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Convex hulls of multiple random walks: A large-deviation study
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We study the polygons governing the convex hull of a point set created by the steps of n independent
two-dimensional random walkers. Each such walk consists of T discrete time steps, where x and y increments
are independent and identically distributed Gaussian. We analyze area A and perimeter L of the convex hulls. We
obtain probability densities for these two quantities over a large range of the support by using a large-deviation
approach allowing us to study densities below 10−900. We find that the densities exhibit in the limit T → ∞
a time-independent scaling behavior as a function of A/T and L/

√
T , respectively. As in the case of one

walker (n = 1), the densities follow Gaussian distributions for L and
√

A, respectively. We also obtained the
rate functions for the area and perimeter, rescaled with the scaling behavior of their maximum possible values,
and found limiting functions for T → ∞, revealing that the densities follow the large-deviation principle. These
rate functions can be described by a power law for n → ∞ as found in the n = 1 case. We also investigated the
behavior of the averages as a function of the number of walks n and found good agreement with the predicted
behavior.
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I. INTRODUCTION

Originally, random walks were introduced by Pólya [1] in
1921. Since then, many studies have dealt with this topic,
as they are an ubiquitous model for physical, biological, and
social processes [2–4]. Example applications from biology
include self-propelled motion of bacteria, and the diffusion
of nutrients [3], as well as animal motion in general [5,6].
Another example is the marking of territories by animals
or the description of home ranges [7–9]. For the latter case
a strong increase of the amount of experimentally available
data occurred after the introduction of automated radio/GPS
tagging of animals [10,11]. The usage of minimum convex
polygons, called convex hulls, bordering the trace of an animal
[7,12] is a simple yet versatile [13] way to describe the home
range and can be used for any type of (random-walk) data. In
two dimensions, the convex hull of a point set is the minimum
subset whose elements form a convex polygon in such a way
that (a) all points of the set and (b) the connecting lines between
all possible pairs lie inside the polygon.

Much progress has been made on the analytical side, when
the number of steps is very large and the random walk (with
a finite variance of the step size) converges to the continuous-
time Brownian motion (for a review, see, e.g., Ref. [14]). The
mean perimeter [15,16] and mean area [17] of a single two-
dimensional Brownian motion have been known for a long
time.

It was shown [14,18] recently that the problem of computing
the mean perimeter and the mean area of the convex hull of an
arbitrary two-dimensional stochastic process can be mapped
to computing the extremal statistics of the one-dimensional

*a.hartmann@uni-oldenburg.de;
http://www.compphys.uni-oldenburg.de/en/
†satya.majumdar@u-psud.fr

component of the process. This procedure was successfully
applied recently to compute the mean perimeter and the mean
area of several two-dimensional stochastic processes such as
the random acceleration process in 2D [19], 2D branching
Brownian motions with absorption and applications to epi-
demic outbreak [20], and 2D anomalous diffusion processes
[21]. Very recently, this method was also successfully used
to compute the exact mean perimeter of the convex hull of a
planar Brownian motion confined to a half-space [22]. Finally,
using different methods, the mean perimeter and the mean area
of the convex hull of a single Brownian motion, but in arbitrary
dimensions, have been computed recently in the mathematics
literature [23,24].

Analytical calculations of even the second moment for the
area and perimeter of a convex hull regarding single two-
dimensional Brownian motion turned out to be very difficult
[25,26]. For the full distributions of the area and perimeter no
analytical results are known so far, so the usage of computer
simulations is a natural approach, as done in a recent study [27].

Here, we are interested in multiple random walkers, which
perform their walks independently from each other. The
investigation of n noninteracting random walkers on a d-
dimensional regular lattice has been done in Refs. [28–30].
Many studies have been published for interacting multiparticle
walkers [31], e.g., in one dimension [32–39]. The mean first
passage time of n independent diffusing particles in Euclidean
space is calculated, e.g., in Ref. [40] or [41]. Recently, the
mean perimeter and the mean area of n independent Brownian
motions have been computed in 2D [14,18]. In this article
we want to check the predictions from theory by numerical
simulations of n noninteracting time-discrete Brownian ran-
dom walkers as well as the probability density functions of
the area and perimeter of the corresponding convex hulls. In
particular, we apply a numerical large-deviation approach to
obtain the probability density functions over a large range of
the support, down to probability densities as small as 10−900.
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In addition, we are interested in what way the same results for
n > 1 walkers are found in comparison to the n = 1 case [27].

The paper is organized as follows: Sec. II introduces the
random walk model, the convex hull of a two-dimensional
point set, and briefly elucidates an algorithm to obtain such a
convex hull. Section III explains the large-deviation scheme
used to obtain the probability density function over a large
range of the support, including the low-probability tails.
Section IV presents the results achieved from our simulations.
Section V concludes the article and a short outlook is given.

II. RANDOM WALKS, CONVEX HULLS,
AND ALGORITHMS

A time-discretized random walk consists of T step vectors
�δi , and the position �x(τ ) at time step τ < T is the sum of all
steps up to τ , i.e.,

�x(τ ) = �x0 +
τ∑

i=1

�δi . (1)

The walk configuration itself is then the set W =
{�δ1,�δ2, . . . ,�δT } of steps [42]. The step �δi = (δx,i ,δy,i) itself
denotes a displacement of the particle by δx,i in x direction
and δy,i in y direction. Here, we consider a time-discrete
approximation to a Brownian walk, i.e., both δx,i and δy,i are,
for each i, drawn randomly from a Gaussian distribution with
zero mean and variance one. All considered walks are open,
i.e., the walker does not need to get back to the starting point
�x(0) after T steps.

In contrast to Ref. [27], where only single walks with one
walker have been investigated, we put multiple random walks
under scrutiny. So, starting from the origin of the coordinate
system, n independent random walkers perform their walks
simultaneously. The resulting point set W̃ of n · T points given
by the individual positions of all n walkers after each time step
is then further investigated.

The convex hull C = conv(P̃) of a two-dimensional point
set P̃ = {P̃i}, P̃i ∈ R2 is described through a convex set
over P̃ . The points P within C are given by all possible
combinations P = ∑

i αiP̃i with P̃i ∈ P̃ and
∑

i αi = 1 and
αi ∈ R+

0 (definition given according to [43]). This means:
(1) All points P̃i ∈ P̃ lie within C.

(2) All lines P̃i P̃j ; P̃i ,P̃j ∈ P̃ also lie within C.
The boundary of the convex set is a polygon that connects

a subset P ⊂ P̃ of H points from the point set, i.e., P =
{P0,P1, . . . ,PH−1}, with Pi = (xi,yi) (i = 0, . . . ,H − 1). The
hull is attributed with area A and perimeter L according to
(identifying i = H with i = 0):

A(C) = 1

2

H−1∑
i=0

(yi + yi+1)(xi − xi+1), (2)

L(C) =
H−1∑
i=0

√
(xi − xi+1)2 + (yi − yi+1)2. (3)

For our work, we determined the polygons bordering
convex hulls (for which one uses shortly the term “convex
hull”) numerically. For convenience, we use dimensionless

quantities subsequently, as all convex hulls are represented in
a computer.

Here, we used the “Jarvis March” algorithm [44], which
has a complexity of O(NH ), where N is the number of points
in the investigated point set and H the number of points in the
convex hull. In this algorithm, the convex hull is calculated in
a “gift-wrapping” manner, where one needs to make sure that
all points of the set lie on, e.g., the right side of a starting point.
The next point added to the convex hull is the point that has
the minimum angle between the line connecting both points
and the vertical. This procedure is repeated until one reaches
the starting point again.

In usual cases, the application of convex hull algorithms
can be accelerated by usage of preselection heuristics, such as
the one introduced by Akl and Toussaint [45]. This heuristic
looks up extreme points of the set (i.e., those of maximum
and minimum x and y coordinates) and discards all points that
lie inside the quadrilateral formed by these points. We use a
custom refinement of this heuristic, which is based on iterating
the heuristic under rotation of the coordinate origin, which
eliminates another fraction of inert points per each iteration.

III. LARGE-DEVIATION SCHEME

For simple-sampling results, walk configurations W for
multiple walkers n are generated randomly, and the according
convex hulls C are calculated through the algorithm, resulting
in a multitude of values of A and L. Obtaining histograms of
these values only gives access to the high probability regime,
where the convex-hull properties of typical random walks
are measured. However, in order to obtain values of these
quantities with especially low probabilities, allowing us to
measure the distributions Pn(A) and Pn(L) over a large range
of the support, a certain Markov-Chain Monte Carlo (MCMC)
scheme can be used [46,47].

The MCMC consists of an evolution of random walks W(t)
and corresponding sets W̃(t) of points. t is another discrete
“time” parameter, not to be confused with the time parameter
τ of the random walks. For the walks, we measure the property
S(t), i.e., the area (S = A) or perimeter (S = L) of the convex
hull of the point sets, depending on which distribution Pn(A)
or Pn(L) we are aiming at. The initial configuration W(0) is
any walk configuration, e.g., a randomly chosen one.

At each Monte Carlo step t , all n independent walks Wk(t)
(k ∈ {1,2, . . . ,n}) are altered toW∗

k by replacing one randomly
selected step �δi (i ∈ {1,2, . . . ,T }) in each walk with a newly
generated step �δ′

i . The new step is generated according to the
same distribution as all other random walk steps, i.e., the x and
y coordinate of �δ′

i are drawn independently from a Gaussian
distribution. Note that by exchanging, e.g., the first step �δ1, all
following positions �x [cf. Eq. (1)] of the walk are changed.
The convex hull of the point set W̃∗ = ⋃

k W̃∗
k resulting from

the n walks W∗
k is calculated, leading to the quantity S∗. The

alteration W∗ is accepted [W(t + 1) = W∗] according to the
Metropolis probability:

pMet = min[1,e−(S∗−S(t))/�]. (4)

Here, � is the (artificial) Monte Carlo “temperature,” which is
a parameter used to set the range of the sampled values. If the
alteration is not accepted, it is rejected, i.e.,W(t + 1) = W(t).
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Like in any MCMC simulation one needs to equilibrate the
simulation, i.e., discards the initial part of the measured quan-
tities until “typical” values are found. Typical equilibration
times are 103 sweeps (one sweep equals T MC steps) for, e.g.,
T = 200, n = 3, and � = 10 for the area of the convex hull.
In addition, we pick only each kth data point from the original
measurement to get roughly decorrelated values. For the case
above we use k = 1 sweeps, which is a typical value. Toward
low absolute values of the temperature this value needs to be
increased, so, e.g., for � = 0.2 in the above case, we choose
k = 100 sweeps.

For a given quantity (S = A or S = L) and a given walk
length T one gets different probability density functions (pdfs)
P�(S) for each temperature � used. They are related to the
actual distribution P (S) according to the relation [46]

P (S) = eS/� Z(�) P�(S), (5)

where Z(�) is a normalization constant. For different values
of �, different ranges of the measured value S are obtained.
This allows for a piecewise reconstruction of P (S) via suitable
choices of the normalization constants Z(�). They can be
calculated through inversion of this formula whenever for two
values �1 and �2 the ranges of the sampled values of S overlap.
Thus, the temperatures are chosen such that for neighboring
� the measured histograms sufficiently overlap.

For a more detailed description of the calculation of the
normalization constants Z(�) and the determination of the
pdf from the pdfs for the single temperatures we refer to, e.g.,
Refs. [46,48].

Note that the large-deviation approach has already been
applied successfully for the case of the convex hull of the point
set of one (n = 1) walker [27]. In that reference also the test
case of independent points was simulated and a comparison
with analytical results yielded a good agreement.

IV. RESULTS

For n = 3 random walks we performed simulations for walk
lengths of T ∈ [20,200] while measuring and biasing for the
area A and the perimeter L of the convex hulls, respectively.
To obtain a large range of the support for the pdfs of these
two quantities we used, e.g., 17 temperatures � ∈ [−200,40]
(excluding the value � = ∞, which corresponds to simple
sampling) for T = 200 for the pdf of A and about 40
temperatures � ∈ [−20,5] for L.

We also studied the case of n = 2 walks, which is closer
to the single-walker case. Here, we used walks of lengths
T ∈ [20,500].

To investigate the behavior with increasing number of
walks n, due to the strongly increasing numerical effort,
we performed simulations at fixed system size T = 50 and
variable number of walks n ∈ [2,6] for both observables A and
L. We again obtained probability density functions over a large
range of the support. In addition, we performed simple-sample
simulations, i.e., close to the peak of the histogram, for
T = 50, 106 samples and up to n = 105 independent random
walkers.

First, we analyze in Sec. IV A the pdfs of A and L and
check whether they obey a limiting scaling independent of
walk length. Second, the functional forms of those pdfs in

10-1000

10-800

10-600

10-400

10-200

100

 0×100  1×103  2 ×103  3 ×103

P n
(L

)

L

n = 3

T = 20
T = 50

T = 100
T = 200

10-4

10-3

10-2

10-1

101 102

FIG. 1. Probability density function Pn(L) of the perimeter L of
the convex hull of n = 3 independent random walks in semilogarith-
mic scale. Inset: region around peaks in double logarithmic scale.

different regions are investigated in Sec. IV B. Third, Sec. IV C
deals with the rate function. In Sec. IV D the scaling with
respect to the number n of walkers is put under scrutiny.

A. Probability density function

As an example, Fig. 1 shows the pdf of the perimeter of
the convex hull of three independent two-dimensional time-
discrete open Brownian walks. By using the large-deviation
approach, probability densities smaller than 10−900 can be
reached. One can observe the strong curvature of the data
on a semilogarithmic scale. With increasing walk length T

the probability densities also increase when looking at a fixed
perimeter. This is due to the fact that for larger walk lengths
large perimeters are found by the simulations more likely as
more steps in the random walk are available. We obtained
results with similar high numerical quality for the probability
density of the area (not shown without rescaling for brevity).

Next, we check whether the scaling assumptions for the
area [14],

PT,n(A) = 1

T
P̃n

(
A

T

)
, (6)

and the perimeter [14],

PT,n(L) = 1√
T

P̃n

(
L√
T

)
, (7)

are also valid [27] in the case of multiple (n = 2,3) random
walks. Here P̃n(·) are distributions (actually different ones,
here distinguished by the argument A and L, respectively)
independent of T . This scaling behavior represents the known
scaling of the mean values as function of walk length T . Note
that if such a scaling Eq. (6) or (7) is valid, the kth moment of
the distribution exhibits the kth power of this scaling.

In Fig. 2 the collapse according to Eq. (6) is shown. In
the tail of the rescaled pdfs almost perfect agreement of the
curves for the different system sizes is visible. Only in the peak
region (cf. inset of Fig. 2) small finite-size effects occur. The
collapse of the pdfs for the perimeter in accordance with Eq. (7)
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FIG. 2. Rescaled pdfs for n = 3 walks, the area A of the convex
hull, and different walk lengths T in semilogarithmic scale. Inset:
region close to peaks in linear scale.

is depicted in Fig. 3. A good collapse with small finite-size
deviations in the peak region (see inset) is also achieved.

Similar results were found and a good data collapse was
achieved (not shown) for the area and perimeter for n = 2,
respectively.

B. Functional form of the probability density function

Next, the functional forms of the limiting distributions P̃n(·)
are investigated in more detail. As we will see below, we
could distinguish three different regions, each having its own
scaling form. From analytical arguments [27] we know that
the right tails can be described by Gaussians in the limit of
diverging arguments, whereas the left tails have as scaling form
an essential singularity in the limit of vanishing arguments.
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FIG. 3. Rescaled pdfs for n = 3 walks, the perimeter L of the
convex hull and different walk lengths T in semilogarithmic scale.
Inset: region close to peaks in linear scale.

10-140

10-120

10-100

10-80

10-60

10-40

10-20

100

 0  50  100  150  200  250  300

T
P n

(A
)

A / T

n = 3

T = 200
T = 100

10-2

10-1

0 2 4 6 8 10

10-300

10-200

10-100

100

 0  200  400  600

FIG. 4. Gaussian fit (solid line) according to Eq. (9) with
aA = 1000(25), μA = 0.226(2), σA = 0.6540(1) to the right tail of
the rescaled pdf of the area for T = 200 and n = 3. Note that
the logarithm of Eq. (9) was fitted to the logarithm of the
pdf for A/T � 50 to match the tail. Bottom inset: Gaussian fit
(dashed line) in the peak region for A/T ∈ [2,5] corresponding
to Eq. (9) with aA = 0.474(3), μA = 1.925(2), σA = 0.309(2). Top
inset: Gaussian fit (dashed-dotted line) according to Eq. (9) with
aA = 1000(50), μA = 0.192(4), σA = 0.6543(1) to the right tail of
the rescaled pdf of the area for T = 100 and n = 3. Note that
the logarithm of Eq. (9) was fitted to the logarithm of the pdf for
A/T ∈ [50,300] to match the tail.

The peak regions can be, purely heuristically, fitted well by
Gaussians, which thus exhibit different means and variances,
respectively, as compared to when considering the right tails.

1. Central part and right tail

According to Ref. [27] we use as limiting distributions
P̃n(·) in Eqs. (6) and (7) two Gaussians with mean μS and
standard deviation σS (S = L or S = A) in the case of large
T , respectively. Please note that for the right tail this Gaussian
shape originates from the asymptotic behavior of the scaling
form, while in the region of the peaks of the distributions, the
Gaussian is simply a good approximation of these peaks.

For the perimeter we use [27]

P̃n(m) = aL√
2π σ 2

L

exp

(
− (m − μL)2

2 σ 2
L

)
, (8)

where aL is a constant and m = L/
√

T . If we approximate
A ∝ L2, so l ∝ m2 with l = A/T , we get an additional factor
1/

√
l from |d m/d l| ∼ 1/

√
l in the scaling relation. In total,

the scaling function for the area is given by [27]

P̃n(l) = aA√
2π σ 2

A l

exp

(
− (

√
l − μA)2

2 σ 2
A

)
, (9)

where aA is some constant parameter.
Figures 4 and 5 show the results of those fits to the rescaled

pdfs for n = 3, T = 100, and T = 200. Please remember that
for the right tail and for the central region, there are two
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FIG. 5. Gaussian fit (solid line) according to Eq. (8) with
parameters aL = 1100(14), μL = −0.031(3), σL = 2.9999(1) to the
right tail of the rescaled pdf of the perimeter for T = 200 and n = 3.
Note that the logarithm of Eq. (8) was fitted to the logarithm of the
pdf for L/

√
T ∈ [20,160] to match the tail. Bottom inset: Gaussian

fit (dashed line) in the peak region for L/
√

T ∈ [5,15] corresponding
to Eq. (8) with aL = 1.011(8), μL = 7.85(1), σL = 1.56(2). Top
inset: Gaussian fit (dashed-dotted line) according to Eq. (8) with
aL = 1187(21), μL = −0.153(4), σL = 3.0018(1) to the right tail of
the rescaled pdf of the area for T = 100 and n = 3. Note that
the logarithm of Eq. (8) was fitted to the logarithm of the pdf for
L/

√
T ∈ [20,160] to match the tail.

different origins of the Gaussian forms. Thus, in both figures
two independent fits were necessary, one to the tail of the
distribution and one to the peak region. We checked that a
single fit over the peak region plus right tail does not match
the data.

In Fig. 4, the Gaussian fit for T = 200 matches the data in
the right tail of the pdf of the rescaled area very well. Given that
the scaling behavior should hold only in the limit if diverging
arguments, the fit is surprisingly good. A fit according to
Eq. (9) to the right tail of the pdf for T = 100 (see top inset of
Fig. 4) in the same region as has been used for T = 200 yields
a value for aA that matches the one found for T = 200 within
error bars. For σA also good agreement within two standard
error bars for the two fits for T = 100 and T = 200 is found.
Only for the mean μA, a larger difference occurs. This matches
well the observations (see Fig. 9 below) that the mean values of
the rescaled quantities exhibit notable finite-size corrections.

The bottom inset of Fig. 4 shows the fit close to the peak
of the pdf wherein deviations from a Gaussian behavior are
visible when looking beyond a scale of the standard deviation.
Anyway, for the Gaussian fit corresponding to Eq. (9) for
T = 100 (figure not shown) we obtain for A/T ∈ [2,5] aA =
0.481(3), μA = 1.894(2), σA = 0.314(2). The value for aA

agrees within two error bars with the one found for T = 200.
The standard deviation σA of the Gaussian fit matches the value
found for T = 200 within two error bars. Only for the mean
μA, a larger difference occurs between the results for different
walk lengths, as for the tail region.

However, these results support the claim that the scaling
function given in Eq. (9) is time-independent.

Figure 5 shows the fits according to Eq. (8) to the rescaled
pdf of the perimeter. The fit for T = 200 and n = 3 to the tail
matches the region of large L/

√
T very well. In the bottom

inset of Fig. 5, which shows the peak region of the pdf, again
deviations from a Gaussian behavior can be seen beyond a
distance of σ from the peak. The top inset shows a Gaussian fit
to the right tail according to Eq. (8) for n = 3 and T = 100 over
the same range as has been used for T = 200. The resulting
value of the fit parameter aL agrees with the value found for
T = 200 within three error bars. The value for σL is close to
the one for T = 200 although both values do not agree within
a reasonable amount of standard errors. The mean μL has a
again quite different value for T = 200 and T = 100.

For the peak region, the Gaussian fit corresponding to
Eq. (8) (figure not shown) for L/

√
T ∈ [5,15] yields for T =

100, aL = 1.02(1), μL = 7.74(2), σL = 1.57(2). The value of
aL agrees within two error bars with the value for T = 200.
The standard deviation σL in the Gaussian fit for T = 100
matches the one for T = 200 within an error bar. Only the
mean μL shows again a larger deviation from the value found
for T = 200.

However, these results support the claim that the scaling
function given in Eq. (8) is time-independent.

2. Left tail

Next, we investigate the (left) tail of the pdfs toward small
values of the rescaled area and perimeter. Corresponding to
Ref. [27] we expect for the perimeter asymptotically for small
m and small T an essential singularity according to

P̃n(m) ∼ a exp

(
− b

m2

)
, (10)

where a and b are constants and again m = L/
√

T . With
similar arguments as for large T , where Gaussian fits are used
[cf. Eqs. (8) and (9)] we obtain for the small l asymptotics of
the area

P̃n(l) ∼ a√
l

exp

(
−b

l

)
, (11)

where a and b are constants and again l = A/T .
Figure 6 shows the fits to the left tails of the rescaled pdfs of

the area and perimeter, respectively. The fit to the rescaled pdf
of the perimeter matches the data quite well for small m < 5.
Also the fit according to Eq. (11) (see inset of Fig. 6) suits well
to the rescaled pdf of the area for small l < 2.

C. Rate function

Next, the empirical rate function �n(s) [49] is calculated,
which describes the leading behavior of the pdf in the
large-deviation tail. If one assumes that the behavior of
the probability density away from the typical values around
the peak is exponentially small in the walk length T , one gets
for the rate function

�n(s) = − 1

T
ln Pn(s). (12)
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FIG. 6. Fit (solid line) with fit function f (m), which corresponds
to Eq. (10) to the rescaled pdf of the perimeter for T = 200 and n = 3.
Parameters of the fit are a = 72(8) and b = 200.9(5). Note that the
logarithm of the fit function was fitted to the logarithm of the pdf for
m ∈ [1,5] to match the tail of the pdf. Inset: fit (dashed line) with fit
function g(l) corresponding to Eq. (11) to the rescaled pdf of the area
for T = 200 and n = 3. Parameters of the fit are a = 394(22) and
b = 15.06(2). Note that the logarithm of the fit function was fitted to
the logarithm of the pdf for l ∈ [0,2] to match the tail of the pdf.

The quantity s is usually normalized with the maximum
possible values so that s ∈ [0,1]. As for Gaussian random
walks, no real maximum exists; we choose [27] sA = A/T 2

and sL = L/T , respectively.
Figure 7 shows the rate function for n = 3 and the area of

the convex hull. For small values of sA there are a strong finite
length effects, whereas for larger values the curves for different
T seem to converge quickly to one curve. Nevertheless, a
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FIG. 7. Rate function �n(sA) as a function of the scaled area
sA = A/T 2 for different walk lengths T and n = 3 walks in
semilogarithmic scale. Inset: the same in a double-logarithmic plot,
where the dashed line close to the data is a power law sκ

A, with κ = 1.
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FIG. 8. Rate function �n(sL) as a function of the scaled perimeter
sL = L/T for different walk lengths T and n = 3 walks in semiloga-
rithmic scale. Inset: the same in a double-logarithmic plot, where the
dashed line close to the data is a power law sκ

L, with κ = 2.

convergence of the rate function to one T → ∞ limiting
shape seems likely, indicating that the densities obey the
large-deviation principle [49].

To estimate the behavior of the curves for large T we
plotted the rate function in a double-logarithmic scale in the
inset of Fig. 7 and also show a power law sκ

A with κ = 1 for
comparison. Apparently, our data has the same slope, at least
in the region where sA is large. This is the same result as
was found previously for n = 1 [27]. Note also that the region
sA ∼ O(1) in Fig. 7 corresponds to the region A/T ∼ O(T )
in Fig. 4. In Fig. 4 a Gaussian scaling with the argument√

l = √
A/T has been found which should correspond to a

linear scaling of the rate function as can be seen in the inset of
Fig. 7, indeed.

In Fig. 8 the rate function for the perimeter and n = 3 is
depicted. Again, for small values of sL strong finite-size effects
occur and the convergence to a common curve is very slow.
On the other hand, for larger sL the convergence to a common
curve is already visible. In the inset of Fig. 8 the data is shown
in a double-logarithmic plot. Our data is compatible with a
power-law behavior sκ

L with κ = 2 for large sL represented by
the dashed line. Again we have found the same result as was
found previously for n = 1 [27]. Note that the region sL ∼
O(

√
T ) in Fig. 8 corresponds to the region L/

√
T ∼ O(T )

in Fig. 5. A Gaussian scaling with argument m = L/
√

T has
been found in Fig. 5, indicating a quadratic scaling of the rate
function, which indeed can be observed in the inset of Fig. 8.

Thus, for few number of walks, the behavior of the rate
functions for large s of both the area and the perimeter agree
with the expected ones [27] found for n = 1. So, our pdfs
are said to follow the “large-deviation principle” as they can
be well described by a rate function given by Eq. (12). The
behavior of the rate function when increasing the number of
walks is discussed below in the following section.
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TABLE I. Values of the fitting parameters a, b in Eq. (19) for
number of walkers n = 2 and n = 3, and for fitting the mean of the
area and the mean of the perimeter, respectively.

μA μL

a b a b

n = 2 −3.80(26) −0.49(2) −3.65(25) −0.50(2)
n = 3 −4.30(23) −0.48(1) −3.38(27) −0.49(2)

D. Scaling behavior with respect to the number n of walks

According to Ref. [14] for n two-dimensional open Brow-
nian random walks the average area is expected to scale like

〈An〉 = βnT , (13)

where the n-dependent prefactor is given by

βn = 4n
√

π

∫ ∞

0
u[erf(u)]n−1 · [ue−u2 − g(u)] du, (14)

erf(u) is the error function

erf(u) = 2√
π

∫ u

0
e−t2

dt,

and

g(u) = 1

2
√

π

∫ 1

0

e−u2/t

√
t(1 − t)

dt.

In the large-n limit βn scales like [14]

βn ∼ 2π ln n. (15)

According to Ref. [14] the average perimeter of convex
hulls of n two-dimensional Brownian walks should scale like

〈Ln〉 = αn

√
T , (16)

with

αn = 4n
√

2π

∫ ∞

0
ue−u2

[erf(u)]n−1 du, (17)

which has a large-n scaling,

αn ∼ 2π
√

2 ln n . (18)

To check these analytical predictions, we performed simple-
sampling simulations to determine the average area and
perimeter for various values of n ∈ [1,105]. Figure 9 shows the
results for n = 3 independent Gaussian walks and the rescaled
averages μA = 〈A〉/T and μL = 〈L〉/√T , where 〈·〉 denotes
averaging. We simulated walk lengths T ∈ [10,2000] and used
at least 8 × 105 samples to determine the average. A power-law
fit,

μS(L) = μ∞
S + aT b, (19)

with parameter μ∞
S (S = A or S = L) denoting the extrapo-

lated value for T → ∞ and fit parameters a, b is performed.
Excluding the small system sizes the fit is done over the range
T ∈ [150,2000], yielding a reduced χ2 value of χ2

red ≈ 0.72
for the area. For the convenience of the reader, the values of
a and b are shown in Table I. Apparently, the convergence

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

101 102 103 104

μ A

T

n = 3

 7.2

 7.6

 8

 8.4

101 102 103 104

μ L

FIG. 9. Average rescaled area μA of the convex hull as a function
of walk length T for n = 3 walks. Note the logarithmic scaling of
the T axis. For each data point at least 8 × 105 samples were used.
Dashed-dotted line is a power-law fit according to Eq. (19). Horizontal
dashed line represents analytical expectation [14] β3 ≈ 4.410. Inset:
the same for the average rescaled perimeter μL. Horizontal line
denotes expectation according to Ref. [14]: α3 ≈ 8.334.

is a square root as a function of the walk length, also for
the fits performed for n = 2 (see below). One can observe a
convergence toward the average area for infinite T , which is
μ∞

A = 4.415(6). Compared to the literature [14] β3 = π + 3 −√
3 ≈ 4.410 the measured value agrees within error bars. The

inset of Fig. 9 shows the fit to the rescaled average perimeter
μL. Again, a convergence toward the average for T → ∞
is visible. The fit gives χ2

red ≈ 0.76 for T ∈ [150,2000] with
μ∞

L = 8.339(7). This value is compatible within error bars
with the analytical derivation [14] α3 ≈ 8.334.

For n = 2 walks we accomplished similar fits (not shown)
as for n = 3. The fit for the rescaled average area was
performed with an reduced χ2 value of χ2

red ≈ 0.20 over
system sizes T ∈ [300,2000]. The average value for an infinite
system is μ∞

A = 3.144(5), which is compatible within error
bars with literature [14]: β2 = π ≈ 3.142. For the average
perimeter we obtained by the fit according to Eq. (19) χ2

red ≈
0.10 with μ∞

L = 7.091(4). This value agrees within error bars
with the published value [14] α2 = 4 × √

π ≈ 7.090.
Next, we want to check if our data matches the exact

Eqs. (14) and (17) for high values of n. In Fig. 10 the
averages of the area and perimeter obtained from simple-
sampling simulations with T = 50 fixed and various values
for the number of walks n is presented. Scaling the n axis
logarithmically leads to a linear behavior of the average area
for large n, indicating a logarithmic dependence like expected
by the previous scaling assumptions for βn. As Eq. (14) is
only valid for large values of T one can see a small deviation
between the theoretical and the measured values.

In the same way, the behavior of the average perimeter
follows the expected behavior, as shown in the inset of Fig. 10.

Clearly, the data points for T = 50 are located system-
atically below the analytical curves, which is only valid
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FIG. 10. Average area as a function of number of walks n for
T = 50. Note the logarithmic scaling of the n axis. For each data
point about 106 samples have been used. The dashed-dotted line
shows the exact value given by Eqs. (13) and (14). Inset: the same for
the averaged perimeter. Dashed line displays exact value obtained by
Eqs. (16) and (17).

for T → ∞. This does not come unexpectedly, because we
see this behavior already for n = 3 in Fig. 9. To check
the convergence of the data for different walk lengths we
investigate (figures not shown) convex hulls for n = 100 walks
as already done for n = 3. A fit according to Eq. (19) for walk
lengths T ∈ [70,104] yields for the area a reduced χ2 value of
χ2

red ≈ 1.4. One can observe a convergence for T → ∞ toward
μ∞

A = 21.40(1), which is compatible with the theoretical
value [cf. Eq. (14)] β100 ≈ 21.3890 within a standard error
bar. For the perimeter the power-law fit for T ∈ [100,104]
results in χ2

red ≈ 0.18 and an extrapolated value for infinite T ,
which is μ∞

L = 17.262(1). Compared to the theoretical value
α100 ≈ 17.2596 there is good agreement within two standard
error bars. So, we can be confident that our data shows the
expected convergence for all values of n toward the theoretical
values.

In Eqs. (6) and (7) we have assumed that the scaling of the
mean with respect to the walk length T is valid for the full scale
of the distribution. Next, we want to investigate analogously
whether the scaling behavior of the average with respect to the
number n of walks transfers to the full distributions. Figures 11
and 12 show the distributions with a corresponding rescaling of
the axis. Apparently, the quality of the collapse is not very good
but seems to get gradually better when making the number n of
walks very large. This can be seen when looking at the insets
of the figures, where the change of the distributions for n =
104 → n = 105 is rather small, compared to the change n =
2 → n = 6. This corresponds to the just discussed behavior
of the mean, where also strong scaling corrections at small
number n of walks are visible. Nevertheless, we also evaluated
the behavior of the variance as a function of the number n of
walks. Here we observed, see Fig. 13, a growth for small values
of n but an emerging decrease for n � 1000 (area) and for
n � 10 (perimeter). This means that with respect to the number
of walkers a simple scaling of the full distribution as given by
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 0×100  1×104  2 ×104  3 ×104
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(n
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A / ln(n)
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n = 2
n = 3
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n = 6
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10-5

10-4
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10-2

10-1

 40  80  160  640

FIG. 11. Rescaled pdfs for T = 50, the area A of the convex hull,
and various number of walks n in semilogarithmic scale. Inset: region
close to peaks in double-logarithmic scale. Note that for walk numbers
n � 30 only values from simple sampling exist and therefore only
the region around the peak is depicted.

the mean is not valid. We also compare the pdfs of the area
for different number of walkers when normalizing the mean to
zero and the standard deviation to one (cf. Fig. 14) to decrease
the influence of the apparent nontrivial scaling of the variance.
Here we observe a stronger agreement across different values
of n. We found a similar good collapse (even better for the
values n � 6) for the distributions of the perimeter (not shown
here). Thus, a convergence to a common shape, already at
moderate values of n, appears likely.

Finally, we consider the actual shape of the distributions
in the limit of a large number of walkers and long walk
lengths. The distribution of the perimeter, on which we focus

10-350
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10-250

10-200

10-150

10-100

10-50

100

 0  200  400  600  800

(l
n 

n
)1/

2
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L / (ln n)1/2
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 20  40  80

FIG. 12. Rescaled pdfs for T = 50, the perimeter L of the convex
hull, and various number of walks n in semilogarithmic scale. Inset:
region close to peaks in double-logarithmic scale. Note that for walk
numbers n � 30 only values from simple sampling exist and therefore
only the region around the peak is depicted.
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FIG. 13. Variance of the convex hull’s area (main plot) and
perimeter (inset) as a function of the number n of walks for walk
length T = 50.

here, can be approximated [14] by the distribution of 2π

times the span of n independent one-dimensional random
walkers. Since the span is given by the sum of the two
extreme points in positive and negative directions of the n

one-dimensional walkers, this distribution is basically given
by the convolution of two Gumbel extreme-value distributions.
The exact distribution [50] for the one-dimensional case can
be formulated in terms of the modified Bessel function K0(x)
of zeroth order. Correspondingly to Eq. (6) of Ref. [50] we fit
our data for the perimeter to

f (L) = 2ab exp(−z) K0 [2 exp(−z/2)], (20)

with b ≡ 2
√

log n, z ≡ b((L − B)/C − b). The variables
B,C, and a are fit parameters allowing for an adjustment
of the center and width of the distributions, and taking care of
the normalization, respectively.
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FIG. 14. Peak region of pdfs for T = 50, the area A of the convex
hull and various number of walks n when shifted to mean zero and
rescaled with the actual standard deviation, respectively.
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FIG. 15. Distribution of the perimeter for a larger number n =
1000 of walkers and a very long walk length T = 104. The dashed
line shows the result of a fit to the distribution given in Eq. (20),
which resulted in a = 3.83 × 10−3, B = 754.96, and C = 255.81,
yielding χ 2

red = 16.84. Both distributions are shown such that they
are shifted to mean 0 and scaled to standard deviation 1, allowing for
a comparison of the raw shape. The inset shows the reduced χ2 for
two different numbers of walkers as a function of the walk length.

In Fig. 15 the data for n = 1000 and T = 104 as obtained
from simple sampling is shown together with a corresponding
fit. We obtained a = 3.83 × 10−3, B = 754.96, and C =
255.81. The fit is good in the center of the distribution but not
away from it. Nevertheless, as the inset shows, when increasing
either n or T the quality of the fit increases considerably, in
favor of a convergence of the distribution to the shape given
by Eq. (20).

Furthermore, we investigated the behavior of the rate
function with varying number of walks n. We show �n(sL)
in Fig. 16 as a function of sL = L/T , where T = 50 is
fixed, for various values of n, while using here again also
the large-deviation data. For small sL a strong influence of n

can be seen, while this is weaker for larger values of sL.
In the inset of Fig. 16 we show the data of Eq. (20) with

the parameters as obtained from the fit for n = 1000 and
T = 104 plotted in the same way as the rate function, also
in double-logarithmic scale. Apparently, the shape of the rate
functions shown in the main plot become more and more
similar to the function shown in the inset. The actual values are
quite different, because the values of n and T are very different
for the two cases. This is due to strong corrections to the leading
scaling behavior, as visible in Fig. 7, where also the minimum
moves left and down when increasing the walk length T .
Nevertheless, the result supports qualitatively the validity of
Eq. (20). For a more quantitative statement the numbers n and
T , which can be studied using the large-deviation approach,
are too small due to the huge numerical effort which would
needed in this case.

Anyway, our results indicate that for n → ∞ and T → ∞
the distribution of the perimeter of many walkers can indeed
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FIG. 16. Rate function �n(sL) as a function of the scaled
perimeter sL = L/T for different number of walks n ∈ [2,6] and
walk length T = 50 in double-logarithmic scale. Inset: the function
from Eq. (20) with the parameters as obtained from the fit to the
n = 1000, T = 104 data, rescaled as to obtain a rate function, also
shown in double-logarithmic scale.

be described by a suitably rescaled convolution of two Gumbel
extreme-value distributions.

For the case of the area (not shown) we observe a similar
behavior as for the perimeter. Again we found that close to the
minimum a change of the shape starts to appear. Nevertheless,
here we have no functional form available, so we do not discuss
this further.

V. CONCLUSION AND OUTLOOK

We have performed simulations of multiple two-
dimensional discrete-time random walks with Gaussian dis-
placements. Convex hulls of the random walks have been
calculated and the area A and perimeter L have been obtained.
We have applied a large-deviation scheme, via biasing Markov-
chain Monte Carlo evolutions in the configuration space of
walks. The bias was introduced with respect to large or small
areas or perimeters, respectively. In this way we have been able
to obtain these distributions, for moderate number of walks,
over large ranges of the support. Thus, we could measure
probability densities spanning as many as 1000 decades in
probability. The resulting probability densities show the same
scaling behavior as the mean with respect to the length T of

the walks, i.e., P̃n(A/T ) and P̃n(L/
√

T ) appear to be T → ∞
limiting densities.

For small numbers n of walkers, the shape of these
limiting densities follows Gaussian distributions for L and√

A, respectively, as for the n = 1 case. Also, for the deviations
of the distribution in the direction of very small diameters and
areas, the previously found (n = 1) essential singularity is
obtained for low-n multiple random walks.

We also obtained the rate functions for area and perimeter,
rescaled with the scaling behavior of the maxima, i.e., T 2

and T , respectively. For both quantities, the finite-length rate
functions approach limiting functions for T → ∞, showing
that the densities follow the large-deviation principle [51,52].
This makes it likely that using analytical approaches from
large-deviation theory, some results for the distributions of
the convex hulls may be obtained. Anyway, the rate functions
seem to be well described by a power law in the case n → ∞,
as found previously in the n = 1 case.

Finally, we have verified, that the scaling behavior of the
averages with respect to the number n of walks is predicted
as in the literature [14]. The convergence is slow, such that
on the level of the full distribution the convergence to a
limiting function is not fully visible. Nevertheless, using
simple-sampling simulations of number of walks up to n =
105, a convergence in the high-probability, i.e., peak region is
visible, making a full convergence likely. Furthermore, these
results are compatible with a convergence of the distribution of
the perimeter to a convolution of two Gumbel extreme-value
distributions.

For future research it would be interesting to investigate
multiple interacting walkers [31,39] or multiple walkers
performing self-avoiding walks or loop-erased random walks
[53,54]. Furthermore, in higher dimensions a change of the
scaling of the obtained distributions and thus also of the
shape of the distributions can be anticipated, making such
studies useful. Finally, it would be very interesting to apply
the methods used here to biological models to investigate
the formation of animal territories [9], which had originally
motivated this work.
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Ph.D thesis, Université Paul Sabatier, Toulouse, France, 1983.
[18] J. Randon-Furling, S. N. Majumdar, and A. Comtet, Phys. Rev.

Lett. 103, 140602 (2009).
[19] A. Reymbaut, S. N. Majumdar, and A. Rosso, J. Phys. A 44,

415001 (2011).
[20] E. Dumonteil, S. N. Majumdar, A. Rosso, and A. Zoia, Proc.

Natl. Acad. Sci. USA 110, 4239 (2013).
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