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Stochastic disks that roll
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We study a model of rolling particles subject to stochastic fluctuations, which may be relevant in systems of
nano- or microscale particles where rolling is an approximation for strong static friction. We consider the simplest
possible nontrivial system: a linear polymer of three disks constrained to remain in contact and immersed in an
equilibrium heat bath so the internal angle of the polymer changes due to stochastic fluctuations. We compare two
cases: one where the disks can slide relative to each other and the other where they are constrained to roll, like gears.
Starting from the Langevin equations with arbitrary linear velocity constraints, we use formal homogenization
theory to derive the overdamped equations that describe the process in configuration space only. The resulting dy-
namics have the formal structure of a Brownian motion on a Riemannian or sub-Riemannian manifold, depending
on if the velocity constraints are holonomic or nonholonomic. We use this to compute the trimer’s equilibrium dis-
tribution with and without the rolling constraints. Surprisingly, the two distributions are different. We suggest two
possible interpretations of this result: either (i) dry friction (or other dissipative, nonequilibrium forces) changes
basic thermodynamic quantities like the free energy of a system, a statement that could be tested experimentally, or
(ii) as a lesson in modeling rolling or friction more generally as a velocity constraint when stochastic fluctuations
are present. In the latter case, we speculate there could be a “roughness” entropy whose inclusion as an effective
force could compensate the constraint and preserve classical Boltzmann statistics. Regardless of the interpretation,

our calculation shows the word “rolling” must be used with care when stochastic fluctuations are present.
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I. INTRODUCTION

Particles that live on the nano- or microscale commonly
have short-ranged interactions, so their surfaces come close
enough that surface frictional effects may be important. For
example, recent experiments and simulations have shown
that tangential frictional forces between rough and otherwise
stochastic particles are probably the origin of the shear-
thickening behavior of many materials [1,2]. Other studies
demonstrate that sticky tethers attached to particle surfaces
can change their dynamics [3,4]. Since one promising method
of creating colloids with programmable interactions is to coat
them with strands of DNA [5-8], which could impede their
relative sliding, this could have major implications for their
assembly pathways and hence structures that can be formed
by self-assembly. On these scales it is extremely difficult to
measure the particles’ rotational degrees of freedom, so one
must resort to indirect methods to determine whether tangential
frictional forces are present [9,10]. Therefore, it would be
highly desirable to find a simpler way to quantify these forces,
via macroscopic measurements of spatial positions only.

While the macroscopic effect of dry friction has been
studied in detail in granular systems [11-16], whose com-
ponents are large and typically athermal, it has rarely been
considered for small particles subject to thermal fluctuations,
except in simple one-dimensional models [17-21]. A starting
point would be to ignore the details of the friction, which
are not well understood [22,23], and consider the limit of
infinite friction: stochastic particles that roll relative to each
other when they are in contact. Rolling has been studied
in nonstochastic systems and is known to produce a wealth
of counterintuitive phenomena: a spinning top spontaneously
reverses its direction, a golf ball pops out of a hole without
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hitting the bottom, a dropped quarter spins infinitely quickly
in finite time [24-26]. Collectively, rolling particles have
different phase behaviors than those that slide [27]. Yet despite
their intriguing dynamics, rolling has been considered in
stochastic settings only for simple systems such as a rolling
ball or sled [28-30], or as a noisy relaxation of the rolling
constraint itself [31].

This paper studies a natural model of stochastic, rolling
particles, with the aim of determining how rolling could affect
quantities that are macroscopically measurable. It considers
a system whose dynamics can be worked out explicitly: a
polymer of three two-dimensional disks that are constrained
to roll relative to each other, like gears. Unlike traditional
gears, however, the disks can change their relative positions in
space. We start with the Langevin equations for the stochastic
dynamics combined with velocity constraints to model perfect
rolling, and from this calculate the equilibrium distribution of
the internal angle of the trimer. Surprisingly, the distributions
are different depending on if the velocity constraints are
included or not. If this is an accurate model of stochastic
particles interacting with infinitely strong friction, it suggests
that even finite friction could change the free energies of a
system of particles. Such a result can only hold if the friction
force causes the system to deviate from the predictions of
classical statistical mechanics, but would be possible to test
experimentally via macroscale measurements.

An outline is as follows. Section II describes the setup
and notation, including the full Langevin equations and
specific forms of the constraints for arbitrary collections
of disks. Section III describes the overdamped Langevin
dynamics. Section IV derives the equilibrium distributions for
a trimer of disks both with and without rolling constraints.
Section V discusses the results in a physical context. Section VI
concludes and speculates how this might apply to spheres,
whose configuration space is geometrically fundamentally
different.
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II. SETUP

We represent the disks as a vector x =
xD, x@ x® 6, 6,,6;) € R%, where each disk has three
coordinates representing the center of mass x) = (x;,y;) and
the overall internal rotation 0; relative to a fixed, external
coordinate system. We will call {x(}} | the “position”
variables because they describe the disks’ overall positions in
space, and we will call {Gi}?zl the “spin” variables because
they describe how much each disk has internally rotated,
or spun about an axis, like a gear fixed in place. The spin
variables are the ones that are usually not accessible by
macroscopic measurements. All vectors in this paper are
column vectors, though we write them inline for readability.
The disks are identical with unit diameters, and pairs (1,2)
and (2,3) are in contact. For each such pair (7, ) there are
two possible constraints: one requires the disks to be a fixed
distance apart so they are exactly touching, and another
requires the points in contact to move with the same relative
velocity. These each imply a constraint on the velocities (not
momenta), as

(x(i) _ x(j))()'c(i) _ X(j)) =0, (1)
(x(i) _ x(j))J-()'C(i) _ )'C(j)) — %(9[ 4 9]) (2)

We write (1,v)" = (—v,u). The second constraint comes from
noting the velocity on disk i of the point in contact with disk j
is ¥ + ;2 (x) — xD)L, and considering the component of
relative velocity that is perpendicular to x® — x| since the
component parallel to it is accounted for by the first constraint.
We call Eq. (1) the “bond constraints” and Eq. (2) the “rolling
constraints.” In addition, we constrain the center of mass to
the origin. The complete set of constraints can be written as

C(x)x =0, 3)

where C(x) € R™*" is a matrix whose rows are the coefficients
multiplying velocities in Eqs. (1) and (2). Here m =6 is
the number of constraints, and n =9 is the number of
configuration space variables.

We suppose the potential energy of the system is a smooth
function U(x), and the disks are immersed in a fluid or
other medium that provides a white noise forcing to the
momentum and a viscous damping that is linear in velocity.
We use the Langevin equations to model the dynamics and
assume the friction tensor I'(x) and forcing tensor o(x)
satisfy a fluctuation-dissipation relation oo 7 = 28~'T", where
B = (kgT)™' is the inverse of temperature T times the
Boltzmann constant. This ensures that the invariant measure
for the unconstrained system is the Boltzmann distribution:
e BU™ =54"Mi Here M is the mass matrix, which is diagonal
with entries equal to either the mass or moment of inertia of a
disk.

It should be noted that the Langevin equations do not
correctly describe the velocity correlations of particles im-
mersed in a fluid, even for large particles, because the
correlation times for the particles’ velocities and for the fluid’s
momentum fluctuations are of the same magnitude [32,33].
However, they do capture the correct static thermodynamic
behavior (at least without constraints), and they do lead to the
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correct overdamped equations. Since our goal is to obtain an
overdamped equation which involves restrictions on velocities,
and not to correctly describe the velocity correlations induced
by hydrodynamic interactions, we proceed with the Langevin
equations as a starting point from which we can impose
velocity constraints via mechanical principles.

To account for constraints, we apply d’Alembert’s princi-
ple, or the principle of virtual work. This requires that the
constraints do no work in a “virtual” move, namely one which
holds all variables fixed and takes a step in a tangent direction
consistent with the constraints. The constraints must therefore
be imposed by forces perpendicular to the allowable tangent
directions, which can be done using Lagrange multipliers [34].
This is the only principle available for arbitrary linear velocity
constraints, since variational principles are only valid when the
constraints are known to be holonomic [35]. The constrained
Langevin equations are

M3 +Tx =—-VU@x)+on(t)—CTx, 4)

combined with the constraints Eq. (3). In the above, n(t) is
a n-dimensional white noise, and A € R" are the Lagrange
multipliers that ensure the constraints are satisfied. The product
o (x)n can be interpreted in either the It6 or the Stratonovich
sense, since o(x) does not depend on X so it is of bounded
variation. The mass can be removed from the equations
by changing to mass-scaled variables (see Appendix A,
or Ref. [36]), so hereafter we set M = I. This is not a
nondimensionalization, but simply a convenient change of
variables, which can be inverted to put the mass back in at
any step in the subsequent analysis when desired.

III. OVERDAMPED DYNAMICS

The particles we aim to model have very short correlation
times for momentum, so they are effectively modeled by the
overdamped Langevin equations, which describe the dynamics
of the system in configuration space only. We derive these
overdamped equations by considering the limit of large viscous
friction and long timescales. In this section we sketch the
results; the detailed calculations are shown in Appendices B
and C.

First, we write Eq. (4) explicitly. The Lagrange multipliers
can be computed analytically by taking the time derivative of
Eq. (3) and substituting for X from Eq. (4) (see Appendix B).
The resulting equations are

¥4 PTx = —PVU(x)+ Pon(t)+CTG7IVC(@,%). (5)

The matrix P(x) is an orthogonal projection onto the comple-
ment to the row space of C(x), and G(x) is the Gram matrix
of the constraints:

P=I1-Cc'G7'c, G=ccT. (6)

Here and hereafter / is an identity matrix with dimensions
correct for the context. The final term in Eq. (5) is a vector with
components (VC(x)(x,x)); = Zi’j ;%‘jx,xj and represents
the extra acceleration due to the curvature of the constraints.
This shows the constrained dynamics are given by projecting
the original momentum equation onto the subspace of allowed,
unconstrained directions, plus a curvature-driven acceleration
term [37]. Again, it doesn’t matter if the projected force
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P(x)o(x)n(t) is interpreted in the Itd or Stratonovich sense
because x is of bounded variation.

Next, we consider the overdamped limit by letting I' —
I'/e and t — t /€, and performing formal homogenization on
the generator of Eq. (5) [38]. This is a standard technique
to obtain the overdamped Langevin equations asymptotically;
the novelty here is the arbitrary linear velocity constraints. The
result is weakly equivalent to the stochastic process x(¢) that
solves the Itd equation (see Appendix C for details):

i=-ThVU =B~ Y Pd;(Chi+apn. ()
i

Here I'p = PI'P, and FI, is its Moore-Penrose pseudoin-
verse [39] (see, e.g., Ref. [40]). The matrix 6p is any matrix
such that 5’]36'; = 2,3’1FL.

To highlight the fundamental ideas we will analyze Eq. (7)
in the simplest possible setup: constant friction and no long-
range potential energy, so I' = I and U(x) = 0. In this case
F; = P, so after a change of time scale t — t/(28) Eq. (7)
becomes

x=Px)on, (®)

where o denotes the Stratonovich product. The process x(z)
looks locally like a Brownian motion that can only move in a
subspace of its ambient space.

This process is well-understood mathematically when the
velocity constraints are holonomic, meaning they imply an
equal number of constraints in configuration space, i.e., on the
variables contained in x. In this case the process is constrained
to remain on a manifold M in configuration space, whose
dimension equals the rank of P(x) (which is an orthogonal
projection matrix onto the tangent space to M at each point
x). The process is actually a Brownian motion on M, which
is by definition a process whose generator is the Laplace-
Beltrami operator on M [41,42]. Briefly, to see why, note that
the generator of Eq. (8) is

Lu = L TI[PV(PVu)], 9)

where Tr(AB) = A:B =}, ; A;;B;; for matrices A,B, and
V applied to a vector expands each element into a row so that
(Vv);; = djv;. Here u may be thought of as a function on M,
even though the gradient operator in £ acts on all directions in
the ambient space. Then, PVu can be shown to equal gradu
where grad is the gradient operator on M, and Tr(P Vv) can
be shown to equal divv, where div is the divergence operator
on M (see, e.g., Refs. [36,37,43]). Therefore, for holonomic
constraints Lu = %divgradu, which is the Laplace-Beltrami
operator on M.

For nonholonomic constraints there is no similarly canoni-
cal interpretation of £ of the form Eq. (9) at the present time,
as we discuss briefly in the conclusion.

For disks, the bond constraints Eq. (1) are holonomic since
they imply the distances between pairs in contact are con-
served, which is a constraint in configuration space. The con-
straints on the center of mass are also holonomic. The rolling
constraints Eq. (2) are not immediately seen to be holonomic,
since they cannot be integrated in time directly. Although one
can show they are indeed holonomic as we discuss briefly
in Sec. IV B 2 and Appendix E, we will proceed without this
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knowledge, to show that one can still work with Eq. (8) without
knowing the geometric structure of the constraints.

IV. EQUILIBRIUM DISTRIBUTION
A. Result

Next we ask what is the equilibrium distribution for a trimer
in position space with and without the rolling constraints. We
will show these have densities proportional to, respectively,

Tslide (@) X \/l + 2sin? w\/l + 2 cos? w,
(10)

ol (@) o V5 + 2sin? wy/13 + 2 cos? w,

where 2w is the internal angle of the trimer. The domainis w €
[t /6,57 /6] if the spheres cannot interpenetrate, and w € [0, ]
if they can (as is allowed in simulations). These calculations
are performed for the simplest setup described by Eq. (8), but
we expect them to be valid in more general settings [with a
suitable modification to account for the potential energy U (x)].

Figure 2 plots the two distributions. The rolling constraints
favor more open configurations than purely bond constraints.
This figure also plots the empirical histograms obtained
by numerically simulating the Langevin Eqs. (4) directly
(see Appendix D for methods); the agreement verifies our
calculations. The small discrepancies are thought to arise
partly from statistical fluctuations, and, in the case of rolling
constraints, because the numerical method does not conserve
the additional implied constraints in configuration space (see
Appendix E).

The distributions above are for “hard” constraints, i.e.,
the constraints are satisfied exactly. In a physical system
constraints are often an approximation for a concentration of
probability near a lower-dimensional manifold, but the system
can wiggle around near this: the constraints are “soft.” This
happens, for example, when constraints of the form ¢;(x) = z
(where i indexes the constraints) are imposed by a stiff
potential energy, such as U(x) = e~ !|g;(x) — z|* with € < 1.
This wiggle room changes the equilibrium density, and in the
limit of infinite stiffness it is not the same as imposing hard
constraints; this is the well-known “paradox” of hard versus
soft constraints in statistical mechanics that has been discussed
many times in the literature [e.g., 44,45]. The distributions for
infinitely stiff soft constraints can be obtained from those for
hard ones and we will show they are

Tslide,vibr(@) o 1,

©) 542sin2w [1342cos?w (11
Troll,vibrl®) X . .
oll-vib 14+2sin2w\ 1+2cos?w

These are the distributions one would typically compare to
experimentally; for example, similarly obtained distributions
accurately predict the equilibrium probabilities of colloidal
clusters [46]. The distribution when disks can slide is constant
(see Fig. 2), as one would expect since each outer disk should
be uniformly distributed on the surface of the central disk.

052112-3



MIRANDA HOLMES-CERFON

FIG. 1. A trimer of disks, constrained to preserve the distances
between disk pairs 1-2, 2-3, and sometimes constrained to roll when
pairs are in contact. This setup illustrates the parametrization in
Eq. (13).

B. Derivation

In this section we show Eqgs. (10) and (11) explicitly. This
section is technical and not essential to understanding the
subsequent discussion.

Our strategy will be to parametrize the position degrees of
freedom of the cluster explicitly to remove the bond and center
of mass constraints, write the equations in these variables, and
finally solve the Fokker-Planck equation by direct calculation.
This is a brute-force approach yet it still gives insight into the
geometry and mechanics of the constraints, by explicitly iden-
tifying the linear subspaces involved in setting the dynamics.

1. Hard constraints

Let w € [0,7] (or [r/6,57/6]) be half the internal angle,
measured underneath the line 1-2-3 when disk 2 has been
rotated to lie on the y axis, and let ¢ € [0,27] be the overall
rotation of the cluster. See Fig. 1 for an illustration. Let the

Hard bond constraints

0.22 - - sliding
—rolling

02 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

internal angle 2w
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position variables be
X(¢,w) = R(¢)Xo, (12)
where
Xo = ( —sinw, — %cosa),O,%cosw, sinw, — %cosw),
(13)

and R(¢) is a 6 x 6 block diagonal matrix, whose blocks are
2 x 2 matrices that rotate each point x® by an angle ¢ about
the origin [47]. The full cluster is parameterized by

x = (X,0) = (R(¢)Xo,01,02,03). (14)

This preserves the bond and center of mass constraints so
they can be removed from the rows of C(x), which form the
projection P(x) € R%*°.

We now perform this change of variables in Eq. (8),
to write the dynamics in terms of the new variables y =
(0,0,01,0,,03). Let s = (w, ) be the position variables and let
0 = (01,6,,05) be the spin variables. Let us define the following
matrices:

S=Vox=(3.5) € R,

_ _ (90x 0dx 0x 9x
T—VQX—(M,E,%) eR 3,
Y=Vx=( T) e R, 15)

K? 0

_ T ¢ _ 2x2

0=58'S= (O L2) e R>*2,

Here 0 is the matrix of zeros with appropriate dimensions, and
the diagonal elements of Q are

2

KX (w) = 9xI_ %+ fcoszw, (16)
ow 33

LY (w) = ox ’ _2 + 4 sin® w. (17)
By 33

Soft bond constraints

0.22} - - sliding
—rolling

02 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3

internal angle 2w

FIG. 2. Equilibrium probability densities for a trimer where disks may slide (blue dashed lines) and where they are constrained to roll (red
solid lines), as a function of internal angle 2w, in radians. Left plot is for bond constraints imposed exactly, right plot is for bond constraints
imposed with a stiff spring. Markers are the empirical densities obtained by numerically simulating the Langevin Egs. (4). The vertical dotted
line shows where disks 1 and 3 overlap, so a physical density should be truncated here.
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Note that L%(w) is the two-dimensional moment of inertia of
the cluster.

We can use the regular chain rule of calculus on Eq. (8),
since this is in Stratonovich form. This gives

5
Xdyt dy
=Y—=P 18
Z i = Yar = FP@en (¥

Multiplying by (Y7Y)~'YT gives an equation for y. Note
that Y7y = (¢ 9),since STT =0,T77S = 0,and T7T = I.
Separating the equations for the position and spin variables

separately gives

s=07 P on, (19)

6 =(PT) on. (20)

Here n € R? is the same white noise for each.

Notice that Eq. (19) for the position variables does not
depend on 6;, because P, S, Q are independent of 6;. (The spin
variables, however, do depend on the positions.) Therefore,
we can analyze it independently, to compute the equilibrium
distribution in these variables only.

First consider the equilibrium density for Eq. (19) without
the rolling constraints, so that P = I. One strategy would
be to compute the matrix elements in Eq. (19) directly and
solve the stationary Fokker-Planck equation, as we will do
when rolling constraints are included. However, it is simpler
to proceed geometrically, and recognize that, based on Eq. (8)
and the subsequent discussion, Eq. (19) is a parameterized
version of a Brownian motion on a manifold. (Note that S
has zeros in the entries corresponding to the spin variables
so these components of 1 do not contribute.) This manifold
(call it V) is the set of accessible configurations in position
space when internal rotations are ignored. It can be embedded
in the full configuration space by setting the spin variables to
fixed constants, for example, as V' = {x : 8] = 0, = 63 = 0}.
This embedding respects the inner product inherited from the
ambient space, so the columns of § form a basis for tangent
vectors to A" and Q is the metric tensor on  in the variables
(w,®) [48]. The equilibrium density is the surface measure
on N, which in these variables is gige(@,®) = |Q]'/%. Result
Eq. (10) follows from Egs. (15)-(17).

Next consider the invariant measure with the rolling
constraints. The stationary probability density o (w,¢) for
Eq. (19) solves the stationary Fokker-Planck equation,

2
Z 0;(cijmron + dij0jmron) = 0, 21
Q=1

where ¢;; = b;0;b;, di; = b;b;, and b; is the ith row of the
matrix B = Q" 1(PS)T € R¥°. Here 8; = ,,, 0, = 4. The
boundary condition is the one that conserves probability: a
no-flux boundary condition in w that requires »_ j(cl Troll +
dyj0;mon) = 0atw = /6,57 /6 (or w = 0,7), and a periodic
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boundary condition in ¢. To determine b; we first compute an
orthonormal basis of P, as

1, — 1,1)/4/3,
0 <8x 202)/\/1(24— (22)

0% 2 42
‘o= <a¢333>/v

These are obtained as follows: ¢, is the motion obtained by
fixing the positions of the disks and only letting them spin;
we call this “pure spinning.” For #, we prescribe the first

six components to be g—(f) and solve the two linear Egs. (2)
for 6. There is a one-parameter family of solutions 6 =
(-2,0,2) + 02( 1,1, — 1). We choose the one that minimizes
16> or equivalently that is perpendlcular o 1. For 1, we

similarly fix the first six components to be and solve for 6.

The solutions are 6 = (0,2,0) + 6;(1, — 1 1) and we choose
the one with minimum L,-norm. Each set of solutions for 6 has
physical meaning since they tell us how the disks must spin,
like gears, to produce a desired motion of the cluster in position
space. They are each equal to a fixed combination of spins
(9 = (—2,0,2) to change the internal angle, and 6= (0,2,0)
to rotate the cluster overall), plus an arbitrary multiple of the
pure spinning motion #,.

We project each column of S using Eq. (22) to find Pg—(f) =

t, =(0,...,0,

_K* ax _ _L?
VK248 VKT P3<z> - \/L2+8t¢’ 50
i 17
b = (23)

_ o
VK218 VL*+8/3

From this, computing the ¢;;, d;; in Eq. (21) is a matter of
algebra. We eventually write Eq. (21) as

[ (e} — LL @e3) tron + o701 7rcon
+ (3 0r71r01) = 0, (24)
where ' denotes a derivative with respect to w, and
|b1] = (K*(@) +8)7'/2,
|b2] = (L%(w) + 8/3)7"/2. (25)

aj(w) =
a(w) =

A solution that is independent of ¢ is mon(w) (aya2)~ ! =
(K%(w) + 8)2(L*(w) + 8/3)'/2. One can check this satisfies
the boundary conditions, so Eq. (10) holds, as claimed.

2. Soft constraints

Given constraints of the form ¢;(x) = z (where i indexes
the constraints), which are imposed by a stiff potential energy,
such as U(x) = e !|g;(x) — z|*> with € « 1, we can obtain
the distribution for infinitely stiff soft constraints from that for
hard ones. This is done by multiplying the distribution for hard
constraints by a factor of |A|~!/2, where A is the Gram matrix
of {Vg;} evaluated at ¢g;(x) = z [36,37,44].

If we assume the bond-distance constraints are imposed
softly by spring-like forces so that ¢;(x) =[x — x|,
g2(x) = |x® — x|, and z = 1, then one can calculate using
Eq. (13) that |A|'Y? o (1 4 2cos? w)~'/2(1 + 2sin? w) /2.
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Including this factor in Eq. (10) shows the probabilities
including these vibrational modes are given by Eq. (11).

To impose the rolling constraints softly, they must be
holonomic, meaning they imply two additional constraints
in configuration space only. This is the case when the rows
of C(x) are each a perfect gradient, but it can also hold
when some nonlinear combinations of the rows are. It turns
out that although each individual rolling constraint is not a
perfect gradient, they are still holonomic after multiplying by
a suitable integrating factor (Appendix E). Therefore, with
knowledge of these additional constraints one could write
down the equilibrium density ) immediately in the same
way we did for mgj;ge. Such an approach may be able to consider
larger, more general collections of disks.

We do not attempt to impose the rolling constraints softly
here, for at least two reasons. One, because it is not clear
whether the additional conserved quantities in configuration
space come from a stiff potential that is the origin of the friction
force, or whether they are accidents of our two-dimensional
geometry; this probably depends on the details of how the
friction comes about. Two, because there are infinitely many
functions g; that have the same level set and we currently have
no physical principle with which to choose one.

V. DISCUSSION
A. Physical interpretation

It is surprising that the equilibrium distributions for the
trimer with and without rolling constraints are different, since
according to classical statistical mechanics, if there is no
external force on a system then each outer disk should be
uniformly distributed on the central one, so the internal angle
distribution is flat as for g4, in Eq. (11). What then are we to
make of this result? Two interpretations are suggested here.

First, one can take this example as a lesson in imposing
constraints in a statistical mechanical system, even when
these constraints are effective models for mechanical systems
and the forces that impose the constraints are derived in
an analogous manner to the mechanical system. Similar
to the much-discussed difference between hard and soft
constraints in configuration space, one must even be careful
when imposing constraints on velocities, seemingly innocuous
because it is not immediately obvious that these should affect
distributions in configuration space.

Nevertheless, it is often useful to model systems using
constraints—it removes fast, often unnecessary degrees of
freedom, and also reduces the dimensionality, making nu-
merical and analytical descriptions more tractable [see, e.g.,
Ref. [49]). In this first interpretation where we assume the
classical statistical mechanical result holds, then this would
imply a sort of “roughness” entropy associated with the
velocity constraint, which would provide an additional force
that would counteract the effect of the constraint and keep
the equilibrium angle distribution constant. Such a roughness
entropy would be similar in spirit to a vibrational entropy, but
different in form because it should not necessarily be possible
to obtain it as a harmonic expansion of a function of variables
in configuration space only. Indeed, the constraint that models
a sphere rolling on a plane is nonholonomic [50,51], so
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any jiggling about the constraint cannot depend only on the
location and overall rotation of the sphere. Even for a pair
of disks, one may wish to allow irreversible, nonharmonic
slippage about their points of contact.

To see why this suggestion is plausible, imagine the
following: three gears on a slippery plane, subject to stochastic
fluctuations (such as by vibrations or fluctuations from the
surrounding medium), whose centers are bound by elastic
spring forces as for the trimer. The gears must roll in order
to change their internal angle because the teeth are long and
the spring forces strong. The teeth of the gears must have small
gaps between them if the setup is to have nonzero probability,
and the tangential rattling of the gears within these gaps
could provide the conjectured roughness entropy in the limit
as the teeth becomes smaller and closer together. A similar
argument would hold for particles with rough surfaces, where
asperities may interlock like gears with randomly spaced teeth.
The jiggling of the disks about their points of contact are
coupled to the configuration space variables, since depending
on the configuration (the angle of the trimer) there could be
larger or smaller infinitesimal displacements available. An
intriguing possibility is that this collective jiggling could result
in a roughness entropy that causes the angle distribution to
deviate from a constant, or even the distribution with rolling
constraints derived in this paper, since even in a classical
equilibrium system it could be the case that the limiting entropy
depends on the way in which the limit is obtained, i.e., whether
one considers regularly spaced identical gear teeth, randomly
spaced teeth with random heights, or some other pattern. The
author is not aware of results showing the free energy of a
collection of hard particles is a continuous function of their
shape.

Second, and perhaps more interestingly, is the literal
interpretation of the result, which would imply that particles
interacting with friction that creates rolling, have different
free energies than those without. This is only possible if
friction causes the system to deviate from classical statistical
mechanics, which is possible if it involves nonconservative
forces or kinetic effects. Dry friction is known to be a compli-
cated, time-dependent, nonequilibrium phenomenon [52,53]
that takes energy and dissipates it into heat or sound,
via processes ranging from, among others, van der Waals
interactions, capillary bridges, covalent bonds, plastic and
elastic deformations of the bodies, fracture, wear, and quantum
mechanical interactions; it is remarkable that it is so well
modeled by the Coulomb interaction law across a vast range
of scales [23,54,55]. Yet this Coulomb interaction law involves
an intrinsically nonlinear response to applied forcing and
therefore is difficult to reconcile with the conditions of the
fluctuation-dissipation theorem. It is not so implausible that
such a dissipative force could cause a system of particles to
deviate from the predictions of classical statistical mechanics;
indeed, such deviations are observed in the widely studied area
of active particles, where active forcing due to internal motors,
chemotaxis, external magnetic fields, and such forces push a
system out of equilibrium (see, e.g., Refs. [S6-58]). An active
component might even be able to create a dissipative force that
mimics the effects of rolling. For example, a popular method
to create a reversible interaction between colloids is to coat
them with strands of sticky DNA, which acts like velcro when
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the colloids are close enough. Certain kinds of DNA must
consume fuel in order to create an effective colloid-colloid
interaction, which pushes the system out of equilibrium, and
could arguably cause the colloids to roll preferentially [59].
Relatedly, colloidal particles of many different kinds are being
synthesized and simulated where rotational degrees of freedom
are actively forced, including particles that actively rotate [60]
and look like gears [61], for which this study may provide
fundamental and preliminary intuition into a system with a
rich and not very well understood phase space.

If Eq. (11) does describe the equilibrium angle distribution
of a collection of particles interacting with very strong dry
friction or other similar nonequilibrium dissipative forces, then
it provides a method to determine experimentally whether
friction is present for a certain type of particle: one can
construct a trimer that stays connected for long enough to
generate sufficient statistics of the internal angle, and then
compare the distributions. For example, the probability of a
rolling cluster having angle greater than @, = 2.2 (where the
two densities cross) is 0.48, while that for a sliding cluster is
0.45; measuring P(w > w.) could be one way to compare the
distributions. Conversely, given a system where strong friction
is present, measuring the angle distribution of a trimer (or other
cluster of disks or spheres) could be one way to verify whether
friction changes its free energy. It is worth noting that gears
have been used as the basis for mechanical metamaterials [62],
and if these systems are made on smaller scales where thermal
effects are relevant, then they could be used to test (or possibly
implement) the predictions in this paper, at least for certain
kinds of classically imposed velocity constraints.

B. Mathematical interpretation

Even at the mathematical level, it is perhaps surprising
that the equilibrium distributions for sliding and rolling disks
are different, since rolling constraints do not change the
accessible configurations in position space. Some insight into
the mathematical reason for why comes from imagining how
the constraints alter the amount of white-noise forcing that
is projected onto the position variables, producing observable
motion. The white noise acts equally in all directions in the
subspace spanned by the columns of P(x), but the forcing we
observe in the position variables depends on the projection
of the noise to the subspace N' = {x : 0; = 6, = 63 = 0}. The
magnitude of this observed forcing depends on the angles
between the two subspaces, which varies with x. A stochastic
process with no drift spends more time in regions where it
diffuses more slowly, so the equilibrium distribution changes
accordingly.

As a side note, we can determine the specific magnitude
of this projection from the calculations in Sec. IV B. The
subspace spanned by the columns of P(x) has an orthonormal
basis contained in the columns of E = (f,,ty,t,) € R%3,
where the vectors ¢; are defined in Eq. (22). The subspace N/
where only position variables vary has an orthonormal basis
contained in the columns of F = (K’lg—'(f),L’lg—;) e R9%2,
where w,¢ are defined in Eq. (13) and K (w), L(w) are defined
in Egs. (16) and (17). The element of area on one subspace
changes magnitude when projected to the other subspace
by an amount equal to |ETF| = |FTE| [63], where the
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determinant applied to a rectangular matrix is the product
of its singular values. We can calculate this determinant
to be (K2 + 8)~1/2(L? 4+ 8/3)~'/2, which is consistent with
the equilibrium distribution Eq. (10) and also reminiscent of
Eq. (25).

Physically, these calculations tell us how much forcing is
absorbed by the spinning of the gears, and how much produces
observable motion in the internal angle 2w or the overall
rotation ¢. For example, consider how the cluster might change
the angle w by some small amount Aw. This requires a change
in positions with magnitude |AX| & K(w)|Aw|. When disks
can slide, all the white noise forcing may be applied to change
the angle so the timescale for this change to happen is roughly
At ~ K*(w)|Aw|?/2. However, if the disks must roll, then
Eq. (22) shows that it takes a constant amount of spinning to
change the angle by some small amount Aw. This spinning has
magnitude |[(—2,0,2)| = /8 so it absorbs a constant amount of
forcing, producing a timescale of At & (K?(w) + 8)|Aw|?/2.
The difference with the sliding case arises because to change
w, the gears must spin in a way that is not proportional to how
much they move in position space.

VI. OUTLOOK AND CONCLUSION

We have derived a set of overdamped Langevin equations
for systems with linear velocity constraints. We applied this to
a trimer of disks whose internal angle can change, and derived
the equilibrium distribution in two cases: one where the disks
can slide against each other, the other where they must roll.
The two distributions are different, which shows that rolling
dynamics modeled as velocity constraints can change even
such basic things as the free energy of a system.

Whether this model is physically valid depends on the
details of how the friction force imposing the velocity
constraint arises, a question we do not attempt to answer here
since dry friction is a complicated and not fully understood
phenomenon. For it to create the demonstrated free-energy
difference, the friction must be a nonequilibrium force, to push
the system away from the classical Boltzmann equilibrium.
Regardless of whether or not it is, this example is a useful
lesson in modeling statistical mechanical systems by imposing
constraints: even if the constraints act on the velocities, they
can still have a fundamental effect on positions. We discussed
how in a classical system in equilibrium we would expect
the distributions with and without rolling constraints to be the
same, and we conjectured that there may be a form of entropy,
a “roughness” entropy, associated with the rolling constraints
that models the infinitesimal jiggling and slippage of the disks
about their points of contact as they roll around each other.
Such an entropy would be similar in spirit to a vibrational
entropy but structurally different, since it would be associated
with the dynamical degrees of freedom and not purely with
the locational ones.

We suggested ways to test the predictions of this model
via experiments on clusters of colloidal particles, or with
a system of gears on a vibrating table, where macroscale
measurements like the internal configuration of a cluster
may help determine microscale interactions. Experiments
that measure the effect of friction on the steady-state prop-
erties in any system with stochastic fluctuations would be
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valuable, because it is clear we do not have an adequate
understanding of this phenomenon, which is becoming in-
creasingly important in soft-matter and other mesoscale
systems.

Our model has also suggested problems where new math-
ematical developments could help shed light on physical
systems. Our derivation of the overdamped Langevin equations
is valid for arbitrary linear velocity constraints, both holonomic
and nonholonomic. In the former case the overdamped equa-
tions describe a Brownian motion on a manifold, whose equi-
librium distribution is the surface measure on the manifold,
but in the latter there is no such interpretation. While it turns
out that disks in the plane are holonomic, a cluster of spheres
should be nonholonomic: it can access a space that is higher-
dimensional than the space along which it is constrained to
move. This should be true because a single sphere rolling on
a plane is nonholonomic [50,51]. Geometrically, it lives on
a sub-Riemannian manifold [64-66], an object that has been
little studied in the physics literature. In this case there is
no general method to determine the equilibrium distribution
of Eq. (8), since there is no canonical volume form (surface
measure) on a sub-Riemannian manifold [67]. It is difficult
to even identify a Laplacian, since it is not clear which
volume form to use to define the divergence operator, though
some recent progress has been made in comparing different
choices [67,68]. One could probably work out the equilibrium
distribution for individual cases directly as we have done in
this paper, but the delicacy of parameterizing S O(3) requires
separate treatment. Extending this study to spheres would not
only potentially provide an experimental method to determine
whether friction is present, but would also bring insight into
the physics of stochastic, nonholonomic systems, which have
rarely been considered.
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APPENDIX A: MASS-SCALED COORDINATES

We show how the mass matrix M can be eliminated from
Eq. (4) by a suitable change of variables. This is not a
nondimensionalization and the mass still appears implicitly in
the new variables. Let y = Mx, ¥ = M'%x, j = M~1/?y =
M'/2x. Then Eq. (4) becomes

=
Il

2
5+ T%=V:0&dt +6nit)—CTx, (A1)
and the constraints become
C(x)y =0. (A2)
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Here
'@ =M'"2rmM"2eym='72,
(X)) =M oM™ ?5),
U@ =UM™'7%),
Cx)=CM'Prym=1/2.

The friction and forcing remain in fluctuation-dissipation
balance. Equations (A1) and (A2) have exactly the same
structure as Egs. (4) and (3), respectively, so hereafter we
work in these mass-scaled coordinates and remove the tildes.

APPENDIX B: SOLVING FOR THE LAGRANGE
MULTIPLIERS

The time derivative of Eq. (3) is
C(x)x + VC(x)(x,x) =0, (BI)

where the second term is a vector with components
(VC(x)(x,x)); = Zi’j g%)'cifcj. Substituting for X from Eq. (4)
gives

CTh=—PTx + Pton+ PrVU®K)
+CTG7'VC(x,%), (B2)

where P(x) is the projection matrix onto the row space of
C(x), and G(x) is the Gram matrix. Specifically,

pt=c’¢'c, G=cc. (B3)
One can check that (P)? = PL, and (PH)T = Pt so it is
orthogonal. Substituting for A in Eq. (4) gives

¥4 P =—PVU@X)+ Pon+CTG7'VC(,%). (B4)

Here P(x) = I — P*(x)is the projection of the velocities onto
the tangent space to the manifold in phase space satisfying the
constraints. One can check that P = P so it is an orthogonal
projection.

APPENDIX C: DERIVATION OF THE OVERDAMPED
DYNAMICS

In this section we derive the equations for the dynamics in
configuration space (x variables only) when viscous friction is
large, and over long timescales. Let y = x, let I' — I'/e, and
letr — t/e, with € < 1. The equations become

. Py
X =—
€
. Tpy op  PVU  C'GT'VC(y.y)
y=—2 4+ - . (@D
€ € € €

We have defined ' = PI"'P and op = Po. These terms re-
main in fluctuation-dissipation balance, and I"p is symmetric.
We can replace y with Py, since the dynamics preserves the
constraint C(x)y = 0.

The backward equation for Eq. (C1) is

0 _ L L
ar €2 €

, (C2)
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where

£0 = —pr . Vy + ,B_IFP . V2

¥y

Li=Py-V,—PVU-V,+C'G'VC(y,y)-V,.

We write V,, V, for the gradient acting only on the x,y
variables, respectively.

We formally expand the solution to Eq. (C2) as ¢ = ¢y +
€+ €2y + ..., and collect terms of the same order. The
leading order equation is Ly¢g = 0. Since L acts only on the
y variables, we must have

Po(x,y.1) = ¢o(x,1). (C3)

The next-order equation is —Ly¢; = Li¢y. Since Ly is
linear in y, this is straightforward to solve, as

¢1 =Thy - Vido, (C4)

where I'}, is the Moore-Penrose pseudoinverse of I . To check
this, we calculate

—Lop1 =Tpy-Vy(Thy - Vigo) =Tpy - ThV.gy
= yYTTsT} Vg0 = ¥ PV.eho
= Py -V, ¢y = Li¢o,

where we have used the fact that '} = I'p, and FPFL is an
orthogonal projection onto the column space of I'p [40], so it
equals P. '

The final equation is —Ly¢, = —d% + L1¢1. By the
Fredholm alternative, a solution exists only if the inner product
with any element in the null space of Ljj is zero. This gives the
solvability condition

0
/n(y)(—%um)dy 0, (C5)

where 77 (y) is any solution to £im(y) = 0. When the integral
above is explicitly evaluated, the fast variables y are eliminated
and we obtain an evolution equation for ¢ in the slow variables
X.

To calculate this integral explicitly, we first find 7, which
is the equilibrium distribution for the velocities (the fast
variables) when the positions and spins (the slow variables)
are held constant. The adjoint of £ is

Lip =BV, [ PPTv (e ) (CO)

We have used the fact that I'p is independent of y, to pull it
out of the inner gradient. It is clear that the invariant measure
is

7(y) = Z e oy (dy)
= 7' IPS(C0)y)IGI' 2, (C7)

where o (dy) is the surface measure on the linear subspace
Y. (y) = {y: C(x)y = 0}, and Z is anormalization constant to
ensure that [ 77(y)dy = 1. The density must be restricted to
since the dynamics remain on this subspace. We used the co-
area formula oy, (dy) = 8(C(x)y)|G|"*dy to write Eq. (C7)
in both mathematicians’ and physicists’ notation. The matrix
G was defined in Eq. (B3).
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Next, we evaluate each of the terms in Eq. (C5). We have
[ ()% dy = %% The other terms are

Li¢y = Py -V.(y'ThV.¢o)— PV, U -TLV ¢y

term 1 term 2

+C"G'V,C(y.y) - ThV.¢p. (C8)

term 3

Let’s evaluate the integral of m(y) over each of the terms in
turn. We will make use of the following fact:

/ n(y)yiyidy = B~ P;. (C9)

To show this, consider an orthonormal basis {e,-}f=1 of the

column space of P(x),and letz; = y - ¢; be the variables lying
along these directions. Then

/ vy e 2P s(C(x)y)IG|' 2 dy
=/ Py(Py) e 20 s(C(x)y)IG|dy
= ZekezT / zkae_%ﬂ'z‘zdz = Zﬁ_laklekelT
k.l

k.l
= E erel = P.
k

We use Eq. (C9) to calculate the integral of term 1:
/ 7 (V)3 k(T p)ijdipoldy = B~ Py dl(T)ij i ol

= B T PV(TL V)],

where (Vv) jx = 0,v;. The subscript x is removed on the final
gradient, since it is no longer needed.

The integral of term 2 is F;PV,CU -V = I‘LVXU-
V¢, since there are no terms containing y. This uses the
fact that F}L,P = FLFPF; = F}L,, by the properties of the
pseudoinverse.

Term 3 can be written as (chj)o)TFI,CTG’lVC(y,y).
But I',CT =0, since I',CT =TLrprhc” =TLPCT =0,
using the properties of the pseudoinverse and the fact that
the columns of CT are orthogonal to P. Therefore, this term
equals 0.

Putting this together gives the following evolution equation
for ¢o:

d¢o

o = TLVU - Voo + B TH[PV(TLV o).

(C10)
APPENDIX D: NUMERICALLY SIMULATING
THE LANGEVIN EQUATIONS

We numerically simulated the Langevin Eqgs. (4) by writing
this second-order equation as two first-order equations for the
positions and spins ¢ = x and momenta p = mx. We used a
mass m and friction coefficient y that were the same for all
variables. We alternated updates of g, p by cycling through
the following four steps:

(1) Update g by increment Ag = p/m At;
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(2) Project g to manifold where bond-distance constraints
Eq. (1) are exactly satisfied (the projection method was the
same as that used in [49]);

(3) Update p by increment Ap = —(y/m)pAt+
o~/Af N, where N € R is a vector of independent standard
normal random variables;

(4) Project p + Ap to space of allowed velocities [this is
done by multiplying by matrix P defined in Eq. (6)].

Apart from the projection step, this is exactly an Euler-
Maruyama method so is expected to be weakly first-order
accurate [69]. We did not include a nonoverlap condition
for the disks, though this is easily accounted for a posteriori
by truncating the histogram. The parameters used were m =
0.1, y=1,0=1. We set At=5x 10~3 for the sliding
simulations, and At = 1 x 10~ for the rolling ones. A finer
time step was needed for the rolling simulations to get
good agreement with the theory, presumably because the
simulations do not conserve the additional implied conserved
quantities in configuration space Eq. (E3) (see Appendix E.)
The total time each simulation was run for was Ty = 10°
for sliding disks and T, = 1.8 X 10° for rolling disks. We
needed to run the rolling simulations longer than the sliding
ones to converge to the equilibrium distribution, because the
effective diffusion coefficient in angle space is smaller.

APPENDIX E: GEOMETRY OF THE ROLLING TRIMER’S
CONFIGURATION SPACE

To calculate the trimer’s equilibrium distribution, we did
not need to know the geometric structure of its configuration
space—neither the constants of integration nor the dimension
of the manifold on which it lives. The calculation was possible
because of the symmetries that let us project the dynamics
to a lower-dimensional manifold without losing information,
and on this lower-dimensional manifold the trimer had no con-
straints. Nevertheless, this geometric structure is an interesting
mechanics problem in itself.

Let us count degrees of freedom: we began with five
parameters to describe the configuration space, and two
constraints, so there is a three-dimensional space along which
the cluster can move (the “horizontal space”). What is the
actual dimension of the space in which it lives?

This can be understood by calculating iterated Lie brackets
of the horizontal space. It is simplest to do this in the pa-
rameterized space, in which an orthogonal basis of horizontal
tangent vectors (proportional to #,,,t,1) is

Tw = (1705 - 29072)5
T, = (0,3,2,4,2), (E1)
T, =(0,0,1, — 1,1).

(See subsection a for an explanation.) In this parametrization
the horizontal space is a single, constant plane; clearly all Lie
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brackets give 0. Therefore, by the Frobenius theorem [70] the
trimer lives on a three-dimensional manifold, so there are two
extra conserved quantities. One can check that a basis for the
normal space is

Nl = (_4709 - 17011)7 N2 = (07 - 4a192’1)' (Ez)

These are the gradients of the following scalar functions:

O,=—-4w—-0,+63, QOr,=—-4¢ + 6, +20,+65. (E3)

It is these functions (or any nonlinear function of them) that
are conserved by the dynamics with rolling constraints. From
these one could calculate the equilibrium distribution directly.

1. Tangent map

The horizontal vector Egs. (22) come from considering
the tangent map induced by a smooth map f : M — N from
one manifold M to another manifold N. Recall that a tangent
vector at point p can be thought of as an equivalence class
of curves [c], where the equivalence relation is c(¢) = d(¢)
if ¢/(0) =d’'(0) and ¢(0) = d(0) = p [48]. Then, f induces
a natural linear map between tangent spaces, df, : T,M —
T,N, defined by

fle@)].

t=0

d
dfplc'(0)] = o

If we have a description of the manifolds in the variables
x € X,y €Y, where X,Y are subsets of suitable spaces, and
if we have amap f : X — Y, then the tangent map is

df,[c' (0] =V fc'0)

Z% S—i” % c1(0)
A R | PO
=1 n ay2 Oyn
!

c,(0)

Let M be the manifold of accessible configurations pa-
rameterized by the variables (w,¢,6), and let N be the same
manifold described by the variables x. We have an explicit
mapping f : M — N, given by Eq. (13) and the subsequent
inline equations. The Jacobian of this mapping in block form
is

RS )

\vJ f — | do ¢ , (E4)
0 0 L

where I is the 3 x 3 identity matrix and O is a matrix of zeros

with dimensions correct for the context. From this, we can see

that

VfT, < ty,, VfTy iy, VfT t.
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