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Solvent-mediated forces in critical fluids
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The effective interaction between two planar walls immersed in a fluid is investigated by use of density
functional theory in the supercritical region of the phase diagram. A hard core Yukawa model of fluid
is studied with special attention to the critical region. To achieve this goal a formulation of the weighted
density approximation coupled with the hierarchical reference theory, able to deal with critical long wavelength
fluctuations, is put forward and compared with other approaches. The effective interaction between the walls
is seen to change character on lowering the temperature: The strong oscillations induced by layering of the
molecules, typical of the depletion mechanism in hard core systems, are gradually smoothed and, close to the
critical point, a long range attractive tail emerges leading to a scaling form which agrees with the expectations
based on the critical Casimir effect. Strong corrections to scaling are seen to affect the results up to very small
reduced temperatures. By use of the Derjaguin approximation, this investigation has natural implications for the
aggregation of colloidal particles in critical solvents.
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I. INTRODUCTION

The concept of solvent-mediated interaction among col-
loidal particles provides an invaluable tool for the physical
understanding of the behavior of complex fluids. When two
hard nanoparticles are immersed in a molecular solvent, the
simple excluded volume constraint is enough to cause an
effective attraction between them driven by purely entropic
effects, as shown in the seminal work by Asakura and
Oosawa (AO) [1,2]. The depletion mechanism has been
extensively studied, mostly in hard sphere fluids [3,4], and
represents a very successful paradigm for the interpretation
of colloidal aggregation. According to the AO prediction,
which neglects correlations, the strength of attraction is
proportional to the fluid density and its range coincides with the
diameter of the solvent molecules. However, both numerical
simulations and liquid state theories proved that the effective
interaction acquires a remarkable structure when the density
of solvent molecules is increased, due to the presence of
coordination shells in liquids. Attractive interactions between
solvent molecules reduce particle accumulation near the walls
giving rise to smoother solvent-mediated forces [5]. In the
neighborhoods of the critical point of the fluid the critical
Casimir effect [6] is expected to give rise to long range tails
in the solvent-mediated attraction between colloidal particles:
The effective force between two bodies acquires the range
of the correlation length of the underlying critical solvent
and is described by a universal scaling law which depends
on a very limited number of features (e.g., the geometry of
the bodies, the boundary conditions at the colloidal surfaces,
the system dimensionality). This remarkable phenomenon has
been indeed experimentally observed by use of advanced
optical techniques in a lutidine solvent close to its critical
point [7]. Numerical simulations have been performed for two
representative models of solvent: a square-well fluid and a fluid
of hard spheres with three attractive patches. In both cases
the emergence of a long range attractive tail in the effective
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interaction between two large spheres immersed in the solvent
is clearly visible [8,9]. An enhanced rate of aggregation among
colloidal particles is expected to occur as a result of critical
Casimir effect, and indeed also this consequence has been
directly observed experimentally [10,11]. These investigations
suggest a novel way to control colloidal aggregation by tuning
the solvent temperature.

The critical Casimir effect is due to the confinement of order
parameter fluctuations induced by the presence of external
boundaries. As such, it governs the long range properties of
the effective interaction, while at short range excluded volume
effects are still present, providing the essential ingredient for
the occurrence of the depletion phenomenon. The interplay
between these two quite different physical mechanisms which
act at different length scales has not been deeply investi-
gated. Numerical simulations showed that, on approaching
the critical point, the effective force indeed loses the short
range oscillations due to the liquid layering near the surface
of the bodies and acquires a smooth attractive form [8,9]
but no theoretical study of this effect has been attempted
yet. More generally, a thorough investigation of the form
of solvent-mediated interactions in the whole phase diagram
of a correlated fluid has not been performed. Such a study
would clarify the emergence of the long range tails in the
effective interactions on approaching the critical region, as
well as the coexistence of the depletion mechanism, acting at
short distances, and the critical Casimir effect, governing the
physics at large distances.

In this paper we tackle this problem by examining the
solvent-mediated forces between two hard walls immersed
in a hard core Yukawa fluid. The theoretical investigation
is performed in the supercritical region in order to exclude
wetting phenomena, which deserve a separate analysis. Prelim-
inarily, we must choose the most appropriate theoretical tool
for such a study: A natural choice is density functional theory
(DFT), which proved accurate in the description of confined
fluids. However, no specific implementation of DFT has been
investigated in the critical region and most of the liquid state
theories, which provide the theoretical basis for the practical
formulation of DFT, give a poor description of the critical
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regime. In Sec. II we propose a weighted density approxima-
tion (WDA) especially designed for being accurate also near
the critical point. This theory is validated against other DFT
prescriptions as well as available numerical simulations in
several noncritical states. In Sec. III this approach is applied to
the critical region of a Yukawa fluid: The density profiles and
the solvent-mediated force between two walls are determined
by numerical minimization of the density functional. The
development of long range tails in both the density profile and
the effective force is quantitatively investigated, confirming the
trends already shown in simulations. In Sec. IV the universal
properties of the effective interaction in the critical region are
discussed. The emergence of scaling laws is investigated in
the critical and precritical regime. We also show that, within
our approximate DFT formulation, the critical Casimir scaling
function is deeply related to the universal bulk properties of
the critical fluid. A simple prescription for the theoretical
evaluation of the critical and off-critical Casimir scaling
function is compared to the numerical results and to available
simulations in Ising systems. Section V offers some final
comments and perspectives.

II. DENSITY FUNCTIONAL THEORY

The purpose of this work is the investigation of the
solvent-mediated interaction between two planar parallel walls
immersed in a classical fluid in a wide range of temperatures
and densities, including the critical region. In order to achieve
this goal we need an accurate description of the properties
of a confined fluid. The most successful theoretical ap-
proach to study inhomogeneous systems is density functional
theory [12]. Although alternative techniques, like integral
equations or scaled particle theory, have been proposed [13],
DFT is generally considered to be the most accurate and
versatile tool for dealing with inhomogeneous systems and has
been applied in several frameworks: from the study of fluids
in nanopores, to the structure of the liquid-vapor interface, to
the theory of freezing (see, e.g., [14]).

A. Weighted density approximation

According to Mermin’s extension [15] of the Hohenberg
and Kohn density functional theorem [16], the equilibrium
density profile ρ(r) of a confined fluid can be found by
minimizing a suitably defined density functional �[n(r)] at
fixed chemical potential μ and temperature T . �[n(r)] can be
conveniently expressed in terms of the external potential φ(r)
and the intrinsic free energy functional F[n(r)] as

�[n(r)] = F[n(r)] −
∫

d r n(r)[μ − φ(r)]. (1)

The intrinsic free energy functional is exactly known only in
the ideal gas limit

βF id[n(r)] =
∫

d r n(r){ln[�3n(r)] − 1} (2)

[here β = 1/(kBT ) and � is the thermal de Broglie wave-
length], while, in an interacting system, it is customary to
separate this contribution, splitting F[n(r)] as the sum of the

ideal and the excess term F ex[n(r)]:

F[n(r)] = F id[n(r)] + F ex[n(r)]. (3)

Several approximations for the excess part have been proposed
over the years for dealing with specific problems. Hard sphere
fluids are successfully described by Rosenfeld’s fundamental
measure theory (FMT) [17,18] also at bulk densities close
to the solid transition. Even if the FMT is widely used
and it its implementation is straightforward, at least for the
planar geometry, Rosenfeld’s approximation for the excess
free energy holds in principle only for fluids of purely
hard particles of any shape. Attractive contributions in the
interparticle potential are generally added as a mean field
perturbation to the reference hard sphere excess free energy
functional. However, such an approach gives only qualitative
predictions, particularly in the critical region, because it does
not take into account correlations arising from the attractive
tail of the potential. Also the weighted density approximations
(WDAs) by Tarazona [19] and Curtin and Ashcroft [20], whose
predictions of the density profile of the hard sphere fluid are
rather accurate, at least at moderate densities, include the
effects of an attractive tail in the potential only at the mean
field level. Furthermore, approaches based on a truncation of
the gradient expansion of the excess free energy functional,
such as the square-gradient approximation, can describe only
the slowly varying part of the density profile but fail in dealing
with the short range structure close to the wall.

In order to describe the microscopic properties of the
solvent-mediated forces in the whole phase diagram of
a fluid, including the liquid-vapor transition, we need an
approximation of the excess free energy functional which,
in the uniform limit, provides an accurate description of the
homogeneous fluid both in the dense and in the critical regime.
Unfortunately such an implementation of DFT has not been
devised yet. A WDA-based approximation for the excess free
energy functional based on the hierarchical reference theory
of fluids [21] will now be introduced.

According to the weighted density approximation, the
excess free energy functional is expressed in terms of a
weighted density n̄(r) as

F ex[n(r)] =
∫

d r n(r)ψex(n̄(r)), (4)

where ψex(ρ) is the excess free energy per particle of the
homogeneous system evaluated at bulk density ρ and the
weighted density n̄(r) is written as a local average of the
density profile, in terms of an isotropic weight function w(r; n̂):

n̄(r) =
∫

d r ′n(r ′)w(|r − r ′|; n̂(r)). (5)

The weight function can be generally dependent on the local
value of an auxiliary reference density n̂(r) and has to satisfy
the normalization requirement∫

d r ′w(|r − r ′|; n̂(r)) = 1, ∀ r, (6)

to ensure that in the homogeneous limit the weighted density
coincides with the actual density of the fluid.

In order to get a reliable approximation for the excess free
energy functional we have to choose properly the two key
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ingredients which characterize our WDA ansatz, namely the
homogeneous free energy ψex and the weight function w(r; n̂).
The only available microscopic liquid state theory which is
able to account both for noncritical and critical properties
of a homogeneous fluid is the hierarchical reference theory
(HRT) [21], which will be therefore adopted in this work for
the evaluation of the excess free energy ψex of the uniform
fluid.

Although the general formalism of HRT can be applied to
fluids and mixtures with arbitrary pair interactions, quantitative
results for specific models require the closure of the exact
HRT equations by introducing some approximation. A closure
which proved remarkably accurate has been implemented in
the case of a hard core Yukawa (HCY) fluid [22], because the
resulting HRT equations considerably simplify by use of the
known solution of the Ornstein-Zernike equation available for
this interaction. The HCY potential is defined as the sum of a
pure hard core term of diameter σ and an attractive Yukawa
tail of inverse range ζ :

vY(r) = −εσ
e−ζ (r−σ )

r
, r � σ, (7)

where the parameter ε, which defines the energy scale, is
positive. In the following we will investigate this model taking
σ and ε/kB as the units of length and temperature, respectively.

Having established the form of our excess functional in the
homogeneous limit, we proceed with the explicit definition
of F ex[n(r)] for general density profiles. We first focus our
attention on the effects of the attractive part of the potential.
It is well known that its main contribution to the internal
energy is given by the Hartree term: this circumstance has
been extensively recognized in the previous treatments, where
attractive interactions were included just through such a
contribution. We are therefore led to isolate this term in the
excess free energy, by writing

F ex[n(r)] = F ex
R [n(r)] + F ex

H [n(r)], (8)

where the Hartree contribution is given by

F ex
H [n(r)] = 1

2

∫
d r ′

∫
d r ′′n(r ′)vY(|r ′ − r ′′|)n(r ′′), (9)

whereas the reference term F ex
R [n(r)], defined by Eq. (8),

contains both the entropic contribution to the free energy,
arising from hard core repulsion, and the correlations induced
by the attractive interaction. Our choice is then to use WDA
to represent only the entropy-correlation part of the intrinsic
free energy functional, retaining the exact description of the
Hartree energy:

F ex
R [n(r)] =

∫
d r n(r)ψex

R (n̄(r)), (10)

where

ψex
R (ρ) = ψex(ρ) − ρ

2

∫
d r vY(r). (11)

The form of the weight function can be determined following
the strategy put forward by Tarazona [19], by requiring that
the two-particle direct correlation function reduces, in the
homogeneous limit, to the known form of the underlying bulk

liquid state theory which, in our case, is the direct correlation
function c(r,ρ) predicted by HRT:

−β
δ2F ex

R [n]

δn(r)δn(r ′)

∣∣∣∣
n(r)=ρb

= c(|r − r ′|; ρb) + β vY(|r − r ′|)

≡ cR(|r − r ′|; ρb), (12)

where the last equality is a definition. This constraint can
be fulfilled only by a density-dependent weight function.
In a previous work Curtin and Ashcroft [20] proposed that
the weight function should depend on the local value of the
weighted density itself, i.e., n̂(r) = n̄(r). Unfortunately, even
for a purely repulsive hard sphere system, this hypothesis
leads to difficulties in the solution of the nonlinear differential
equation for the weight function [58] which must be imposed
in order to implement the constraint (12). This problem can be
overcome choosing a position-independent auxiliary density
n̂(r), as suggested by Leidl and Wagner [23]. In our application
of DFT to the description of confined systems, we assume that
the auxiliary density actually coincides with the homogeneous
density at the same chemical potential (also referred to as bulk
density); i.e., we set

n̂(r) = ρb. (13)

It is straightforward to obtain from Eq. (12) an algebraic
equation for the Fourier transform of the weight function:

βρb

∂2ψex
R

∂ρ2

∣∣∣∣
ρb

w2(q; ρb) + 2β
∂ψex

R

∂ρ

∣∣∣∣
ρb

w(q; ρb)

+ cR
(
q; ρb

) = 0, (14)

which, at least in the cases examined in this work, always
admits real solutions. The physical root can be determined
enforcing the normalization condition (6), recalling that
the compressibility sum rule, satisfied by the HRT direct
correlation function, requires

cR(0; ρ) =
∫

d r cR(r; ρ) = −2β
∂ψex

R

∂ρ
− βρ

∂2ψex
R

∂ρ2
. (15)

As in other implementations of WDA, the range of the
weight function always remains comparable to the size of the
molecules. This feature is preserved also in the critical region,
as shown in Fig. 1.

Once the intrinsic density functional has been determined,
the approximate equilibrium properties, such as the density
profile ρ(r) and the grand canonical potential �[ρ(r)], can be
obtained minimizing the functional (1) at fixed temperature
and chemical potential. In a HCY fluid, the value of the
chemical potential is related to the bulk density by

μ = 1

β
ln ρb + ψex

R (ρb) + ρb

dψex
R

dρ

∣∣∣∣
ρb

− 4π
ζ + 1

ζ 2
ρb. (16)

A central quantity for the present investigation is the force
acting on the two planar hard walls in the HCY fluid. In this
geometry, symmetry requires that all the local properties may
depend on the single coordinate z, orthogonal to the two plates,
placed at z = 0 and z = L, respectively. Remarkably, if the
wall separation h is greater than σ , the force per unit surface
f acting on the plates, sometimes called solvation force, can
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FIG. 1. Real space weight function at two values of bulk
density [(a) ρbσ

3 = 0.3154, (b) ρbσ
3 = 0.6] for three values of the

temperature. One state shown here (ρbσ
3 = 0.3154, T = 1.21354) is

very close to the critical point.

be expressed as a pressure difference [24]:

f (L; T ,μ) = − ∂

∂L

(
�(L)[ρ(z)]

�

)∣∣∣∣
T ,μ

− pb(T ,μ), (17)

where �(L)[ρ(z)]/� is the grand canonical potential per unit
surface of the fluid confined in the region [0,L], determined
by the minimization of the approximated grand canonical
functional at fixed (μ,T ), and pb(μ,T ) is the pressure of
the fluid at the same values of temperature T and chemical
potential μ = μ(ρb,T ). On the other hand, when L < σ there
are no particles between the walls and the attractive force
per unit surface acting on the walls arises uniquely from the
presence of the fluid in the regions z < 0 and z > L: The first
term in Eq. (17) vanishes and the force is given by

f (L; T ,μ) = −pb(T ,μ). (18)

The solvation force f defined above is a difference of pressures
and goes to zero in the limit L → ∞. By means of standard
functional identities it is possible to express, without any
further approximation, the derivative of the grand potential
per unit surface in terms of the contact density:

ρ(L)
w ≡ lim

δ→0+
ρ(L − σ/2 − δ) = lim

δ→0+
ρ(σ/2 + δ), (19)

and the solvation force can be finally written as [25]

f (L; T ,μ) = kBT ρ(L)
w − pb(T ,μ). (20)

We also remark that this version of WDA exactly satisfies the
contact value theorem [26]

βpb(T ,μ) = lim
L→∞

ρ(L)
w , (21)

leading to the more suggestive identity

βf (L; T ,μ) = ρ(L)
w − ρ(∞)

w . (22)

The above results show that, in order to obtain the force
acting on the walls, we just need to perform the minimization

of the functional in the region [0,L] in order to evaluate the
contact density ρ(L)

c . The minimization has been be carried out
by a simple iterative (Picard) method, taking advantage of the
exact implicit relation for the approximate equilibrium density
profile ρ(z) given by

ρ(z) = exp [−β(u(z) − μ)], (23)

where the potential of mean force u(z) is defined as

u(z) = δF ex
R [n]

δn(r)

∣∣∣∣
ρ(z)

+
∫

d r ′ρ(z′)vY(|r − r ′|). (24)

A spatial step size �z = 1.5 × 10−2σ has been generally used
in the numerical minimization, while for bulk densities ρbσ

3 >

0.7, and close to the critical point �z has been reduced up to
two orders of magnitude. Typically, up to few thousand Picard
iterations were necessary to achieve a precision of one part in
107 for the density profile and one part in 1011 in the grand
potential.

B. Validation of the method

The minimization of the previously defined grand canonical
functional allows us to evaluate the equilibrium properties of
the confined fluid. Within this approach, the relevant quantities
can be found at every temperature and bulk density of interest,
also in the vicinity and below the critical point of the HCY
fluid. Most of the calculations refer to a Yukawa fluid with
range ζσ = 1.8, where several simulation results are available.
We performed minimizations of the functional for values of
the temperature T above the critical point (T > Tc ∼ 1.21353)
and bulk reduced densities ρbσ

3 up to 0.85.
In the high temperature limit our model reduces to a

hard sphere fluid, whose properties have been extensively
investigated by numerical simulations. Figure 2 shows the
density profiles ρ(z) of a hard sphere fluid near a hard wall
at two different values of ρb. The agreement of the WDA
prediction with the Monte Carlo (MC) data of Ref. [27] is
very good up to reduced densities of the order of 0.6, while
at higher values the phase of oscillations in the density profile
is correctly captured, although a slight underestimation of
the peak value is observed. The comparison of our density
profiles with those predicted by the “White Bear” version of
the FMT [28] shows, as expected, that Rosenfeld’s theory gives
more accurate estimates of the oscillation peaks, particularly
at high density.

When the temperature is decreased the contribution of
the Yukawa tail to the density profile becomes relevant.
We compared the density profile obtained within our DFT
approximation with the MC simulation data for ζσ = 1.8 at
temperature T = 2 and for ζσ = 3 at T = 1.004. Figure 3
shows that the WDA estimate is remarkably accurate at
reduced densities 0.4 and 0.5; small deviations from the MC
simulation data appear at reduced density 0.7. We note that
at ρbσ

3 = 0.7 the contact reduced density is overestimated by
about 0.2 with respect to simulation data, even if the contact
theorem is verified with a relative error of the order of 10−5.
This disagreement in the contact value is due to different
estimates of the grand canonical potential per unit volume
of the homogeneous fluid and it is compatible with the the
spread in the values of the bulk pressure obtained within
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FIG. 2. Density profiles ρ(z) for a hard sphere fluid between
two hard walls (distance L = 16σ ) at different values of the bulk
reduced density ρbσ

3. MC simulation data (symbols) are taken from
Ref. [27]. We have obtained the FMT density profiles (lines) from
the minimization of the approximated FMT-WB functional [28].
To enhance visual clarity the density profiles at ρbσ

3 = 0.715 and
ρbσ

3 = 0.813 are shifted upward by 0.4 and 0.8, respectively.

different simulation techniques [29]. In panel (a) of Fig. 4 we
compare our results for the density profile of the HCY fluid
characterized by ζσ = 3 with the recent MC simulations from
Ref. [32]. This figure shows that at relatively low densities the
agreement between our approximation and MC predictions is
remarkable also for attractive potentials of shorter range. In
particular we predict accurately the kink in the density profile
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FIG. 3. Density profile ρ(z) of a Yukawa hard sphere fluid (ζσ =
1.8) at reduced temperature T = 2 confined between two hard walls
at different values of bulk reduced density ρbσ

3. Lines represent the
predictions of the present WDA. Points are MC data from Ref. [30]
(reduced density 0.7) and Ref. [31] (reduced density 0.4 and 0.5).
The distance between the walls is 10σ .
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FIG. 4. (a) Density profile ρ(z) of a HCY fluid at a single
hard wall (ζσ = 3) for bulk reduced density ρbσ

3 = 0.191 and
temperature T = 1.004. Lines represent the predictions of the present
WDA. Points are MC data from Ref. [32]. (b) Force per unit surface
acting between two infinite parallel hard walls immersed in a HCY
fluid (ζσ = 3) in the same thermodynamic state as panel (a). Lines are
the predictions of the WDA from Eq. (20), whereas points represent
the MD simulation of Ref. [32].

at ρbσ
3 = 0.191, which is only qualitatively reproduced within

mean field approximation [32].
The minimization of the grand canonical functional pro-

vides both the value of the contact density ρ(L)
w and of the grand

free energy. It is therefore possible to obtain the depletion force
either by calculating the derivative with respect to L of the
grand potential, as in Eq. (17), or by making use of Eq. (20).
The consistency between the two estimates is a good check for
the accuracy of the numerical procedure. To give an example,
for a hard sphere fluid, the relative difference between the two
results is less than 0.01% if the absolute value of the force
per unit surface and kBT is larger than 10−6. Nonetheless at
smaller values of the force the result obtained by differentiation
of the grand free energy is less stable, due to errors introduced
by the discretization.

The solvent-mediated force acting on two parallel hard
walls immersed in a hard sphere fluid is compared with the
Monte Carlo data of Wertheim et al. [33] as well as the
predictions based on FMT in Fig. 5, showing a nice agreement
also at relatively high densities. At reduced density 0.2873 the
force maximum per unit surface is of the order of kBT/σ 3,
and the oscillations due to the packing of the hard spheres are
damped within two or three diameters. Furthermore, at this
value of the reduced density, a small deviation between WDA
and FMT is present only at the first minimum. At reduced
density 0.6 the force at distances of the order of the hard sphere
diameter σ is a hundred times larger than at ρbσ

3 = 0.2873.
Even this feature is well reproduced by both WDA and FMT,
as can be seen in the inset. The strong oscillating behavior of
the MC data is captured by WDA with a correct phase, even
if the peak values are a little underestimated, whereas FMT
behaves considerably better.
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FIG. 5. Force per unit surface and kBT between two infinite
planar hard walls immersed in a fluid of hard spheres of diameter
σ for two values of the bulk reduced density: (a) ρbσ

3 = 0.2873, (b)
ρbσ

3 = 0.6. The value of the force within the WDA approximation
has been obtained via Eq. (20). The FMT-WB result comes from the
minimization of the “White Bear” version of the FMT functional [28]
via Eq. (20). The MC data are taken from Ref. [33]. The inset
highlights the behavior of the force at ρbσ

3 = 0.6 at small distances.

The solvent-mediated force per unit area between two
walls in a HCY fluid has not been extensively investigated
by numerical simulations. In panel (b) of Fig. 4 we show a
comparison between our results and the Monte Carlo data of
Ref. [32] for a HCY fluid of inverse range ζσ = 3 at T = 1.004
and ρbσ

3 = 0.191. Even if the net force is quite small, our
prediction agrees very well with the numerical simulations at
all values of the wall separation. We stress that, particularly at
small distances, the WDA force is much more accurate than
any mean field perturbation method (see Ref. [32]).

The detailed comparisons of our DFT with both numerical
simulations and state-of-the-art theories allow us to conclude
that in the high temperature limit the present WDA is able
to correctly reproduce the density profile and the effective
interactions between the hard walls with a very satisfactory
accuracy up to reduced densities of about 0.5. Moreover, this
formulation of WDA appears to be the best available DFT for
a HCY fluid at finite temperature.

III. RESULTS

A. Slab geometry

We performed the minimization of the WDA density
functional at several values of temperatures and reduced bulk
densities for a HCY fluid of inverse range ζσ = 1.8 confined
between two hard walls. At high temperatures the system
behaves like a hard sphere fluid, whereas when the temperature
is decreased the contribution of the Yukawa tail becomes more
and more relevant, and the strongly oscillating character of
both the density profiles and the solvent-mediated force is
lost.
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FIG. 6. Density profile of a HCY fluid (ζσ = 1.8) at a single
hard wall at bulk reduced density ρbσ

3 = 0.5 and different values of
the temperature. The inset shows the same data, also including the
density profile at temperature T = 8 using a different scale.

Figure 6 shows the dependence of the density profile on
temperature at fixed bulk reduced density ρbσ

3 = 0.5. At
reduced temperature T = 8 the system behaves like a hard
sphere fluid. As the temperature is lowered towards its critical
value, the density profile gradually becomes monotonic losing
the oscillating features typical of hard spheres and the density
at contact assumes values four times lower than the bulk
density. The range of the perturbation produced by the wall
extends at larger and larger distances as the temperature
approaches Tc, giving rise to a region where a kind of drying
of the wall can be observed.

The attractive tail in the pair interaction of the HCY
fluid smoothes the density profile reducing the layering of
particles. As a consequence, the effective force between the
two walls loses the strongly repulsive peak present at z ∼ σ

when the interaction between the fluid particles is purely hard
sphere (see Fig. 5). Figure 7 shows the force per unit surface
between the walls for different values of the temperature
at the critical bulk reduced density ρcσ

3 = 0.3152. The
repulsive contribution to the interaction force, present at
T = 8, gradually disappears at lower temperatures and the
force becomes purely attractive and monotonic, confirming the
findings of the numerical simulations in a different model [8].
By approaching the critical temperature (Tc ∼ 1.21353) the
effective force becomes weaker and weaker at short distance,
as can be seen in the right panel of Fig. 7: its amplitude reduces
almost by a factor of 2 due to a 10% change in temperature.
However, a closer look to the long distance tail of the solvent
mediated force shows that its range indeed increases close to
the critical temperatures, as expected on the basis of scaling
arguments. However this occurs at very large separations
(L > 26σ for the data shown in the figure).

Figure 8 shows the force per unit surface between the walls
in different density regimes when the value of the temperature
is close to Tc. We note that when the bulk density is higher than
ρc the force is an order of magnitude larger than for ρb < ρc.
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FIG. 7. Force per unit surface acting between two hard walls
immersed in a HCY fluid (ζσ = 1.8) obtained from the minimization
of the WDA functional using Eq. (20) at ρbσ

3 = 0.3152 and different
values of the temperature.

The force is monotonic and purely attractive for all values of
the reduced density and its range grows near ρc, as expected.

In lattice fluid models the coexistence curve is symmetric
about the critical temperature and the critical isochore coin-
cides with the locus ρ(T ) of the maxima of the isothermal sus-
ceptibility. For such systems, according to the renormalization
group terminology, the path to the critical point orthogonal to
the relevant odd operator coincides with the critical isochore.
In a real fluid the coexistence curve is asymmetric about the
critical isochore. In this case a good approximation for the
same path is given by the line ρ̃(T ) in the phase diagram
defined as the locus of the points (ρ,T ) such as

ρ̃(T ) = max
ρ

{ρ χT }, (25)

where χT is the isothermal compressibility.
Figure 9 shows the density profile of the HCY fluid at a

hard wall along the line ρ̃(T ). Its behavior at distances larger
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FIG. 8. Force per unit surface acting between two hard walls
immersed in a HCY fluid (ζσ = 1.8) obtained from the minimization
of the WDA functional using Eq. (20) at T = 1.2155 and different
values of the reduced density.
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FIG. 9. Lines: Density profile of a HCY fluid (ζσ = 1.8) at
a single hard wall in the critical region. Here t = (T − Tc)/Tc.
Points: Fits of the density profiles according to Eq. (26) performed
at distances larger than three times the correlation length of the
homogeneous HCY fluid at the same temperature and bulk density.
ρb, A, and ξ are free fitting parameters and the results obtained for ρb

and ξ agree well with the bulk values of density and correlation length,
respectively (the accuracy is better than 1% for the bulk density and
5% for the correlation length). The bulk correlation lengths obtained
from the fitting procedure are ξ = 41.1σ,31.8σ,26.5σ,17.3σ,12.9σ ,
from the lowest to the highest reduced temperature. The inset shows
a magnification of the same density profiles at short distances.

than the bulk correlation length is well fitted by an exponential
of the form

ρ(z) = ρb + Ae−z/ξ , (26)

where ρb is the bulk density of the fluid, A is a negative
amplitude factor, and ξ is the bulk correlation length. This
exponential decay of the density profile is observed also if the
system is far from the critical region and is probably related
to the location in the bulk phase diagram of the point we
investigated with respect to the Fisher-Widom line [34,35].

Following the argument of Ref. [34], we expect that the
exponential long range behavior of the density profile reflects
an analogous exponential decay of the force between the two
walls. Provided we do not cross the Fisher-Widom line, this
decay should be present both far from the critical point and in
the critical region, where it agrees with the predictions of the
theory of the critical Casimir effect [36]:

βf (z) = f0e
−z/ξ . (27)

The exponential decay of the solvation force is indeed
confirmed by the exact solution of a two-dimensional [37]
Ising slab under symmetry breaking boundary conditions
and was observed in Monte Carlo simulations of three-
dimensional simple fluids [8,9]. Figure 10 shows the long
distance exponential decay of the force per unit surface and
kBT between two planar hard walls mediated by a HCY
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FIG. 10. Lines: Force per unit surface of a HCY fluid (ζσ = 1.8)
at a single hard wall along the line ρ̃(T ). Here t = (T − Tc)/Tc.
Points: Fits of the force according to Eq. (27) performed at distances
larger than four times the bulk correlation length of the homogeneous
HCY fluid at the same temperature and bulk reduced density. f0 and ξ

are free parameters in the fitting procedure. The result obtained for ξ

agrees well with the bulk value of the correlation length (the accuracy
of the fit is better than 3%). The bulk correlation lengths obtained
from the fitting procedure are ξ = 31.8σ,26.5σ,17.3σ,12.9σ,9.2σ ,
from the lowest to the highest reduced temperature. The inset shows
the force profile at short distance.

fluid along the critical line ρ̃(T ). The force obtained with
our approach is very well fitted by Eq. (27) at large distances
[z � ξ (ρb,T )], whereas at short distances, where depletion
effects become relevant, the solvent-mediated force, always
attractive, displays a plateau (see inset).

B. Effective interaction between spherical particles

The same WDA formalism previously introduced may be
generalized to other interesting geometries, in addition to
the planar one. Most importantly, it can be used to evaluate
the effective interaction between two spherical particles in a
solvent, with obvious applications to the study of aggregation
in colloidal suspensions.

The direct minimization of the DFT, although numerically
feasible, represents a task considerably more complex than
in planar geometry. Therefore, in this first application of
the formalism, we have chosen to resort to the simple but
effective Derjaguin approximation [38], which allows us to
express the interaction between two convex objects starting
from the knowledge of the force between two planar walls,
independently of the physical origin of the force. According
to this approximation, the force FD between two spheres of
radius R can be written as

FD(L) = πR

∫ +∞

L

dzf (z), (28)
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FIG. 11. Depletion potential per unit kBT between two hard
spheres in a fluid of smaller hard spheres (size ratio q = 0.1) at
bulk packing fraction η = π

6 ρb σ 3 equal to 0.2 (a) and 0.35 (b). MC
(points) and FMT predictions obtained with the insertion trick (purple
lines) are taken from Ref. [4]. The red line at η = 0.2 is obtained by
use of Derjaguin approximation starting from the solvation force
between two planar hard walls evaluated from the FMT-WB [28]
approximation. The green lines represent the depletion force obtained
within the Derjaguin approximation when the solvation force between
the walls is given by the present WDA approximation.

where L is the minimal surface-to-surface distance between the
sphere and f (z) is the force per unit surface between the two
walls at distance z. This approximation gives accurate results
provided L 	 R and if the interaction potential between the
two walls decays rapidly at large distances.

When the force between the walls is mediated by a hard
sphere fluid with particles of diameter σ it is possible to
show that Derjaguin’s expression is the best approximation
of the true depletion interaction without taking in account
curvature effects [39] and it is accurate in the limit of q 	 1,
where q = σ/2R is the size ratio. The limits of the Derjaguin
approximation when applied to depletion interactions is a
debated issue. Particularly, it is a matter of discussion the
size ratio at which Derjaguin’s theory starts to fail, and how
its accuracy depends on the concentration of depletant. In
Fig. 11 we compare the prediction for the depletion potential
βV (L) between two big hard spheres in a fluid of smaller hard
spheres obtained both by the Derjaguin approximation and MC
simulations at two different values of the bulk density of the
smaller particles. The predictions for the depletion potential
obtained by the Derjaguin approximation are accurate at q =
0.1 only at values of the packing fraction of the small spheres
lower than 0.25. At η = 0.35 the Derjaguin approximation
overestimates by about 2kBT both the contact value and the
first repulsive peak in the potential, while the oscillations at
larger values of distance are underestimated when compared
to MC data. The rather poor performance of the Derjaguin
approximation is probably due to the presence of a strong
repulsive peak in the solvation force between the two walls
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FIG. 12. Phase diagram of the HCY model (ζσ = 1.8) in the
(ρb,T ) plane. The HRT results for the coexistence curve [22] are
shown by a black line. Green dots represent the MC data from
Ref. [42]. Blue points show the aggregation boundary of two big hard
spheres [size ratio q = σ/(2R) = 0.1] predicted on the basis of our
WDA plus Derjaguin approximation and Noro-Frenkel criterion. The
dashed line connecting the points is a guide to the eye: aggregation
takes place on the right of this boundary. The inset shows the same
phase diagram in a wider density interval.

at z ∼ σ (see Fig. 5) which appears to be a peculiarity of the
slab geometry. We expect that, for smoother interwall effective
interactions, the agreement would be considerably better.

The results presented above show that the Derjaguin
approximation can be safely adopted if the size ratio between
the depletant and the colloid is sufficiently small and up to
moderate densities of depletant (i.e., q < 0.1 and ρbσ

3 < 0.4),
and we expect that similar considerations apply when the
depletant is a Yukawa hard core fluid. Within the limits of
validity of the Derjaguin approximation, we can determine the
solvent-mediated potential veff(r) between two hard spheres
of radius R immersed in a HCY fluid in order to examine the
phase stability of such a colloidal suspension.

According to Noro-Frenkel extended law of corresponding
states [40], fluids characterized by short ranged interaction
potentials obey the same equation of state, when expressed in
terms of reduced variables. In particular, it was observed that
the dimensionless second virial coefficient

B∗
2 (T ) = B2(T )

BHS
2

= 1 + 3

8R3

∫ ∞

2R

dr r2(1 − e−βveff (r)), (29)

where BHS
2 is the second virial coefficient of a hard sphere

system with particles of radius R, assumes a value of about
−1.6 at the critical point independently on the particular form
of the interaction and that its value remains constant in a
relatively large density range across the critical point [41]. It is
therefore possible to estimate the gas-liquid spinodal line for
a system of hard sphere colloidal particles dispersed in a HCY
fluid, by evaluating their reduced second virial coefficient. The
blue points in Fig. 12 identify the phase separation line of a HS
fluid induced by the presence of a depletant modeled as a HCY

fluid. The size ratio between the depletant and the guest HS
particles is q = 0.1. At high values of the reduced temperature
the phase separation occurs at reduced density of about 0.4, as
expected in the limit of HS depletant. When the temperature
decreases, the concentration of depletant needed to induce
phase separation decreases monotonically. At the depletant
critical temperature we observe phase separation at depletant
concentrations ρbσ

3 ∼ 0.15 much lower than the critical one.
This implies that at this value of the size ratio q, the phase
separation is not related to the presence of long range tails in
the effective force, which characterizes the critical region of
the solvent, but is still mainly due to the short range attraction
generated by the depletion mechanism.

We note that whenever a direct short range repulsion is
present between the colloidal particles, as for the case of
charged systems, the strong attraction due to depletion is
severely weakened and particle aggregation takes place at
considerably larger solvent densities. Instead, in the critical
region, the long range tails of the solvent-mediated (Casimir)
force is not effectively contrasted by the additional short
range repulsion. In extreme circumstances (i.e., when the
direct repulsion between particles is sufficiently strong),
ordinary depletion may be fully screened and phase separation
inhibited. However, aggregation is generally expected in a
small pocket within the critical region, due to the emergence
of long range Casimir forces. For repulsive wall-solvent
interactions, this pocket will be centered at solvent densities
larger than the critical one, due to the strong asymmetry of the
critical Casimir forces (see, e.g., Figs. 8 and 14).

IV. CRITICAL CASIMIR EFFECT

A. Force profiles

The aim of this section is to evaluate the solvent-mediated
interaction induced between two walls when the depletant is
in the critical regime. Thermal fluctuations in fluids occur on
a characteristic range, determined by the correlation length
ξ , which usually is comparable with the molecular diameter
or with the range of the interactions. When approaching a
second-order phase transition, the range of the fluctuations of
the order parameter (the particle density in the case of a simple
fluid) grows larger up to diverging at the critical point. In this
regime the effective force between two bodies immersed in the
critical fluid acquires a universal form and obeys scaling laws,
as many physical properties near criticality do.

In 1978 [6] Fisher and de Gennes first recognized that a
confinement of the critical fluctuations of the order parameter
gives rise to an universal long-ranged fluctuation-induced
interaction which they named the critical Casimir force.
According to the finite-size scaling approach, the universal
contribution to the force per unit surface FC acting between
two infinite plates confining a critical fluid can be written
as [43,44]

FC(L; t,h)

kBT
= 1

L3
�(±s, ± y), (30)

where L is the distance between the two walls. The upper sign
refers to the supercritical temperature (while the lower to the
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subcritical one) and the scaling variables (s,y)

s ≡ L

ξ
, y ≡ ah|t |−βδ (31)

are defined in terms of the two scaling fields

t = T − Tc

Tc

, h = μ − μc. (32)

Here ξ ∼ ξ±
0 t−ν is the bulk correlation length at h = 0, a is

a nonuniversal metric factor, and ν, β, and δ are the usual
critical exponents. The function �(·,·) is usually referred to
as the scaling function of the critical Casimir force in planar
geometry. This function is universal in the sense that it depends
only on the bulk universality class, on the boundary conditions
imposed at the confining surfaces, and on the geometry of
the system (which in this case is ∞2 × L). We remark that
there is no extra metric factor associated with L/ξ and that
there is a dependence on the sign of the field h because
boundary conditions at the walls break the bulk symmetry h →
−h. According to the theory of finite-size scaling, Eq. (30)
represents the asymptotic decay of the solvent-mediated force
as t,h → 0 and for L,ξ → ∞.

The bulk Yukawa fluid under investigation belongs to the
3D Ising universality class and the boundary conditions are
determined by the affinity of the wall surfaces with the fluid
particles: if the contact density is less than the bulk density the
boundary condition is of type −, otherwise of type +. In this
work we only deal with supercritical temperatures (t > 0) and
with symmetric (−,−) boundary conditions, which arise for
purely repulsive interactions between the fluid particles and
two identical confining hard walls.

The analysis of the critical Casimir force and of the
related universal scaling function � is a rather difficult
task both experimentally, for the small forces involved, and
theoretically, for the lack of an accurate description of critical
fluids in confined geometries. Most of the results present
in the literature deal with the temperature dependence of
the Casimir fluctuation induced interaction at zero magnetic
field. An indirect estimate of the scaling function for the
film geometry and the 3D Ising universality class, at h = 0
under (+,−) and (+,+) boundary conditions, was given in
Ref. [45,46] monitoring the thickness of a binary fluid film
at different temperatures near Tc. The first direct evaluation
of the critical Casimir force was performed in 2008 [7] for
a system consisting of a colloidal particle close to a wall
immersed in a binary mixture (sphere-plate geometry) of water
and lutidine at different compositions and for both the relevant
boundary conditions. This experiment, however, allowed one
to probe only the exponential tail of the scaling function. A MC
study of the solvent-mediated potential between two spherical
particles in a simple fluid along the critical isochore has been
performed in Refs. [8,9] with different boundary conditions.
However, the determination of the full Casimir scaling function
could not be obtained in the temperature range examined
in the simulations. Along the symmetry line (h = 0), more
precise estimates of the universal Casimir scaling functions for
the 3D Ising universality class and film geometry have been
obtained via MC simulations of the Ising model [47–49]. A few
theoretical approaches were devised to address this problem:
in addition to the mean field results [50], its is worthwhile
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FIG. 13. Finite-size estimates of the Casimir scaling function at
values of temperatures and density along the critical line defined
in Eq. (25) from the microscopic force obtained within the present
WDA approximation. The corresponding bulk correlation lengths are
ξ = 41.1σ,26.5σ,17.3σ,9.2σ , from the lowest to the highest reduced
temperature. The lines connecting the points are a guide to the eye.
The MC data are taken from Ref. [48] and refer to (−,−) boundary
conditions and the different sets correspond to different estimates of
the corrections to scaling.

mentioning the extended de Gennes–Fisher local functional
method [51,52] and a long wavelength analysis of density
functional theory [10,53]. The latter investigations have been
also extended away from the symmetry line (h �= 0) providing
predictions on the shape of the critical Casimir scaling function
in the off-critical case [53–55]. Monte Carlo simulations at
h �= 0 were recently performed in Ref. [56].

The WDA approach developed above allows the study
of this problem starting from the microscopic HCY fluid
model confined between two walls. According to the scaling
hypothesis, the effective force per unit surface between the two
walls FC should depend on the physical control parameters
T ,μ,L only through the combination (30), implying the
collapse of different data sets onto the same universal curve.
Figure 13 shows the scaling function obtained from indepen-
dent calculations at different temperatures along the previously
defined critical line ρ̃(t) (i.e., y = 0). Note that, even at reduced
temperature t = (T − Tc)/Tc as low as 10−3, our estimates
show a marked temperature dependence, and the data along
different isotherms do not collapse as we expected. At the
lowest temperature we investigated, a significant difference
between our prediction and the MC simulations of Ref. [48]
suggests the presence of strong corrections to scaling. We
also remark that the curves at the lowest temperatures develop
a kink at small values of L/ξ , due to the singular behavior
of the scaling function at L/ξ = 0. In fact, at any given
reduced temperature t �= 0, the quantity L3 FC tends to zero
as L/ξ → 0, forcing the finite-size estimate of the scaling
function to vanish. Figure 14 shows the scaling function at
fixed temperature near Tc for different values of the scaling
variable y = ah|t |−βδ , corresponding to different bulk reduced
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densities. The scaling function is always negative and a strong
asymmetry is evident between the curves at density above and
below ρc. For positive values of the scaling field h (i.e., ρ > ρc

in our case), the magnitude of the force becomes larger and
larger and the peak is shifted towards small values of L/ξ .

B. Long wavelength analysis

Although the direct numerical evaluation of the critical
Casimir scaling function predicted by this class of DFT is not
conclusive, due to severe corrections to scaling, an accurate
estimate of the asymptotic behavior can be obtained by a
long wavelength (LW) analysis of the DFT equations. In fact,
following Ref. [53] we note that

(1) the density profile ρ(z) displays reflection symmetry
about z = L

2 , limiting the range of interest to z ∈ [0,L
2 ];

(2) when the walls are far apart (L � σ ), the difference
between the density profile corresponding to a wall-to-wall
distance L and its single-wall limit, reached for L = ∞, is
significant only for z ∼ L

2 ;
(3) as a consequence, the effective force per unit surface

FC (hence the Casimir scaling function) just depends on the
long distance tail of the density profile, which is expected to
be a slowly varying function of the coordinate z.

Therefore our WDA intrinsic free energy functional can be
approximated by keeping only the lowest term in a gradient
expansion about the bulk density ρb:

βF[ρb + δn(z)]

�
= Lϕ(ρb) +

∫
dz

[
b

2

(
dδn(z)

dz

)2

+ϕ(ρb + δn(z)) − ϕ(ρb)

]
, (33)

where ϕ(ρ) is the free energy density in the bulk, times β.
This expression coincides with the long wavelength limit of
our WDA functional, the stiffness b being related to the range

of the direct correlation function in the homogeneous system
c(r,ρb):

−
∫

d r c(r; ρb)eiq·r −→ ∂2ϕ(ρb)

∂ρ2
b

+ bq2 + O(q4). (34)

In the presence of short range interactions, the direct corre-
lation function is analytic in q2 away from the critical point,
where it displays a q2−η singularity. However, within our ap-
proximate closure of the HRT equations, the critical exponent
η = 0 and analyticity is preserved also at criticality [22],
keeping the stiffness b finite in the whole phase diagram.
This implies that the long wavelength limit of the structure
factor of the homogeneous fluid follows the Orstein-Zernike
ansatz:

S(q) ∼ S(0)

1 + ξ 2q2
(35)

with

ρb S(0) =
[
∂2ϕ(ρ)

∂ρ2

]−1

(36)

and ξ 2 = ρ S(0) b. Close to the critical point, the HRT bulk
free energy density ϕ(ρ) acquires a scaling form:

ϕ(ρc + δρ) − ϕ(ρc) − βμ(ρc)δρ = tdν a11�(b1 δρ t−β),

(37)

where ρc is the critical density and μ(ρ) is the chemical
potential (the temperature dependence of these quantities
is understood), while a11 and b1 are nonuniversal metric
factors and t = (T − Tc)/Tc is the reduced temperature. In
the following it will be convenient to express the universal
quantities in terms of the scaling field x = b1 δρ t−β instead of
the previously defined variable y. Within our HRT closure, the
critical exponents are δ = 5, β = 0.332, ν = 0.664 in d = 3,
which agree within 10% with the accepted values. The metric
factors appearing in the scaling function are implicitly defined
by the requirement that �(x) has the following expansion at
small x [57]:

�(x) −→ x2

2!
+ x4

4!
+ O(x6). (38)

In Fig. 15 the asymptotic HRT scaling function �(x) is
shown together with a parametrization of the exact result
for the 3D Ising universality class. Although the two curves
are indistinguishable on this scale, calculations at different
reduced temperatures, also shown, suggest the presence of
important corrections to scaling.

The minimization of the long wavelength functional (33)
in slab geometry gives rise to a differential equation whose
solution allows us to evaluate the asymptotic decay of the
effective force between two hard walls in a critical fluid.
The derivation, already detailed in Ref. [53] and not repeated
here, provides a closed form for the critical Casimir scaling
function in terms of two universal quantities: the bulk free
energy scaling function �(x) and the universal amplitude
ratio g+

4 . Defining the auxiliary quantity σ (s,x) by the implicit
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FIG. 15. Scaling function for the free energy �(x) as predicted
by HRT compared with a parametrization of the exact result from
Ref. [57] (black curve). The red line, showing the HRT asymptotic
result, is identical to the exact result on the scale of the figure. A
few rescaled free energies obtained from the integration of the HRT
equations at different reduced temperatures are also shown. Inset:
Universal amplitude ratio g+

4 for a HCY fluid at the critical density
as a function of the reduced inverse correlation length (green points).
The usually accepted value [57] is shown by a blue triangle whereas
the red square represents the asymptotic HRT value.

relations

σ (s,x) = −�(x + u0) + �(x) + u0 � ′(x), (39)

s =
∫ ∞

u0

√
2 du√

σ (s,x) + �(x + u) − �(x) − u� ′(x)
, (40)

the critical Casimir scaling function in three dimensions is
given by

�(s,x) = s3

g+
4

σ (s,x). (41)

The universal amplitude ratio g+
4 is expressed in terms of the

nonuniversal metric factors previously introduced as

g+
4 = b3

1

√
a11b−3. (42)

Again, the evaluation of g+
4 from the HRT equations displays

severe correction to scaling in a HCY fluid, as shown in the
inset of Fig. 15. More importantly, the usually quoted “exact”
value [57] g+

4 ∼ 23.6 turns out to differ significantly from the
HRT prediction g+

4 ∼ 32.4.
The asymptotic study of the DFT equations allows us to

extract the critical Casimir scaling function just from bulk
quantities via Eqs. (39)–(41). It is then instructive to contrast
these predictions with the outcome of the direct minimization
of the HRT functional, already shown in Fig. 13. Such a
comparison can be found in Fig. 16, where the scaling
functions obtained from the microscopic DFT at a few reduced
temperatures t in the critical region are shown to agree
remarkably well with the predictions of the long wavelength
analysis, provided both the scaling function for the free energy
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FIG. 16. Critical Casimir scaling function evaluated at different
reduced temperatures. Points: Results from the direct minimization
of the microscopic WDA functional. Lines: Results from the long
wavelength analysis, starting from the universal quantities �(x) and
g+

4 evaluated at the same reduced temperature as the DFT calculation.
Black line: Asymptotic limit of the critical Casimir scaling function.
Points: Prediction of � from Monte Carlo simulations [48].

�(x) and the universal amplitude ratio g+
4 are consistently

evaluated at the same reduced temperature t .
The presence of strong corrections to scaling in both �(x)

and g+
4 , already highlighted, induces strong preasymptotic

effects in the critical Casimir scaling function which, at
reduced temperatures lower than 10−3, is still quite far from
its asymptotic limit. The main effect is due to the growth of
the amplitude ratio, which, as shown in Fig. 15, appears to
reach its universal value only extremely close to the critical
point, according to the prediction of HRT for the model of
critical fluid investigated here. We remark that, due to the
already quoted difference between the HRT estimate of the
universal amplitude ratio g+

4 and the value obtained via series
expansions, the critical Casimir scaling function predicted by
our DFT significantly differs from the one obtained in MC
simulations, as can be seen in Fig. 16.

V. CONCLUSIONS AND PERSPECTIVES

We presented a density functional, based on the weighted
density paradigm, able to describe classical inhomogeneous
fluids in a large portion of their phase diagram, critical point
included. This is the first attempt to describe the effects of
correlations induced by attractive interactions in confined
fluids. The theory is based on the description of the uniform
system provided by the hierarchical reference theory, one of
the few liquid state approaches able to cope with long range
density fluctuations. This technique, applied to the evaluation
of the effective interaction between two hard walls in a fluid,
allowed for the investigation of the crossover between a
depletion-like mechanism at high temperatures and the critical
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Casimir effect emerging near the critical point. Our method
does not rely on a long wavelength approximation and provides
a complete picture of the solvent-mediated force for any wall
separation, displaying the presence of important nonuniversal
contributions in the effective interaction at short distances,
even in the critical region. We believe that this DFT will be
useful in investigating other correlated systems, when density
fluctuations are expected to play an important role.

We showed that, at large separations, the solvent-mediated
force per unit surface between the walls decays exponentially
on the scale of the correlation length in the whole portion
of the phase diagram to the left of the Fisher-Widom line.
Such a behavior cannot be considered as a signature of the
onset of critical Casimir effect: only the product between the
amplitude of the long range exponential tail and the cube of
the correlation length is a genuine universal quantity.

Our microscopic approach allows for the determination
of the universal quantities characterizing the critical Casimir
effect, namely the scaling function �(s,y), both along the
critical isochore (y = 0) and in the off-critical regime. Strong
corrections to scaling have been observed in the HCY fluid we
investigated: The universal features appear to emerge only in a
narrow neighborhood of the critical point, at least in the model
we examined. It would be useful to compare this prediction
with numerical simulations for the HCY fluid model as well as
with theoretical investigations of other systems, like the Ising
model, where the correction to scaling may be weaker. These
studies will hopefully clarify the origin of the discrepancy
between the HRT estimate of the universal amplitude ratio g+

4
and the commonly accepted value.

The approach presented in this work allows for further
improvements. In our density functional, the ideal gas term
and the Hartree contribution to the internal energy have been
treated exactly, while the remaining entropy-correlation term
has been approximated by use of a weighted density trick.
The next step will be to treat the hard sphere term by the
fundamental measure theory, known to be very accurate in
dealing with excluded volume effects, limiting the weighted
density contribution only for the residual correlation term.
This adjustment is expected to increase the accuracy of
the theory at high density, without however modifying the
description of the universal properties of the critical Casimir
effect.

In this first application we just considered a planar ge-
ometry, whose implications for the phenomenon of colloidal
aggregation depend upon further assumptions, namely the
Derjaguin approximation, which however turns out to be
rather inaccurate when the two external bodies are not very
close. A natural further step will be to perform the functional
minimization in cylindrical geometry, appropriate for dealing
with two spherical particles thereby avoiding any wall-to-
sphere mapping.

Finally, a very interesting application of this formalism will
be the investigation of subcritical temperatures, where wetting
phenomena are expected close to the first order transition
boundary. The hierarchical reference theory of fluids provides
a consistent description of the full liquid-vapor transition line
and then it appears to be the natural starting point for the
development of a microscopic theory, beyond mean field, for
the study of phase coexistence near a wall.
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