ

†
BĉB in terms

of operators d̂A. It is supposed that we know the covariance
matrix (

σ d
A

)
ij

= 1
2 〈(d̂A)i(d̂A)j + (d̂A)j (d̂A)i〉 , (B3)

where the indices i and j denote the components of the
respective vectors or matrix. In what follows we use the
convention that number as indices denote elements of vectors
or matrices, while letters as indices denote different points in
the parameter space. If we indicate with d̂B i the ith element
of vector d̂B , and similarly for others, we have

d̂
†
Bd̂B = (

M−1
B MA d̂A + M−1

B (αA − αB)
)

2

× (
M−1

B MA d̂A + M−1
B (αA − αB)

)
1,

ĉ
†
BĉB = (

M−1
B MA d̂A + M−1

B (αA − αB)
)

4

× (
M−1

B MA d̂A + M−1
B (αA − αB)

)
3. (B4)

Given the covariance matrix σ d
A of the initial state |ψA〉, we

can conveniently express everything in terms of elements of the
matrix QAB = M−1

B MA and vector V AB = M−1
B (αA − αB) as

follows:

d̂B = QAB d̂A + V AB, (B5)

〈ψA|d̂†
Bd̂B |ψA〉 =

∑
ij

QAB
2i QAB

1j

[(
σ d

A

)
ij

+ �ij

] + V AB
2 V AB

1 ,

(B6)

〈ψA|ĉ†BĉB |ψA〉 =
∑
ij

QAB
4i QAB

3j

[(
σ d

A

)
ij

+ �ij

] + V AB
4 V AB

3 ,

(B7)

so that the work is given by

〈W 〉AB = ε−
B 〈d̂†

Bd̂B〉 + ε+
B 〈ĉ†BĉB〉 − ε+

A

[(
σ d

A

)
43 + �43

]
− ε−

A

[(
σ d

A

)
21 + �21

] + 	CAB, (B8)

where the first two terms are given in Eqs. (B6) and (B7), and
	CAB account for the total constant part in Eq. (B1).

For a second stroke (B → C) we need to evaluate the
following expression:

〈W 〉BC = 〈ψA|eiĤBτB (ĤC − ĤB)e−iĤBτB |ψA〉
= 〈ψA|eiĤBτB (ε−

C d̂
†
Cd̂C + ε+

C ĉ
†
CĉC)e−iĤBτB |ψA〉

− 〈ψA|ε−
B d̂

†
Bd̂B + ε+

B ĉ
†
BĉB |ψA〉 + 	CBC. (B9)

It is convenient to define the diagonal matrix

DB = diag(e−iε−
B τB ,eiε−

B τB ,e−iε+
B τB ,eiε+

B τB ), (B10)

so that we can write the evolution of the vector d̂K (K =
A,B,C,D) in matrix notation as

eiĤKτK d̂Ke−iĤKτK = DK d̂K. (B11)

With this definition we can compute the first two terms of
Eq. (B9) as

〈ψA|eiĤBτB d̂
†
Cd̂Ce−iĤBτB |ψA〉

= 〈ψA|(RAC d̂A + SAC)2(RAC d̂A + SAC)1|ψA〉 (B12)

and

〈ψA|eiĤBτB ĉ
†
CĉCe−iĤBτB |ψA〉

= 〈ψA|(RAC d̂A + SAC)4(RAC d̂A + SAC)3|ψA〉, (B13)

with matrix RAC = QBC DB QAB , and vector SAC =
QBC DB V AB + V BC . The meaning of expression for the
matrix RAC is straightforward. The matrix QAB is responsible
for the connection between operators of points A and B in
the parameter space due to the quench A → B. Then matrix
DB expresses the time evolution of the system at point B, and
finally again matrix QBC realizes the quench B → C. Vector
SAC instead expresses the contribution coming from the mean
fields in the evolution from A to C. There can be a contribution
from the difference of mean fields between A and B (V AB),
then an evolution in B (DB) and finally a quench B → C

( QBC); in addition there is also a contribution coming from
the difference between the mean fields of B and C.
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The crucial point is that Eqs. (B12) and (B13) are totally
equivalent to Eqs. (B6) and (B7), so that we can use the same
results in the latter expressions to evaluate the former ones,
with the substitutions QAB → RAC and V AB → SAC . The
second term in Eq. (B9) for the work 〈W 〉BC has already been

evaluated for the work 〈W 〉AB . If we keep on calculating the
averages of work for each stroke in the same way, eventually
we need to sum all the contributions to get the total average
work for the cycle, which, e.g., in the case of a four-strokes
cycle gives 〈W 〉tot = 〈W 〉AB + 〈W 〉BC + 〈W 〉CD + 〈W 〉DA.
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