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In this paper, stochastic thermodynamics of delayed bistable Langevin systems near coherence resonance is
discussed. We calculate the heat dissipation rate and the information flow of a delayed bistable Langevin system
under various noise intensities. Both the heat dissipation rate and the information flow are found to be bell-shaped
functions of the noise intensity, which implies that coherence resonance manifests itself in the thermodynamic
properties.
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I. INTRODUCTION

Stochastic thermodynamics (ST) of small systems has
been one of the most significant developments in the field
of nonequilibrium statistics in the past two decades [1–4].
Due to the non-negligible fluctuation effect, thermodynamic
properties of small systems become stochastic variables, thus
the first law and second law of thermodynamics could be
interpreted in the stochastic trajectory level [5,6]. In those
small systems with Markovian dynamics, a total dissipation
function σ is defined as the summation of system entropy
change �s and medium entropy change �sm = q/T such
that σ = �s + �sm. It is noted that events with negative
dissipation σ < 0 could happen in small systems, while the
averaged dissipation is positively defined (〈σ 〉 � 0), which
can be regarded as the second law of thermodynamics for
small systems. In a steady state, 〈σ̇ 〉 � 0 reduces to 〈ṡm〉 � 0.
Such a physical picture has been revealed in various Markovian
systems, such as colloid particles [7–9], biomolecules [10–12],
chemical reaction networks [13–16], granular medium [17],
driven Lorentz gas [18], electronic devices [19,20], and two-
level optical systems [21,22].

In this study, we focus on the delayed bistable Langevin
systems. Time delay is found in many real systems as results
of the finite speed of signal transfer or feedback control
processes [23–29]. Due to the interaction of nonlinearity, time
delay, and random force (or equivalently noise), a bistable
system under time delayed feedback could show coherence
resonance, i.e., the peak hight in the power spectrum reaches
a maximum at certain noise intensity, which is verified both
theoretically [30] and experimentally [31]. As the Langevin
systems are widely used to model the nanomachines which
consume energies, it would be of great interest to see what we
can deduce from the thermodynamic perspective. It is known
that the mean heat dissipation rate 〈ṡm〉 of a stationary delayed
system is no more positive definite [32–35]. Further studies
demonstrate that the concept of Shannon entropy or the mutual
information can be used to study the ST of small systems
under control, where the information flow İ is a low bound of
the medium entropy change rate Ṡm [36–42]. ST of delayed
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systems has been discussed in several literatures [32,34,35,43],
where detailed results are mainly derived for linear systems.

Herein we study the mean thermodynamic properties of
delayed bistable Langevin systems, which are found to show
nontrivial dependence on the noise intensity. Specifically,
the medium entropy change rate 〈ṡm〉 and the conditional
information flow ˙̄Ic can reach a maximum or a minimum at
certain noise intensity. Then one may conclude that coherence
resonance can manifest itself in the thermodynamic properties
of delayed bistable systems.

This paper is organized as follows. In Sec. II, a model
of delayed bistable Langevin systems is introduced. The
stochastic thermodynamics of delayed Langevin systems is
presented in Sec. III, where the heat dissipation rate and
the information flow are introduced. The dependence of heat
dissipation and information flow on the noise intensity is
shown in Sec. IV, where coherence-resonance-like behavior is
found. Finally some concluding remarks are given in Sec. V.

II. MODEL AND DESCRIPTION

A schematic diagram of a delayed Langevin system is
shown in Fig. 1. In this study, we take an one-dimensional
forced Brownian particle A as an illustrative example. The
particle is subjected to a force F (x,xτ ) generated by a control
device such as an optical laser as done in real experiments [8,9],
where x(t) is the coordinate or the state variable of the particle
at time t, xτ (t) = x(t − τ ) is a delayed state variable, τ is
the delay time. The particle contacts to a heat bath with a
temperature T , and the dynamic effect from the heat bath is
spilt into a friction force γ ẋ and a random force ξ (t). In the
over-damped limit, the motion of the particle is described by
the Langevin equation [6]

γ ẋ = F (x,xτ ) +
√

2Dξ (t), (1)

where ẋ = dx
dt

, ξ (t) is a Gaussian white noise with 〈ξ (t)〉 = 0
and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′). The time derivative of a function
h(t) will be denoted as ḣ = dh

dt
throughout this study. The

deterministic force is taken as F (x,y) = ax + by − x3. For
|b| < a, the deterministic system has two stable solutions xs =
±√

a + b. The noise intensity D is related to the temperature
T of the heat bath via the Einstein relation D = γ kBT , where
γ is the friction coefficient and kB is the Boltzmann constant.
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FIG. 1. Schematic diagram for a delayed Langevin system.

In the following, we set γ = 1 and kB = 1 without loss of
generality.

It could be convenient to discuss the ST using the probabil-
ity of the variables. One can introduce a new state variable
y(t) = x(t − τ ), and the two point probability distribution
function p(x,y; t) for x and y satisfies a Fokker-Planck
equation as [44]

∂tp(x,y; t) = −∂xJx(x,y; t) − ∂yJy(x,y; t) (2)

with probability current defined as Jx(x,y; t) =
F (x,y)p(x,y; t) − D∂xp(x,y; t), Jy(x,y; t) =∫

F (y,z)p(x,y,z; t)dz − D∂yp(x,y; t), where p(x,y,z; t)
is a three point probability distribution function with
z(t) = x(t − 2τ ). One should note that such a Fokker-Planck
equation is not closed in general as the evaluation of the
probability current involves the three point probability
distribution function.

With the joint probability distribution, one can introduce
two marginal distributions as p(x; t) ≡ ∫

p(x,y; t)dy and
p(y; t) ≡ ∫

p(x,y; t)dx. A delayed system could usually reach
a steady state, where the probability distributions reach station-
ary values ps(x,y) ≡ p(x,y; t → ∞), ps(x) ≡ p(x; t → ∞),
and ps(y) ≡ p(y; t → ∞) such that

∂tps(x,y) = 0,∂tps(x) = 0,∂tps(y) = 0. (3)

III. ENERGETICS OF A DELAYED LANGEVIN SYSTEM

Concepts of medium entropy change rate and the infor-
mation flow have been applied successfully to delayed linear
systems [32,34,35,43]. In the following we briefly summarize
these two concepts and will use them to study the stationary
delayed bistable systems.

Denote a stochastic trajectory as χ (t) = {x(t ′)}|tt ′=−τ ,
then one can introduce trajectory-dependent thermodynamic
properties following Sekimoto’s prescription [5]. The heat
exchange rate q̇ of the delayed system A is defined as the
work done by the friction force and the random force as
q̇ = [ẋ − √

2Dξ (t)]ẋ = F (x,y)ẋ. We adopt the notion that
q̇ > 0 or q̇ < 0 implies that heat is dissipated into or absorbed
from the environment. The medium entropy change rate is then
evaluated as [5]

ṡm = q̇/T = 1

D
F (x,y)ẋ.

(4)

One can use a mutual information term I =
ln[ p(x,y;t)

p(x;t)p(y;t) ] [4,36] to characterize the correlation between

the system A and the control device. The information change
rate (or information flow) İ is İ = ∂t I + (∂xI )ẋ + (∂yI )ẏ.
For a system that stays in a stationary state, it is noted that
∂t I = 0 and then the conditional information change rate due
to the evolution of x can be evaluated as [45]

İc = (∂xI )ẋ =
(

∂x

[
p(x,y; t)

p(x; t)

])
ẋ. (5)

To derive the second equality in Eq. (5), ∂xln[p(y; t)] = 0
is used. Herein, we take the notion that İc > 0 or İc < 0
implies that information flow is ejected from or injected into
the delayed system A. When doing the average over x and
y, one can recover the results by Rosinberg, Munakata, and
Tarjus [35]. Let us define Ṡm ≡ 〈ṡm〉 and ˙̄Ic ≡ 〈İc〉. When the
system reaches a stationary state, one can proved that [35]

Ṡm � ˙̄Ic. (6)

According to Eq. (6), the information flow is a lower bound for
the released heat rate, so the system A may be able to absorb
heat (Ṡm < 0) when the information flow ( ˙̄Ic < 0) is injected
in.

One should note that the second-law–like inequalities for
a delayed system is not unique. Based on the Fokker-Planck
equation of the delayed system, one can introduce the log
ratio of the probability of a forward trajectory and a backward
trajectory as the total dissipation function σ , which also
satisfies 〈σ 〉 � 0 [32]. It is also possible to introduce another
dissipation function with the path integral of delayed Langevin
equation [33]. However, the term σ − �s − �sm in those cases
does not have a clear physic significance.

IV. NUMERICAL RESULTS FOR A DELAYED LANGEVIN
SYSTEM IN A STEADY STATE

In this section, we apply the prescription in Sec. III to
study the bistable system with F (x,xτ ) = ax + bxτ − x3.
For a bistable system with fixed dimensionless parameters
a = 1, |b| = 0.1,τ = 250, and with tunable noise intensity
D, the main peak in the power spectrum of the system can
reach a maximum. This nontrivial result is first reported
by Tsimring and Pikovsky and is recognized as coherence
resonance [30]. In order to study the thermodynamic properties
near coherence resonance, we use the same parameters for
the bistable system. We did stochastic simulations of the
Langevin equations with a time step dt = 0.01. By introducing
a variable y = xτ , the stationary probability distribution
ps(x,y) evaluated from numerical simulation is fitted to
an empirical function ps(x,y) = Ne− ∑

i+j=2,4 aij x
iyj

. Denote
α(x,y) ≡ −∂x ln[ps(x,y)], the medium entropy change rate
Ṡm and the conditional information flow ˙̄Ic in a steady state
are evaluated via Ṡm = 1

D
〈F (x,y)ẋ〉 and ˙̄Ic = 〈α(x,y)ẋ〉.

For control parameters a = 1,b = 0.1,τ = 250 and a =
1,b = −0.1,τ = 250, the stationary thermodynamic proper-
ties of the delayed systems are plotted in Figs. 2 and 3.
In the range of 0.04 � D � 0.3, one can find that ˙̄Ic < 0
and Ṡm > 0, so the inequality Ṡm � ˙̄Ic is valid as expected.
Furthermore, it is noted that Ṡm reaches a maximum while
˙̄Ic reaches a minimum at the noise intensity D ≈ 0.12. Note
that the main peak in the spectrum of the delayed bistable
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FIG. 2. Thermodynamic properties as a function of the noise
intensity D for a delayed bistable system with F (x,xτ ) = x +
0.1xτ − x3. The lines are guides to the eye.

systems could reach a maximum in the range of 0.04 <

D < 0.32 [30], one may conclude that coherence resonance
manifests itself in terms of thermodynamic properties. Though
not shown, we also perform numerical simulations for the
bistable systems with different control parameters, where
both the heat dissipation rate and the information flow show
bell-shaped dependence of the noise intensity.

It is found that similar behavior appears in bistable systems
under periodic force, i.e., the signal to noise ratio could
reach a maximum at certain noise intensity and is known as
stochastic resonance [46], the heat dissipation rate in such
systems also shows bell-shaped dependence on the noise
intensity [47], and hence stochastic resonance can manifest
itself in thermodynamic properties. Note that there are other
dynamic systems which could show coherence resonance, one
may wonder whether coherence resonance in general systems
can always be manifested in the thermodynamic properties.
Our answer to this question is no. A counter example is the
stochastic bifurcation systems [48], e.g., coherence resonance
could happen in stochastic systems that near Hopf bifurcation,
however, the medium change rate Ṡm increases as the noise
intensity increases and hence no coherence resonance behavior
is observed for the thermodynamic properties [16].

As a brief summary, we studied the ST of delayed
bistable systems, where both the heat dissipation rate and
the information flow show bell-shaped dependence on the
noise intensity. Such an observation implies that coherence

FIG. 3. Thermodynamic properties as a function of the noise
intensity D for a delayed bistable system with F (x,xτ ) = x −
0.1xτ − x3. The lines are guides to the eye.

resonance can manifest itself in thermodynamic properties
of delayed bistable systems. Note that the thermodynamics
properties can be tuned by the dynamic parameters such as
a,b,τ , and D, our finding may find potential applications in
controlling the performance of nonlinear molecular motors or
artificial nanomachines.

V. CONCLUDING REMARKS

In conclusion, stochastic thermodynamics of delayed
bistable Langevin systems near coherence resonance is dis-
cussed. The medium entropy change rate and the information
flow are introduced to characterize the transport of the delayed
systems. We find that both the medium entropy change rate
and the information flow are bell-shaped functions of the noise
intensity, which implies that coherence resonance can manifest
itself in the thermodynamic properties.
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