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We propose an innovative type of ergostats and thermostats for molecular dynamics simulations. A general
class of active particle swarm models is considered, where any specific total energy (alternatively any specific
temperature) can be provided at a fixed point of the evolution of the swarm. We identify the extended system
feedback force of the Nosé-Hoover thermostat with the “internal energy” variable of active Brownian motion.
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I. INTRODUCTION

In this paper a type of ergostats and thermostats for
molecular dynamics simulations is proposed, which is derived
from particle swarm models. An assigned total energy or
temperature can be provided at fixed points of the evolution
of the swarms.

Simulations in molecular dynamics are usually performed
in the microcanonical ensemble, where the number of particles,
volume, and energy have constant values. In experiments,
however, it is the temperature which is controlled instead
of the energy. Several methods have been advanced for
keeping the temperature constant in molecular dynamics sim-
ulations. Popular are deterministic thermostats like velocity
rescaling [1], the Andersen thermostat [2], the Nosé-Hoover
thermostat [3—7] and its generalizations [8—12], Nosé-Hoover
chains [13], and the Berendsen thermostat [14]. Gauss’s
principle of least constraint was utilized by Evans, Hoover
and collaborators to develop isokinetic [15] as well as isoener-
getic (=ergostatic) thermostats [16]. Dettmann et al. [17,18]
as well as Bond, Laird, and Leimkuhler [19] discovered
Hamiltonian schemes for both the Nosé-Hoover and Gaussian
thermostats. Another setting arises for stochastic thermostats,
which includes standard Brownian (overdamped Langevin)
and Langevin dynamics, as well as stochastic thermostats
of Nosé-Hoover-Langevin type [20,21] and generalizations
thereof [22]. Stochastic velocity rescaling which can be con-
sidered as a Berendsen thermostat plus a stochastic correction
leading to canonical sampling was considered by [23-26]. For
further discussion on the various thermostatting schemes, we
refer to the recent monographs [27-29].

Swarming—the collective, coherent, self-organized motion
of a large number of organisms—is one of the most familiar
and widespread biological phenomena at the interface of
physics and biology. Universal features of swarming have been
identified and diverse physical models of swarming have been
proposed (see the reviews [30-32]).

Amongst these models there is a whole class, often referred
to as active [33,34], which provides a relevant tool for
simulating complex systems (see the monographs [35,36]).
The notion active refers to the property of particles to take
up energy from their environment and store it as so-called
internal energy. This then is followed by the generation
of an out-of-equilibrium state of the system and depending
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on the particular circumstances is implying self-propulsion,
alignment, attraction, or repulsion of the particles.

Recently a simple model for particle swarms was pro-
posed [37,38], which is the starting point for our present dis-
cussion. The model is specified by a (2d N + 1)-dimensional
system of first order differential equations for coordinates and
momenta of N active particles in d space dimensions coupled
to internal energy. Such a nonlinear system is not easily acces-
sible with direct analytic procedures. Nonetheless, precise pre-
dictions for the system’s long time behavior can be made in the
case where all particles are attracted with harmonic forces. We
focus on the time evolution of macroscopic swarm variables,
represented by the total kinetic energy, total potential energy,
virial, and—Ilast but not least—internal energy. A closed four-
dimensional system of first order differential equations for the
time evolution of these macroscopic swarm variables can be
obtained. In the long time limit one finds a stable equilibrium
configuration with fixed nonzero total kinetic and potential
energy, whereas internal energy and virial are vanishing (see
Figs. 2 and 3). Bifurcation analysis provides us with conditions
on parameters of the model for this to take place [37,38].

It is intriguing to observe that in the equilibrium state
with fixed total kinetic energy the system effectively becomes
thermostatted. Thus a method of thermostatting at fixed points
of the evolution of particle swarms has been obtained. The
usual Nosé-Hoover dynamics [3-7] has no attractive fixed
point, and in contrast to the Gaussian isokinetic [15] thermostat
no constraint needs to be implemented. It is in the fixed point
limit of the system’s evolution that the total kinetic energy
becomes conserved.

In Sec. II we shortly review active multiparticle systems.
Then in Sec. III basic features of the fixed point method
for thermostatting as well as the related procedure for
ergostatting are outlined. In Sec. IV prototype studies of the
active ergostat and thermostat are given for a single particle
in two-dimensional space. Harmonic multiparticle systems
in Secs. V and VI, as well as multiparticle systems with
Lennard-Jones interparticle forces in Secs. VII and VIII,
respectively, constitute the main body of our paper. A final dis-
cussion of our results, indicating several applications, is given
in Sec. IX.

II. PARTICLE SWARM MODELS
A. Active multiparticle systems

We consider a multiparticle system of N active parti-
cles [37,38], enumerated by the index i, with equal masses
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m in d space dimensions coupled to the internal energy e.
The position and momentum vectors are X;,p; € R? with

i =1,...,N and the equations of motion read
. oH 0
X = —,
op;

) JoH oH
pi=-1-die)— —(y —dreym_—, 2

0x; op;
e=1—ce—cke—csue, 3)

where the total Hamiltonian H = N h is the sum of kinetic
K = Nk and potential energy U = Nu given by
N pz
H=K+U, K=) %,
+ >3

N m
i=1

N N
1 .
_ (ext) (int)
U= U™+ ) U )
i=1

i j=1
The potential energy U of the swarm is composed of the

external potentials Ui(eXt), modeling the environment of the

1
interactions among the particles. The swarm model is specified

by the potential U and a set of parameters cy,cs,c3,d;,d>, and

y. An active swarm model where ¢, = c3 is called canonical.
We note that in the fast feedback limit of internal energy a

related active swarm model was studied previously [39].

swarm, and of the potentials U(Ji.m), describing the pairwise

B. Swarm dynamics for a harmonic multiparticle system

Here we study the case where all particles are attracted
with harmonic forces; for simplicity no external forces are
considered. The total Hamiltonian then reads

N 2 N

2
LA S D )

In the center of mass frame the swarm dynamics is given by

_ P

Xi ) (6)

m
pi = —(1 —die)N mawjx; — (y — dae)p, (7)
e=1—cie—cke—czue. ®)

The above system of coupled nonlinear differential equations
is not easily accessible with direct analytic procedures.
Nonetheless, predictions for the system’s long time behavior
can be made by transforming to macroscopic swarm variables

N p2 N
e, K= L U=Nmaw?
2 n2

VNwy &

2
i

X?
2

K represents the total kinetic energy of the swarm, U is
the total internal potential energy, and S = Ns denotes the
virial. We also introduce the corresponding intensive quantities
k,u,s and recall H = Nh = N(k + u). These definitions of
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the macroscopic swarm variables are valid in any spatial
dimension d of the system. The differential equations now
read

k=—(—d e2vNwys —2(y —dy e)k, (10)

it = 2v/Nawos, (11)
s'=«/ﬁa)0k—(1—d1 e)x/ﬁa)ou—(y—dge)s, (12)
e=1—cie—cke—czue. (13)

We have thus reduced the (2dN + 1)-dimensional system
(6)—(8) of first order differential equations for coordinates,
momenta, and internal energy to a four-dimensional system of
first order differential equations (10)—(13) for the macroscopic
swarm variables.

In the long time limit an equilibrium state which cor-
responds to amorphous swarming could be obtained by
finding a stable fixed point (kg,ug,S0,e9) With nonvanishing
kinetic energy ko. Bifurcation analysis provides us with
conditions for the parameters cj cz,c3,d;,dy,y for this to
take place (see [37,38]). It is obvious that a system in
a swarming equilibrium state effectively becomes ther-
mostatted, so a method of thermostatting appears to be
indicated.

Active swarm dynamics with its many parameters ne-
cessitates quite an involved study of the various arising
phenomena. In this paper we therefore focus on simplified and
more manageable time evolutions of active swarms, setting
dl =C = 0.

(1) Within the canonical formulation where ¢, = ¢3 we will
demonstrate that equilibrium states with fixed total energy may
emerge in the long time limit. It is precisely this phenomenon
which defines our type of active ergostats. We will discuss
several applications.

(2) Studying the related swarm dynamics with d; = ¢; =
0 and c3 =0 we find equilibrium states with fixed kinetic
energy. This defines our type of active thermostats. We will
explore features of such a method of thermostatting, give its
relation to the Nosé-Hoover thermostat, and discuss several
applications.

We close by reminding the reader that also static long time
limits of a swarm exist, where all particles are collapsing to
a single point or freezing according to a certain pattern. This
is of no concern in the present investigation of ergostats and
thermostats, however.

III. ERGOSTATS AND THERMOSTATS

A. Nosé-Hoover thermostat

The type of ergostats and thermostats we are going to
present recalls in some aspects the Nosé-Hoover thermostat,
which we will review now. In order to model a system of
N particles coupled to a thermal reservoir at temperature T
Nosé [4] defined an extended Hamiltonian with additional
canonically conjugated degrees of freedom s, Py representing
the heat bath; also a parameter Q named the Nosé mass
parameter was introduced. The equations of motion in the
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so-called Nosé-Hoover form [6] are given by

=2 (14)
m
U
pi=—o—Em (15)
X;
. 1 [k

Here & = & acts like an extended system feedback force
controlling the kinetic energy k. The temperature T of the
system is related to the average kinetic energy ko by T = % ko;
the relaxation time 1 is defined by 12 = ﬁ

Nosé proved analytically that the microcanonical proba-
bility measure on the extended variable phase space reduces
to a canonical probability measure on the physical variable
phase space (x;,pi). The Nosé-Hoover thermostat has been
commonly used as one of the most accurate and effi-
cient methods for constant-temperature molecular dynamics

simulations.

B. Active ergostat and ergostatting in the fixed point

Substituting into the active multiparticle system (1)—(3) the
special parameter values

1 1
= O’ = = —, d = 0, d = —,
“ T T e @ 2T @y
a7
15}
Yy ==
()?
as well as transforming variables
e—>E=y—dye (18)

we arrive at equations of motion which are of a generalized
Nosé-Hoover form:

% =2 (19)
m

U
pi=__a —&pi, (20)

Xi

. 1 h h

- (2 -1)- . 21
g (T1)2<h0 > Tzhos @D

The evolution equations may have an attractive fixed point in
which the averaged total energy per particle 7 = h( becomes
sharply fixed. This specific form of ergostat we would like to
call the active ergostat (AE).

It should be remarked that for simplicity we defined
the £ Eq. (21) under the assumption that kg, h > 0. For
negative values of Ay and possibly also for negative h
appropriate sign flips have to be added (see the discussion in
Sec. III B).

C. Active thermostat and thermostatting in the fixed point

At this place we mention an interesting variant of the above
derivation, which leads to Eq. (21). For the swarm evolution
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(1)—(3) we consider now ¢; = ¢3 = d; = 0 and have

. oH
X, = —, (22)
op;
. 0H oH
pi=—7"——(y —dreym_—, (23)
0x; op;
e=1—cike. (24)

Different from Eq. (3), where the internal energy couples to the
total energy, here in Eq. (24) the internal energy couples to the
kinetic energy only. This kind of dynamics was introduced and
explored in several applications by [34,35]. Choosing similar
parameter values as before
1 1 2]
O=7— h=—7, v="j73 (25)
koTo (1 )2 (t1 )2

we again transform variables according to Eq. (18) and finally
arrive at

% =2 (26)
m
. 104
pi = —&pi 27
X;
é_L(£_1>_Lg (28)
~ (m)* \ko ko

We identify the extended system feedback force & of the
Nosé-Hoover thermostat with the “internal energy” variable
e of active Brownian motion [apart from the rescaling by —d,
and shifting by y, see Eq. (18)]. It is worth mentioning the
books [27,36] where a related relationship has been addressed
as well.

In contrast to the usual Nosé-Hoover case the active
thermostat evolution may have an attractive fixed point in
which the averaged kinetic energy per particle k = ko becomes
sharply fixed which allows us to define a temperature 7. This
specific form of thermostat we would like to call the active
thermostat (AT).

It is well known that for small systems the dynamics of the
Nosé-Hoover thermostat is nonergodic [6,7] and trajectory
averages do not generally agree with the corresponding
phase space averages. The question of ergodicity can also
be addressed in our present work. We remark, however, that
we primarily are interested in large particle systems (see the
main body of our paper and Secs. V-VIII). We therefore
share viewpoints of Khinchin on the key role of the many
degrees of freedom and the (almost) complete irrelevance
of ergodicity [40,41]. Indeed, snapshots of the histogram of
the momentum distribution for an active thermostat and a
harmonic multiparticle system, Fig. 5, show nice agreement
with a Gaussian shape, formally expected in the infinite
system limit. Concerning the active thermostat of a single
harmonic oscillator, Sec. IV, already in previous work on active
particles [37,38] several bifurcation phenomena were studied
and limit cycles were found appearing after a Hopf-bifurcation
point. Further studies could elaborate on this and be the subject
of a similar analysis as in [7,42], where a highly complicated
multipart phase space structure was seen.

In the remainder of this paper we present analytic as well
as numerical studies to explain and demonstrate features of
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the active ergostat and active thermostat for small as well as
large systems with either harmonic or Lennard-Jones forces,
respectively.

IV. ACTIVE ERGOSTAT AND ACTIVE THERMOSTAT
FOR A SINGLE PARTICLE

At the beginning we study the two-dimensional motion of a
single active particle in a harmonic and Lennard-Jones poten-
tial, respectively. We focus on stationary motion—implying
constant velocity—and investigate possible circular orbits and
their stability. It is convenient to use polar coordinates r and ¢
with corresponding unit vectors e, and e; time derivatives are
€ = <ﬁe¢, and €5 = —¢e,. For the position and momentum
we have

X=re, P =Dpre + pgey. (29)

We cast the equations of motions

. 1 1
X=—p=—(pre + pyey), (30)
m m

dUu dU

p = —— r =\ - r )€r — 31

p=—_"-¢&—£p ( P ép)e §ppes (3D
into their corresponding form in polar coordinates and get
(after eliminating ¢)

Py dU

. _ e “Y . _PrP¢
pr—mr dr Epr, Py = mr

—&py-
(32)

mr = p;,

Finally the time evolution of £ is added, which for the AE case

reads
_ ! h 1 h & h—p3+p$+U (33)
~ (@) \h T ho ' T 2m ’

while for the AT case it is given by
1 [k k Py +p;
T (ko ) ko Y

In order to reach stationarity and circular motion we are
looking for stationary points p — p,o, Py —> Pg0, & —> &o.
We demand

pro=0,  §=0 (35)

and given the potential U (r) are searching for solutions ry and
Dgo Which for the AE case fulfill

Pyo = v/mroU'[ro],  ho = Ulre] + pio/Zm (AE), (36)
while in the AT case

Poo = v/ mroU’[ro],

We linearize the equations of motion around the stationary
points and discuss stability. Without solving the linear dy-
namical system directly we use the Routh-Hurwitz test as
an efficient recursive algorithm to determine whether all the
roots of the characteristic polynomial have negative real parts.
The Routh-Hurwitz stability criterion proclaims that all first
column elements of the so-called Routh array have to be of the
same sign.

ko = pgo/2m  (AT). (37)
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A. Harmonic potential
For the harmonic oscillator potential with coupling
constant k
k 2
U(r)= 57 (38)

in the AE case for all iy > O there are solutions to Eq. (36),
guaranteeing stationarity and circular motion:

ro = w/ho/K, Popo = \/mho (AE) (39)

In the AT case for all ky > 0 one finds corresponding solutions
to Eq. (37):

ro = +/ 2k0/K, Po0 =/ kao

The Routh-Hurwitz stability criterion predicts (marginal)
stability (+, +, +,0,+) for the AE and full stability
(+,4+,+.+,+) for the AT case.

(AT).  (40)

B. Lennard-Jones potential

The Lennard-Jones potential has the form

o=@ @

where a is the distance at which the potential U reaches its
minimal value —e = U(a). Stationary and circular motion
arises in the AE case Eq. (36) with

~1/6
ro = a[%(l + 41— 5h0/46)i| , 42)

2
Poo = g\/3m[5h0 +2e(1++/1—5ho/4€)]  (43)

for two different regimes of the total energy. One solution exists
for positive hg, where 0 < hg < %6, and the Routh-Hurwitz
analysis predicts (marginally) stability (4, 4+, +,0,+).

The second (marginally) stable solution arises for negative
hgy, where —e < hg < 0. It should be noted, however, that in
order to reach such a fixed point for negative h [for simplicity
we are also assuming /(¢) < 0] the sign of the first term on the

right hand side of the £ Eq. (33) has to be flipped:

£ = 1<£ 1)— hg, hoh < 0. (44)

C@P\ho 2 ho
Indeed, in this case again the Routh-Hurwitz analysis predicts
marginal stability (+, +, +,0,+).
Next we turn to the AT case, where for 0 < ky < %6 a
solution exists with

] ~1/6
ro = a|:§(1 +1= 2k0/3€):| . Pgo =/ 2kom,  (45)

for which the Routh-Hurwitz analysis predicts stability
(+,+.+.+.,+).

Further unstable solutions in the AE and AT case exist, but
for simplicity will not be discussed here.

V. ACTIVE ERGOSTAT FOR A HARMONIC
MULTIPARTICLE SYSTEM

In this section we perform the detailed numerical sim-
ulation of an active ergostat for a N-particle system with
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FIG. 1. Plot of total energy i (orange line starting at ~0.74
and becoming constant with the value 0.1), kinetic energy k (black
line starting at ~0.5 and oscillating), and potential energy u (red
line starting at ~0.24 and oscillating) for an active ergostat and
a harmonic multiparticle system. Simulation parameters are N =
512,d =2,m = 1,0y = 1,71 = 0.1,7, = 0.05, Ty = 0.5,k = 0.1.
Hamiltonian H =

harmonic forces described by the

2 2
PN Zﬁlj:l 22 (x; — x;)% In the active ergostat case

i=1 2m
Egs. (6), (7), and (21) we have
% =2 (46)
m
pi = —Nmao}x; —&p;, (47)
£= ! (h 1) " £ (48)
()2 \ho Thy

We study a system with N = 512 particles. Initial conditions
are prepared in such a way that center of mass system
coordinates and momenta are vanishing; the coordinates are
chosen randomly from within a circle of fixed length. The
momenta are taken randomly from a Maxwellian distribution,
according to some chosen initial temperature Tjp;.

The system quickly relaxes to a fixed point with constant
total energy ho. The extended system feedback force &
decreases rapidly without oscillations and is vanishing in good
approximation. In contrast to it the kinetic energy k and the
internal potential energy u are oscillating permanently. Their
sum, however, is stabilized at the chosen fixed point value Ay,
as can be seen in Fig. 1.

See [43] for videos of the swarm evolution together with
the corresponding histograms of the momenta. The swarm is
seen to be oscillating regularly. Each time after a phase of
expansion, for a short moment, all particles come to complete
rest. Subsequently the swarm continues contracting towards
the origin, where it starts expanding again.

VI. ACTIVE THERMOSTAT FOR A HARMONIC
MULTIPARTICLE SYSTEM

In the active thermostat case the time evolution of £ is given
by Eq. (28):

N o2

S L T T L
E_(71)2<ko 1) Tzkog’ k_NZZm' @

i=1
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FIG. 2. Plot of total energy & (orange line starting at ~0.75
and reaching the asymptotic value 0.2), kinetic energy k (black line
starting at ~0.5 and reaching the asymptotic value 0.1), and potential
energy u (red line starting at ~0.25 and reaching the asymptotic
value 0.1) for an active thermostat and a harmonic multiparticle
system. Simulation parameters are N =512.d =2,m = 1,0y =
1,1’] = 0.1,1’2 = 0~057Tinit = O.S,Tﬁnal =0.1.

In Fig. 2 the kinetic (black), potential (red), and total energies
(orange) are plotted; all are oscillating and are exponentially
damped.

The extended system feedback force & shows oscillatory
behavior and exponential decrease toward zero (see Fig. 3).

In Fig. 4 the N-particle histogram of the momentum
distribution at the initial moment of the simulation is presented.
Due to our choice of initial conditions the histogram of the
momenta is following closely a pattern related to a Maxwellian
distribution (black solid line), corresponding to the initial
temperature Tip;.

Only a few time steps after the start of the simulation the
system reaches the final temperature Tjy,,; we give a snapshot
of the histogram in Fig. 5. The histogram shows a pattern
related to a Maxwellian distribution (black solid line), which
is corresponding to the final temperature Tgn,. See [43] for

ey

T T S S S S O S N E SR RE
0 10 20 30 40 50 60

time

FIG. 3. The extended system feedback force & for an active
thermostat and a harmonic multiparticle system. Simulation param-
eters are N =512,d =2,m = l,wy = 1,71 = 0.1,7, = 0.05, T}y =
0.5, Thina = 0.1.
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2.0 b

Histogram of the initial momentum distribution

05 4

\\

0.0 0.5 1.0 15 2.0 25 3.0
Ipl

FIG. 4. Histogram of the initial momentum distribution for an
active thermostat and a harmonic multiparticle system. Simula-
tion parameters are N =512,d =2,m = 1,0y = 1,71 =0.1,1, =
0.05,Tinie = 0.5 (corresponding to the black line), Ty = 0.1 (cor-
responding to the gray line).

videos of the swarm evolution together with the corresponding
histograms of the momenta.

A precise understanding of the rather complex numerical
results in the preceding and the present section can be obtained
if we study the harmonic N-particle system in terms of the
macroscopic swarm variables Eqgs. (9)—(13). For the active
ergostat case we have

k= —2v/Nawos — 2k &, (50)
U= 2\/ﬁwos, (51
§ = v/ Nwok — ' Nwgu — s &, (52)

£ l<ﬁ—1> h g, h=k+u (53)

- (t1)? \ ho ko

25 q

Histogram of the momentum distribution

25 3.0

FIG. 5. Snapshot of the histogram of the momentum distribution
for an active thermostat and a harmonic multiparticle system
after thermostatting. Simulation parameters are N = 512,d = 2,m =
l,wy = 1,7y = 0.1,7, = 0.05, Ty = 0.5 (corresponding to the gray
dashed line), T,y = 0.1 (corresponding to the black line).
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Linearizing around the stationary point k — ko,u — ug,s —
s0,& — &y where

ho

ko=u0=7, s0=0, & =0 54

the eigenvalues of the characteristic polynomial read

’

B \/7,’]2 — 402 + 14 \/‘L'12 — 412 — 1
2711 2717

- 2i«/ﬁwo,2i«/ﬁwo}. (55)

The solutions of the linearized system can straightforwardly
be obtained; we prefer, however, to give an easy example. We
choose

1 1
f1=1,T2=§,w0=— (56)

VN

so that the eigenvalues are simply {—1, — 1, + i, —i). With
initial conditions (k(0),u(0),s(0),£(0)) = (1,0,0,0) and hy =
1 we find

k=14 i(f’(lSt +11) — %[sin(Zt) —7cos20)], (57)

2 25
= ! + 2 5t 4+7)+ 2 [sin(2¢t) — 7 cos(21)] (58)
U= 7 256 G sin cos ,

| 2 .
s = —ge Gt +2)+ 5[7 sin(2t) + cos(2t)], 59)
E=e't. (60)

We see that in the active ergostat case k and u have
exponentially in the time decreasing contributions but also
undamped oscillations. For the total energy h = k + u the
undamped oscillatory parts cancel out. Conversely & is just
exponentially decreasing without oscillations.

For the active thermostat case the evolution equations are
given by

k = =2V Nwys — 2k &, ©61)

i = 27/ Nwyps, (62)

§ = vV Nwok — VNwou — s &, (63)
. 1 [k k

= = 1) - —&. 64

¢ (1) <ko ) fzkoé 4

Linearizing around the stationary point k — ko,u — ug,s —
50, — & where

& = (65)

the system again can straightforwardly be solved, yet the
solutions are of quite lengthy form. We choose again the
special parameter values Eq. (56). In this case the eigenvalues
become twofold degenerate A = —1 = i+/3. Considering once
more the initial conditions (k(0),u(0),s(0),£(0)) = (1,0,0,0)
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and choosing ky = 1 the solutions of the linearized dynamics
are

k=1+ %e—f[\/?(z — 3¢)sin(v/31)

—3(t — 1) cos(~/31)], (66)

u=1+ %e*’[ﬁ(t + 1)sin(v/31) — 3t cos(+/31)],  (67)
5 = %f’t[ﬁ sin(+/3t) 4 3 cos(+/31)], (68)

o _des Dsin(v31) 69)

V3

All quantities show exponentially damped oscillations.
Finally we apply our analysis to the Nosé-Hoover thermo-
stat. In this case one has

k = —2vNwys — 2k &, (70)

i = 27/ Nawys, (71)

s'=«/ﬁwok—«/ﬁwou—s§, (72)
. 1 [k

=—(——-1). 73

= oy (ko ) 7

It is well known that in the Nosé-Hoover case no stable fixed
points are existing. This is easily demonstrated by linearizing
around the stationary point k — ko,u — ug,s — so0,& = &
where

k() = Uy, So= 0, SO =0. (74)
One finds the strictly imaginary eigenvalues
\/ 4N2714a)04 4+ 142Nt 2wp? + 1
+i )
71
\/—\/4N2114w04 + 14 2N1 2w + 1
+i (75)
71

so all macroscopic swarm variables are showing undamped
oscillations.

VII. ACTIVE ERGOSTAT FOR A MULTIPARTICLE
SYSTEM WITH LENNARD-JONES FORCE

In this section we perform the numerical simulation of an
active ergostat for a N-particle system with Lennard-Jones
forces. The total Hamiltonian reads

4 12 g 6
Jeete) ezl
| x; —X; | | xi —X; |
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FIG. 6. Plot of total energy h (orange line starting at 0.2 and
becoming constant with the value 0.1), kinetic energy k (black line
starting at 0.2 having mostly upward spikes), and potential energy u
(red line starting at 0.0 having negative spikes) for an active ergostat
and a Lennard-Jones multiparticle system. Simulation parameters
are N =8,d=2,m=1,a=0.05¢=1,7; =0.1,7, = 0.05, Ty =
0.2,hy = 0.1.

and the system evolves according to

=2 (77)
m
. 0H
pi:_a__%_pia (78)
Xi
'_L<£_1)_L h_ﬁ (79)
5= (t1)* \ ho 7 ho 2 TN

The initial conditions are prepared in such a way that center
of mass system coordinates and momenta are vanishing. For
the simulation of a Lennard-Jones system it is preferable to
choose the initial coordinates randomly from a regular grid
within a circle of fixed radius. The initial momenta are taken
randomly from a Maxwellian distribution, corresponding to
some chosen initial temperature Tiy.

First we study ergostatting for a small particle number N =
8. In Fig. 6 a plot of the kinetic (black), potential (red), and
total (orange) energy is given.

We find that the total energy % is quickly fixed at its
required value ho. The clearly pronounced positive spikes
in the kinetic energy and the coinciding negative spikes in
the potential energy correspond to events where two particles
find themselves sufficiently close to one another. The potential
energy of the system receives a negative contribution which
due to the ergostatting mechanism leads to an increase of
the kinetic energy, which prevents clusterization. The small
negative spikes in the kinetic energy are a consequence of the
interaction of the particles with the external potential that is
introduced to prevent the swarm from spreading apart. For
simplicity we did not include the plot of the external potential.

The extended system feedback force & is vanishing in
good approximation after a very short moment and the system
approximately becomes Hamiltonian. As now the conservation
of the total energy is guaranteed by the Hamiltonian dynamics
itself, ergostatting due to the extended system feedback force
& has only minor importance.
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FIG. 7. Plot of total energy i (orange line in the middle of the
figure), kinetic energy k (black noisy line at the top of the figure),
and potential energy u (red noisy line at the bottom of the figure)
for an active ergostat and a Lennard-Jones multiparticle system. Sim-
ulation parameters are N = 128,d =2,m = 1,a = 0.05,e = 1,7, =
0.1,75 = 0.05, Tipiy = 0.5,k = 0.1.

When studying a system with N = 128 particles the above
features and interpretations get somewhat washed out. It can
clearly be seen again that the system quickly achieves the
required total energy h(. The kinetic energy k and the averaged
potential energy u of the system are fluctuating quite heavily,
yet their sum & = k 4 u is stabilized well (see Fig. 7).

The extended system feedback force is fluctuating at a small
order of magnitude (see Fig. 8).

See [43] for videos of the swarm evolution together with
the corresponding histograms of the momenta.

VIII. ACTIVE THERMOSTAT FOR A MULTIPARTICLE
SYSTEM WITH LENNARD-JONES FORCE

We perform the simulation of an active thermostat for a
N-particle system with the Lennard-Jones Hamiltonian (76)
and the time evolution Egs. (77), (78), and (28).

Again we first study the case of small particle numbers,
choosing N = 8. We observe that k quickly reaches the

0.0001 -
w 0.0000j
—-0.0001 -
_0'00027\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 5 10 15 20 25 30
time

FIG. 8. Plot of extended system feedback force & for an active
ergostat and a Lennard-Jones multiparticle system. Simulation pa-
rameters are N = 128,d =2.m =1,a =0.05,¢e = 1,7, =0.1,7, =
0.05, Tinie = 0.5,h9 = 0.1.
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FIG. 9. Plot of kinetic energy k (black line at the top) and
potential energy u (red line with several downward steps) for an active
thermostat and a Lennard-Jones multiparticle system. Simulation
parameters are N = 8,d =2,m = 1,a =0.05,¢ = 1,7, =0.1,1, =
0.05,Tipiy = 0.2, T = 0.1.

prescribed stationary value ko, while u shows synchronized
stepwise transitions towards lower values. In Fig. 9 the kinetic
(black) and potential (red) energies are plotted. Each transition
corresponds to the formation of a cluster of a pair of particles
or of additional particles joining an already existing cluster. As
each binding of a particle adds an amount of negative potential
energy to the system, the total energy & decreases accordingly.
If all particles would form one big cluster, the kinetic energy
of the whole system would divide itself between the center of
mass motion/rotation of the cluster and the vibrations of all
the bound particles.

The extended system feedback force & is stabilizing the
kinetic energy k by bursts of fluctuations; this can be seen in
Fig. 10.

In a simulation of the Lennard-Jones gas with particle
number N = 512 the main features of our analysis persist;
see Fig. 11 for plots of the kinetic (black) and potential (red)
energies.

The extended system feedback force & is fluctuating
qualitatively similar as in Fig. 8, maintaining a constant

time

FIG. 10. Plot of extended system feedback force & for an active
thermostat and a Lennard-Jones multiparticle system. Simulation
parameters are N = 8,d =2.m = 1,a =0.05,¢e = 1,11 =0.1,1, =
0.05, Tipie = 0.2, Tijpa = 0.1.
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FIG. 11. Plot of kinetic energy k (black upper line) and
potential energy u (red lower line) for an active thermo-
stat and a Lennard-Jones multiparticle system. Simulation pa-
rameters are N =512,d =2,m =1,a =0.05,¢e = 1,7, =0.1,1, =
0.0S,Tmi[ = 0-51Tﬁnal =0.1.

value of the kinetic energy. Also when plotting the N-particle
histograms of the momentum distribution similar figures as
previously are obtained (see Figs. 4 and 5).

Finally we demonstrate that for sufficiently low tempera-
tures the thermostatted Lennard-Jones gas is forming clusters.
The snapshots were taken at the initial time and at three
consecutive moments (see Fig. 12).

See [43] for videos of the cluster formation together with
the corresponding histograms of the momenta.

IX. OUTLOOK

Ergostatting and thermostatting at fixed points of the
evolution of particle swarms has been presented in this
paper and shown to be viable and useful. We are convinced
that various generalizations and a new arena of exciting
applications will open up.

First we plan to check the efficiency of our thermostat
and ergostat for Lennard-Jones gas simulations by carefully
comparing its performance with other more conventional
thermostats. In dependence of the relaxation times 71,7, we
will study—among others—variances of the total energy, total
kinetic energy, and the extended system feedback force &
[44].

It seems immediately possible to formulate stochastic
variants [20-22] of our fixed point method and compare
simulations with other stochastic schemes [45].
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FIG. 12. Cluster formation in a thermostatted Lennard-Jones gas.
Simulation parameters are N =512,d =2,m = 1,a =0.05,& =
1,71 = 0.1,7p = 0.05, Tipiy = 0.5, T = 0.1.

A further possibility would be to extend our method to
isobaric or isothermal-isobaric ensembles [2,46—48], where
the system not only exchanges heat with the thermostat but
also volume and work with the barostat. For a Lennard-Jones
gas one could study phase transitions and the formation of
clusters.

In a different approach we envisage to adapt our scheme
to the Nosé-Hoover chain construction [13], which could be
interesting especially for thermostatting small or stiff systems.

As a final suggestion it appears interesting to examine our
fixed point method specifically in nonequilibrium conditions,
where it might be advantageous to control total energy relative
to just total kinetic energy.
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