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The efficiency for minimally nonlinear irreversible heat engines at any arbitrary power has been systematically
evaluated, and general lower and upper efficiency bounds under the tight coupling condition for different operating
regions have been proposed, which can be seen as the generalization of the bounds [ηC/2 < ηmax P < ηC/(2 − ηC)]
on efficiency at maximum power (ηmax P ), where ηC means the Carnot efficiency. We have also calculated the
universal bounds of the maximum gain in efficiency in different operating regions to give further insight into the
efficiency gain with the power away from the maximum power. In the region of higher loads (higher than the
load which corresponds to the maximum power), a small power loss away from the maximum power induces a
much larger gain in efficiency. As actual heat engines may not work at the maximum power condition, this paper
may contribute to operating actual heat engines more efficiently.
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I. INTRODUCTION

Optimization of real-life thermodynamic cycles has drawn
increasing attraction due to the depletion of fossil fuel and
energy saving. Heat engines are the main facilities to offer the
electricity and power for our everyday lives, which generally
operate between two heat reservoirs at temperatures Th and
Tc (Th > Tc). The maximum efficiency for a traditional heat
engine is constrained by the Carnot efficiency ηC = 1 − Tc/Th

according to the second law of thermodynamics [1]. However
in achieving the Carnot efficiency, the power output vanishes
because of the infinite cycle duration, which is unrealistic for
actual applications. Therefore, Carnot heat devices where the
processes are quasistatic to achieve the Carnot efficiency must
be speeded up to meet the actual demands. By considering
the finite cycle duration, Curzon-Ahlborn proposed the upper
bound of efficiency (ηCA = 1 − √

Tc/Th) for heat engines
working at the maximum power output condition [2]. It
carved a milestone for thermodynamics, that is finite time
thermodynamics, to which much effort has been devoted [3–5].

The maximum power output is often adopted as the main
criterion for optimizing actual heat engines, and many models
have been developed to obtain the general expression of the
efficiency at the maximum power (EMP) ηmax P , such as the en-
doreversible model [2], the low-dissipation model [6], and the
irreversible models based on the Onsager relation [7,8]. Based
on the low-dissipation model under asymmetric dissipation
limits, Esposito et al. [6] deduced the general lower and upper
EMP bounds [ηC/2 < ηmax P < ηC/(2 − ηC)], which are also
obtained through the minimally nonlinear irreversible heat
engines under the tight coupling condition [8]. The minimally
nonlinear irreversible model is a modification of the linear
irreversible model [7] by considering the power loss due to the
fraction losses. Izumida and Okuda [8] and Izumida et al. [9]
demonstrated that the model could describe the low-dissipation
models for both heat engines and refrigerators. The further
relation between the low-dissipation models and the minimally
nonlinear irreversible models under the symmetric dissipation
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condition has been analyzed in detail [10]. Later, based on
some improvements of the above models [11–15], much
literature has been focused on the general expression of the
EMP and its bounds, and useful results are provided.

Recently, increasing attention has been drawn to the
optimization of heat engines which do not operate at the
maximum power condition, instead, under the compromise
between the energy benefit and the power loss. To evaluate
this compromise, the � criterion [� = (2η − ηC)Q̇h] and
ecological criterion (E = P − T0σ̇ ) have been proposed to
optimize actual heat engines [16,17], where Q̇h is the heat
absorbed, P is the power output, T0 is the environmental
temperature, and σ̇ is the entropy production rate. Under
these criteria, the general upper and lower bounds on effi-
ciency have been specifically investigated through different
models [10,18–21]. In addition, as mentioned in previous
literature [22], the actual thermal plants and heat engines
should run in a regime with slightly smaller power than the
maximum power, yet at a larger efficiency than the EMP.
Therefore, it is of great importance to study the efficiency
of heat engines at arbitrary power output. The first steps in
this direction were performed in Refs. [23–27]. In the present
paper, we first introduce the model of minimally nonlinear heat
engines in Sec. II and then systemically discuss the efficiency
and relative gain in efficiency at any arbitrary power output
for minimally nonlinear heat engines in Secs. III and IV,
respectively. The general efficiency bounds and the bounds
for the relative gain in efficiency at any arbitrary power output
have been proposed under the tight coupling condition, and
some discussions under the nontight situations have also been
presented. Finally, in Sec. V, some important conclusions are
drawn.

II. MINIMALLY NONLINEAR IRREVERSIBLE
HEAT ENGINES

For heat engines, a certain heat flux Q̇h is absorbed from the
hot reservoir (Th), and then some of which (Q̇c) is evacuated
to the cold reservoir (Tc) at the end of a cycle. Meanwhile, the
power (P = Q̇h − Q̇c) is produced. After a cycle, the working
fluid in the heat engine returns to its initial state; therefore, its
entropy change per cycle is zero. The total entropy production
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rate σ̇ of the heat engine can be written as

σ̇ = −Q̇h

Th

+ Q̇c

Tc

= − P

Tc

+ Q̇h

(
1

Tc

− 1

Th

)
, (1)

where the dot denotes the quantity per unit time for simultane-
ous heat engines (working in a time-independent steady state)
or the quantity divided by the cycle time duration for sequential
heat engines (working in a time-periodic steady state). We
assume the system performs work W = Fx against an external
force F (e.g., a mechanical, chemical, or electrical force)
with thermodynamically conjugate variable x (displacement).
The corresponding thermodynamic force is X1 = F/Tc. The
thermodynamic flux is J1 = ẋ; the dot refers to the time
derivative. Therefore ẋ can be interpreted as the velocity to
move the external load. This treatment is widely adopted in
the previous literature [7,8]. The power can be rewritten as
P = −F ẋ = −J1X1Tc; the other thermodynamic force and
its conjugate flux can be defined as X2 = 1/Tc − 1/Th and
J2 = Q̇h, respectively. In linear irreversible heat engines, the
relations of the thermodynamic fluxes and forces are governed
by the linear relations [7]. By adding a nonlinear term to
the linear relations to consider the power loss due to the
fraction losses, the minimally nonlinear irreversible model was
proposed, and the extended Onsager relations that describe the
heat engines read [8]

J1 = L1X1 + L12X2, (2)

J2 = L21X1 + L22X2 − γhJ
2
1 . (3)

Comparing to the linear irreversible model, the addition
of a new quadratic nonlinear term can be seen as a natural
extension of the linear irreversible heat engine. Here we
assume the dissipation is still weak and does not make the
processes far from the equilibrium that is to say the model is
still in the near equilibrium state. Hence the characteristics of
the Onsager coefficients in Refs. [7,28] still hold in Eqs. (2)
and (3). Hence the Onsager coefficients (Lij ) with the reci-
procity L12 = L21 satisfy the relations L11 � 0, L22 � 0, and
L11L22 − L12L21 � 0. The nonlinear term −γhJ

2
1 indicates

part of the power loss due to the fraction losses is transformed
into the heat and is then transferred to the hot reservoir, where
γh denotes its strength (γh > 0). The heat evacuated to the cold
reservoir can be calculated as

Q̇c = Q̇h − P = Q̇h + J1X1Tc ≡ J3. (4)

According to Eq. (2), Eqs. (3) and (4) can be rewritten as

J2 = L21

L11
J1 + L22(1 − q2)X2 + γcJ

2
1 , (5)

J3 = L21

L11

Tc

Th

J1 + L22(1 − q2)X2 + γcJ
2
1 , (6)

where q = L12/
√

L11L22 is the dimensionless coupling
strength (|q| � 1 [7]). Equation (5) shows that the heat ab-
sorbed Q̇h depends on J1. As P = −J1X1Tc, J1 is linked to the
power. The fact that Q̇h depends on J1 means the heat absorbed
by the heat engine has a relation with the power output,
which is common in our everyday life, such as the electricity
generation in the thermal power plant. The nonlinear term

γcJ
2
1 , characterizes part of the power loss due to the fraction

losses, is transformed into the heat and is then transferred
to the cold reservoirs, where γc = Tc/L11 − γh and denotes
its strength (γc > 0). The existence of the two nonlinear terms
results in the decrease in the heat absorbed by the working fluid
and the increase in the heat released to the cold reservoir. We
call the heat engine described by Eqs. (5) and (6) the minimally
nonlinear irreversible model. Minimally implies that we take
into account only the fraction losses (quadratic nonlinear
terms). Due to J 2

1 = x2
1 , the irreversibility takes in the form

of J 2
1 which has the dimension of energy. Quadratic nonlinear

terms represent the reduction of the mechanical energy that
can be seen as the friction losses, which are transformed to
the heat, and are then transferred to the heat reservoirs (hot
and cold reservoirs). The nonlinearity can be measured by
the friction torque of the rotating axis. Equations (5) and (6)
indicate the heat absorbed from the hot reservoir and released
to the cold reservoir, respectively. The term L22(1 − q2)X2

appears simultaneously in the above equations. And the power
[Eq. (7)] is not impacted by the term L22(1 − q2)X2. Therefore
L22(1 − q2)X2 means just the direct heat transfer from the hot
heat reservoir to the cold one [8], indicating a heat leakage
between the hot and the cold reservoirs. The coupling strength
can be interpreted as a quantity evaluating the heat leak from
the hot reservoir to the cold reservoir. When the couple strength
(q) equals 1, the heat leak does not exist. And q �= 1 means
the heat leak is considered.

The power can be rewritten as

P = L21

L11
ηCJ1 − Tc

L11
J 2

1 , (7)

and the efficiency is given by

η = P

Q̇h

=
L21
L11

ηCJ1 − Tc

L11
J 2

1
L21
L11

J1 + L22(1 − q2)X2 − γhJ
2
1

. (8)

For deriving the efficiency at the maximum power condi-
tion, the Onsager coefficients and the temperatures are fixed.
As shown in Eq. (7), the power only depends on the flux J1.
So we can maximize the power with respect to J1. By taking
the derivative of P with respect to J1, we let ∂P/∂J1 = 0 at
J1 = J1,max P . Furthermore, the second derivative of P with
respect to J1 at J1 = J1,max P satisfies ∂2P/∂J1

2 < 0, which
means P achieves its maximum value at J1,max P . Then, we
have

J1,max P = L21ηC

2TC

. (9)

Substituting Eq. (9) into Eq. (2) yields

X1,max P = − L21ηC

2L11TC

. (10)

To step further, we derive the maximum power output and
the corresponding efficiency,

Pmax = q2L22η
2
C

4TC

, (11)

ηmax P = ηC

2

q2

2 − q2
[
1 + ηC

2(1+γc/γh)
] . (12)
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To study the performance of heat engines operating beyond
the maximum power regime at an arbitrary P , the relative
deviation from the regime of maximum power δP and the
relative gain in efficiency δη can be defined as [25,29]

δP = P − Pmax

Pmax
, δη = η − ηmax P

ηmax P

, (13)

where −1 � δP � 0, which means any arbitrary power could
not surpass the maximum power.

After some algebra, the ratio of any arbitrary power and the
maximum power can be written as

P

Pmax
= −J1X1TC

−J1,max P X1,max P TC

=
(

2 − X1

X1,max P

)
X1

X1,max P

.

(14)

Similarly, the ratio of efficiency at any arbitrary power and
that corresponding to the maximum power can be written as

η

ηmax P

= P

Pmax

J2,max P

J2
=

(
2 − X1

X1,max P

)
X1

X1,max P

× 1 − q2
(

1
2 + A

)
1 − q2

[
1
2

X1
X1,max P

+ (
2 − X1

X1,max P

)2
A

] , (15)

where J2,max P represents the heat absorbed under the maxi-
mum power condition and A ≡ ηC

4(1+γc/γh) .
Equation (14) is independent of temperatures and γc/γh.

The temperatures and γc/γh in Eq. (15) determine the form of
A. As ηC < 1 and 0 < γc/γh < ∞, 0 < A < 1

4 . Therefore in
the range of 0 < X1/X1,max P < 2, η/ηmax P > 0. Further anal-
ysis reveals that η/ηmax P is a concave function of X1/X1,max P

when q2 < 1. Meanwhile η/ηmax P = 0 if X1/X1,max P = 2.
When q2 = 1, Eq. (15) reads

η

ηmax P

= X1

X1,max P

1
2 − A

1
2 − (

2 − X1
X1,max P

)
A

. (16)

Equation (16) is a monotonous increasing function with
X1/X1,max P . We can see that η/ηmax P �= 0 if X1/X1,max P �=
0. Furthermore, when X1/X1,max P = 1, the expression
η/ηmax P = 1 is recovered whether q2 = 1 or q2 �= 1. What
is more, the values of A do not impact the shape of the curve
of η/ηmax P with X1/X1,max P . Based on Eqs. (14) and (15),
the performance characteristics of the heat engines for one
special case (ηC = 0.2 and γc/γh = 1) are depicted in Fig. 1.
According to the aforementioned analysis, the selected case
can represent the general trend. As shown in Fig. 1 under
the tight coupling condition (q2 = 1) when the eternal force
is lower than X1,max P (X1 < X1,max P ), decreasing the power
from its maximal value reduces the engine efficiency. When
the external force is larger than X1,max P (X1 > X1,max P ), the
efficiency increases as the power decreases. Compared with
the results under the tight coupling condition, the presence of
nontight coupling strength (|q| < 1) decreases the efficiency
when the external force is larger than X1,max P , however, in-
creases the efficiency at lower external forces (X1 < X1,max P ).
Furthermore, it also brings an optimal external force leading
to the maximum efficiency, which is located in the region
of X1 > X1,max P , as the second terms in Eqs. (5) and (6)
indicate the heat leakage from the hot reservoir to the cold
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FIG. 1. The relation of relative power and efficiency with the
relative thermodynamic force with different coupling strengths where
the Carnot efficiency is 0.2 and the dissipation ratio (γc/γh) equals 1.

one, and it is often the case in the irreversible models with heat
leakage.

Furthermore, combining Eq. (13) and (14), we have

X1

X1,max P

= 1 ± √−δP , (17)

where the plus sign in the above equation corresponds to the
favorable case when the external force is increased and the
enhancement of efficiency occurs. The minus sign describes
the opposite branch. Furthermore, Eq. (15) can be rewritten
as

η

ηmax P

= (1+δP )
1 − q2

[
1
2 + ηC

4(1+γc/γh)
]

1 − q2
[ 1±√−δP

2 + (1∓√−δP )2

4(1+γc/γh) ηC

] . (18)

According to Eqs. (12) and (18), we have arrived at the
efficiency at any arbitrary power as the function of the relative
power loss (δP ),

η(P ) = ηC

4
(1+δP )

q2

1 − q2
[ 1±√−δP

2 + (1∓√−δP )2

4(1+γc/γh) ηC

] . (19)

III. EFFICIENCY BOUNDS UNDER THE TIGHT
COUPLING CONDITION

Under the tight coupling condition (q2 = 1), Eq. (19) can
be written as

η(P ) = ηC

2

1 ± √−δP

1 − 1∓√−δP

2(1+γc/γh)ηC

, (20)

where the plus sign corresponds to the region of enhanced
efficiency X1 > X1,max P ; the minus sign corresponds to the
region of lowered efficiency X1 < X1,max P .

According to Eq. (20), under the asymmetric dissipa-
tion limits γc/γh → ∞ and γc/γh → 0, we obtain the
lower and upper bounds on the efficiency at any finite
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η(P)-

η(P)+
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1,max Pη

X
1
>X

1,max P

δ P

η(P)
sym

FIG. 2. The efficiency bounds at any arbitrary power. The
efficiency under the symmetric dissipation condition also is plotted
based on Eq. (25) where the Carnot efficiency is 0.5.

power,

η(P )− = ηC

2
(1 ± √−δP ), (21)

η(P )+ = ηC

1 ± √−δP

2 − (1 ∓ √−δP )ηC

. (22)

The expressions in Eq. (21) have also been obtained
under the tight coupling condition for linear irreversible heat
engines [29]. In Ref. [29], they are the upper and lower bounds,
respectively, of the efficiency, which, however, are just the
lower bounds under different regions of external forces in the
present model.

To be more specific, in the region of X1 > X1,max P , the
efficiency at any arbitrary power is located as

ηC

2
(1+√ − δP ) < η(P )X1>X1,maxP

< ηC

1 + √ − δP

2 − (1 − √− δP )ηC

.

(23)

The expressions in Eq. (23) are also deduced through the
low-dissipation heat engines under the same region [22], which
coincides with the fact that the low-dissipation model can
be described by the minimally nonlinear model with tight
coupling strength [8,10].

Similarly, in the region of X1 < X1,max P , we have

ηC

2
(1 − √ − δP ) < η(P )X1<X1,max P

< ηC

1 − √−δP

2−(1 + √−δP )ηC

.

(24)

Furthermore, under the symmetric dissipation condition
γc/γh = 1, the efficiency is given by

η(Psym) = ηC

1 ± √−δP

2 − (1 ∓ √−δP )ηC/2
. (25)

The above efficiency bounds at any arbitrary power are
plotted in Fig. 2. In the region of X1 < X1,max P , as the
power increases (δP increases from −1 to 0), the upper and
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-0.44

δηX
1
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1,max P

X
1
>X

1,max P

FIG. 3. The relative gain in efficiency as a function of the
dissipation ratio where the Carnot efficiency is 0.5 and δP = −0.3.

lower bounds of the efficiency also increase, whose difference
also increases. In the region of X1 > X1,max P , the power
decreases away from the maximum power, but the efficiency
increases, and so do the upper and lower bounds of the
efficiency, however, whose difference decreases. When the
power vanishes, the efficiency turns out to be the Carnot
efficiency.

In addition, for δP → 0, Eqs. (23) and (24) become the
general efficiency bounds under the maximum power through
the low-dissipation and minimally nonlinear irreversible heat
engines under the asymmetric dissipation limits [6,8],

ηC

2
� ηmax P � ηC

2 − ηC

. (26)

According to Eq. (13), the relative gain in efficiency (δη) is

δη =
(±√−δP )

(
1 − ±√−δP

(1+γc/γh)

)
1 − 1∓√−δP

2(1+γc/γh)ηC

. (27)

Figure 3 displays the relative gain in efficiency as a function
of the dissipation ratio (γc/γh). According to Eq. (27), as
0 < ηC/(1 + γc/γh) < 1, the sign of δη depends on that of
±√−δP . A further derivative of δη with respect to γc/γh

shows that δη is a monotonic function with γc/γh at small
values of γc/γh then reaches a plateau at large γc/γh. When
γc/γh → ∞, δη → ±√−δP . Therefore, the cases selected
here can represent the trends. From Fig. 3, we can see that,
in the region with higher external loaders (X1 > X1,max P ), the
relative gain in efficiency achieves its minimum and maxi-
mum values at asymmetric dissipation limits γc/γh → 0 and
γc/γh → ∞, respectively. However in the region with lower
external loaders (X1 < X1,max P ), the relative gain in efficiency
achieves its minimum and maximum values at asymmetric
dissipation limits γc/γh → ∞ and γc/γh → 0, respectively.
Therefore under the asymmetric dissipation limits, Eq. (27) is
reduced to

δη = ±√−δP , at γc/γh → ∞, (28)

and

δη = 2(1 − ηC)(±√−δP )

2 − (1 ∓ √−δP )ηC

, at γc/γh → 0. (29)
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δ P

δη

X
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1,max P

X
1
>X

1,max P

FIG. 4. The bounds [Eqs. (30) and (31)] of the relative gain in
efficiency at any arbitrary power where the Carnot efficiency is 0.5.

To step further, we can arrive at the bounds of the relative
efficiency gain at any arbitrary power output,

2(1 − ηC)
√−δP

2 − (1 − √−δP )ηC

< δη <
√−δP , if X1 > X1,max P ,

(30)

− √−δP < δη <
2(1 − ηC)(−√−δP )

2 − (1 + √−δP )ηC

, if X1 < X1,max P .

(31)

The expressions in Eq. (30) also are deduced through the
low-dissipation heat engines [22]. Based on Eqs. (30) and (31),
the bounds for relative gain in efficiency at any arbitrary power
are plotted in Fig. 4. In the region of X1 < X1,maxP , as the
power increases (δP increases from −1 to 0), the relative
gain in efficiency increases, so the upper and lower bounds
also increase, meanwhile, whose difference first increases
then decreases. In the region of X1 > X1,max P , the power
decreases away from the maximum power, and the relative
gain in efficiency increases, however, the difference in the
upper and lower bounds increases. The bounds of the relative
gain in efficiency coincide at the maximum power condition,
i.e., δP → 0 where the derivative δη with δP does not exist.
It means that the gain in efficiency when working near the
maximum power region is much larger than the power loss
and that it is desirable to operate the heat engine at a slightly
lower power than at the maximum one in the region of
X1 > X1,max P where the engine attains significantly larger
efficiency enhancement.

IV. EFFICIENCY BOUNDS UNDER THE NONTIGHT
COUPLING CONDITIONS

According to Eq. (19), the efficiency at any arbitrary power
increases with increasing q2. When |q| �= 1, the existence
of the second terms in Eqs. (5) and (6) illustrates the heat
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0.3

0.4

δη(X
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1,max P
)

δη(X
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η
max P

η(X
1
<X

1,max P
)

η

η(X
1
>X

1,max P
)

q2

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

δη

FIG. 5. The efficiency and relative gain in efficiency under
different coupling strengths where the Carnot efficiency is 0.5,
δP = −0.2, and γc/γh = 1. In addition, the efficiency corresponding
to the maximum power is also plotted in this figure.

leakage from the hot reservoir to the cold one, which does not
impact the power output, however, decreases the efficiency.
As |q| � 1, the upper bound of the efficiency is established
for q2 = 1, that is, the tight coupling condition. Hence the
upper bound η(P )+ illustrated in Eq. (22) applies for all the
coupling conditions. For a given power output (δP = −0.2),
the efficiency and relative gain in efficiency under different
coupling strengths are presented in Fig. 5. The general
efficiency and the efficiency under the maximum power
condition both increase with increasing coupling strengths.
In the region with higher external loads of X1 > X1,max P , the
relative gain in efficiency increases, however, decreases in the
region with lower external loads of X1 < X1,max P . It indicates
that compared to a relative gain in energy, it is more appealing
to run the heat engine in the region with higher external loaders
of X1 > X1,max P under larger coupling strengths where we can
see a sharp gain in efficiency.

V. CONCLUSIONS

The universality of the efficiency under the maximum
power output has been extensively investigated. However
the actual heat engines may not work at the maximum
power condition [10,18,20] but rather in the regime with
slightly small power and considerably large efficiency, which
induces an urgency to study the efficiency bounds at some
given power output. In this paper, the efficiency bounds
of minimally nonlinear irreversible heat engines at arbitrary
power have systematically been researched. The lower and
upper efficiency bounds under the tight coupling condition
for different operating regions have been deduced. In order
to further illustrate the efficiency gain with the power away
from the maximum power, we calculated the bounds of the
maximum gain in efficiency in different operating regions.
Furthermore, under different coupling strengths, the universal
upper bound of the efficiency at any arbitrary power has been
proposed, and the relative gain in efficiency for the given power
output has been analyzed. In the region of higher loads, a small
power loss away from the maximum power induces a large
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gain in efficiency. Hence it is more favorable to operate the
heat engine in that region, which is a slight deviation from the
maximum power state to achieve a higher efficiency.

For quantum systems, a detailed study on thermoelectric
quantum heat engines under arbitrary power is presented in
Refs. [22,23], and the efficiency bound has been deduced,
which is η+ = ηC[1 − 0.478

√
(1 − ηC)(1 + δP )]. The upper

bound on efficiency equals Carnot efficiency at zero power
output but decays with increasing power output. Furthermore,
as a counterpart, the performance of refrigerators at a given
cooling power should also be analyzed to meet the actual
demand, and there exist such models describing refrigerators
as the general endoreversible model with nonisothermal

processes, the low-dissipation model, the minimally nonlin-
ear irreversible one, and even quantum refrigerators, etc.
[9,30–36], which offer the possibility to specifically investigate
the coefficient of performance of the refrigerator running at
any arbitrary cooling power, thus to provide a guidance for
efficiently running actual refrigerators.
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