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Enantiodromic effective generators of a Markov jump process with Gallavotti-Cohen symmetry

S. A. A. Terohid,* P. Torkaman,† and F. H. Jafarpour‡

Physics Department, Bu-Ali Sina University, 65174-4161 Hamedan, Iran
(Received 12 July 2016; revised manuscript received 4 October 2016; published 4 November 2016)

This paper deals with the properties of the stochastic generators of the effective (driven) processes associated
with atypical values of transition-dependent time-integrated currents with Gallavotti-Cohen symmetry in Markov
jump processes. Exploiting the concept of biased ensemble of trajectories by introducing a biasing field s, we
show that the stochastic generators of the effective processes associated with the biasing fields s and E − s are
enantiodromic with respect to each other where E is the conjugated field to the current. We illustrate our findings
by considering an exactly solvable creation-annihilation process of classical particles with nearest-neighbor
interactions defined on a one-dimensional lattice.
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I. INTRODUCTION

The appearance of rare events in equilibrium and nonequi-
librium many-body systems have become a focus of recent
intense research [1–3]. An important question is how these
fluctuations arise. In order to answer this question let us
consider a classical interacting particles system in its steady
state. We assume that this system can be modeled by a Markov
jump process in continuous time in or out of equilibrium [4].
In a Markov jump process the system jumps spontaneously
from one classical configuration in the configuration space,
which will be assumed to be finite-dimensional throughout
this paper, to another classical configuration with certain
transition rate making a trajectory or path. We are generally
interested in measuring a transition-dependent time-integrated
observable such as activity or particle current during an
extended period of time called the observation time. As
we mentioned, we are more specifically interested in the
fluctuations of this observable. Imagine that the stationary
probability distribution function of this observable can be built
by doing some experiments and measuring the observable
along the trajectories of the process in its steady state. In
principle, both typical and atypical values (or fluctuations) of
the observable can be observed. Some of these trajectories are
responsible for creating the typical values of the observable
while some other trajectories are responsible for creating a
specific fluctuation or an atypical value of the observable.
Now, if we look at a restricted set of trajectories that is
responsible for a specific fluctuation, we are basically dealing
with a conditioning. Here the corresponding ensemble is called
the path microcanonical ensemble. There are actually many
trajectories leading to a specific fluctuation and one might
ask if it is possible to describe this by a stochastic Markov
process. It has been shown that in the long observation-time
limit each specific fluctuation can be described by a specific
stochastic Markov process that is nonconditioned and is called
the effective or driven process [5].

The stochastic generator associated with the effective
process for a specific fluctuation can, in principle, be obtained
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as follows. We start with a so-called tilted generator [6–13].
The tilted generator can be constructed by multiplying the
transition rates of the original stochastic Markov process by an
exponential factor that depends on both a biasing field s and the
increment of the current during that transition. The parameter
s is a real parameter that selects the fluctuation and plays a role
similar to the inverse of temperature in the ordinary statistical
mechanics. Given that our observable satisfies the large
deviation principle with a convex rate function and that the
tilted generator has a spectral gap, it has been shown that using
a generalization of Doob’s h-transform of the tilted generator
one can obtain the stochastic generator of the effective process
that explicitly depends on s. The path ensemble associated with
the effective dynamics is called the path canonical ensemble.
It has already been shown that the microcanonical and the
canonical path ensembles are equivalent in the long-time
limit [14]. It is worth mentioning that the effective process
inherits many properties of the original process, including
the symmetries; however, the interactions might be very
complicated, hence the characterization of them are of great
importance [15]. A one-dimensional classical Ising chain that
exhibits ferromagnetic ordering in its biased ensemble of
trajectories is an example that reveals this feature [5]. Similar
examples are also studied in Refs. [16,17].

The question we are aiming to answer in this paper is, for
a given transition-dependent time-integrated current, whether
the stochastic generators of the effective processes associated
with two different fluctuations are related. Let us start with
a nonequilibrium Markov jump process in continuous time
in the steady-state. We also consider a transition-dependent
time-integrated current as an observable that satisfies the
large-deviation principle with a convex rate function [18].
Now we assume that this nonequilibrium system is created
as a result of applying an external field E conjugated to that
current to an equilibrium process. Among different choices,
one can achieve this by a special scaling of the reaction
rates of the equilibrium system. This will clearly restrict us
to study only a very specific class of processes. Moreover, this
specific type of scaling results in a rate function that satisfies
the Gallavotti-Cohen symmetry with respect to E [19]. We
will show that in a given Markov jump process the stochastic
generator of the effective process at s is enantiodromic with
respect to the stochastic generator of the effective process at
E − s. The concept of the enantiodromy relation has already
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been introduced and used in the field of stochastic interacting
particles [4,20]. In order to show how this property helps
us deduce more information about the effective interactions
associated with certain fluctuations in the system, we will
provide an exactly solvable example. Our example consists of
a one-dimensional system of classical particles with nearest-
neighbor interactions, which includes creation and annihilation
of particles. As we will see, using the enantiodromy relation
and knowing the effective interactions at s, one finds exact
information about the effective interactions at E − s. It turns
out that the nature of interactions can be quite different from
each other at these two points.

This paper is organized as follows: in Sec. II, after a
brief review of the basic mathematical concepts, we will give
the main results. Section III is devoted to an application of
our findings by providing an exactly solvable coagulation-
decoagulation model of classical particles. In Sec. IV we will
give the concluding remarks.

II. BASICS CONCEPTS AND RESULTS

Let us start with a Markov process in continuous time
defined by a set of configurations {c} and transition rates
ωc→c′ between its configurations in a finite-dimensional con-
figuration space. Considering the vectors {|c〉} as an orthogonal
basis of a complex vector space, the probability of being in
configuration c at time t is given by P (c,t) = 〈c|P (t)〉. The
time evolution of |P (t)〉 is governed by the following master
equation [4]:

d

dt
|P (t)〉 = Ĥ|P (t)〉, (1)

in which the stochastic generator or Hamiltonian Ĥ is a square
matrix with the following matrix elements:

〈c′|Ĥ|c〉 = (1 − δc,c′ )ωc→c′ − δc,c′
∑
c′′ �=c

ωc→c′′ . (2)

We assume that in the long-time limit the process reaches
its steady-state so that the left-hand side of Eq. (1) becomes
zero. We aim to study the fluctuations of an observable over
a long observation time in the steady state. As a dynamical
observable we consider a transition-dependent time-integrated
current. The current is time-extensive and a functional of the
trajectory that the system follows in the configuration space
during the observation time. This is a sum of the increments
θc→c′ ’s every time a jump from c to c′ occurs. For particle
current in one dimension we have θc→c′ = ±1.

Let us now assume that our original process has a
nonequilibrium steady state that has been obtained by applying
an external driving field to an equilibrium process. Among
different possibilities, a very special choice for making this
connection is by considering the following rule:

ωc→c′ = ω
eq
c→c′e

E
2 θc→c′ , (3)

in which E is the external driving field conjugated to the
current. The transition rates of the equilibrium process and
the equilibrium stationary distribution satisfy the detailed
balance equations, i.e., ωeq

c→c′Peq(c) = ω
eq
c′→cPeq(c′), which can

be written as

ωc→c′e− E
2 θc→c′ Peq(c) = ωc′→ce

− E
2 θc′→cPeq(c′). (4)

Defining the modified Hamiltonian Ĥ(s) (or the tilted genera-
tor) with the matrix elements [8–11]

〈c′|Ĥ(s)|c〉 = (1 − δc,c′ )e−sθc→c′ ωc→c′ − δc,c′
∑
c′′ �=c

ωc→c′′ , (5)

one can write Eq. (4) in a matrix form,

Ĥ(E − s) = PeqĤT(s)P −1
eq , (6)

in which Peq is a diagonal matrix with the matrix elements
〈c|Peq|c〉 = Peq(c) [21]. Considering the following eigenvalue
equations for the modified Hamiltonian,

Ĥ(s)|�(s)〉 = �(s)|�(s)〉,
(7)

〈�̃(s)|Ĥ(s) = �(s)〈�̃(s)|,
it is clear from Eq. (6) that all of the eigenvalues of the modified
Hamiltonian have the following symmetry, �(s) = �(E − s),
which includes its largest eigenvalue, i.e.,

�∗(s) = �∗(E − s), (8)

which is called the Gallavotti-Cohen symmetry [19,21,22].
Finally, the similarity transformation Eq. (6) indicates that

|�(s)〉 = Peq|�̃(E − s)〉. (9)

As we have already explained, in the long-observation-time
limit each specific fluctuation in the system can be described
by a stochastic Markov process called the effective process,
which is equivalent to the conditioning of the original process
on seeing a certain fluctuation. It has been shown that the
stochastic generator of this effective stochastic process is given
by

Ĥeff(s) = U (s)Ĥ(s)U−1(s) − �∗(s), (10)

which is a generalization of Doob’s h-transform and that U (s)
is a diagonal matrix with the matrix element 〈c|U (s)|c〉 =
〈�̃∗(s)|c〉 [5,14]. The off-diagonal matrix elements of the
operator Ĥeff(s) in Eq. (10) are given by

〈c′|Ĥeff(s)|c〉 = 〈c′|Ĥ(s)|c〉 〈�̃
∗(s)|c′〉

〈�̃∗(s)|c〉 , (11)

or equivalently

ωeff
c→c′ (s) = e−sθc→c′ ωc→c′

〈�̃∗(s)|c′〉
〈�̃∗(s)|c〉 . (12)

Defining the diagonal matrix

UTTI(s) = |�∗(s)〉〈�̃∗(s)|, (13)

the steady-state distribution of Ĥeff(s) is given by

PTTI(c,s) = 〈c|PTTI(s)〉 = 〈c|UTTI(s)|c〉, (14)

where the subscript TTI is an abbreviation for the time
translational invariance regime [5].

Starting from Eq. (8) and using Eq. (10) and after some
algebra one finds the following enantiodromy relation:

Ĥeff(E − s) = UTTI(s)ĤT
eff(s)U−1

TTI(s), (15)
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in which T means the transpose of the square matrix. The
notion of enantiodromy has its origin in the time-reversal of the
temporal order, as the transpose matrix describes the motion
of the process backward in time. The two effective stochastic
generators Ĥeff(s) and Ĥeff(E − s) share the same spectrum
and also the same stationary distribution [4,21]; however, they
describe two different processes. For instance while Ĥeff(s)
might contain local and short-range interactions, Ĥeff(E − s)
can contain long-range and complicated interactions. The
generator Ĥeff(E − s) is called the adjoint generator with
respect to Ĥeff(s), which in the absence of detailed balance
defines a new process with the same allowed transitions as
Ĥeff(s) [21].

Using Eq. (15) we find that the transition rates of these
effective processes are related through

ωeff
c→c′ (E − s) = ωeff

c′→c(s)
PTTI(c′,s)

PTTI(c,s)
. (16)

It can be seen that the transition rates of the effective process
at E − s depend on both the reversed transition rates and
the stationary distribution of the effective process at s. It is
worth mentioning that Eq. (16) is obtained by assuming that
the original process has the Gallavotti-Cohen symmetry in
the sense of Eq. (3). Finally, Eq. (16) gives the following
constraints on the transition rates of the above-mentioned
effective processes:

ωeff
c→c′ (E − s)ωeff

c′→c(E − s) = ωeff
c→c′ (s)ωeff

c′→c(s). (17)

Similar result has already been obtained in Ref. [23] for fluids
under continuous shear.

Let us consider s = E/2. Because of the Gallavotti-Cohen
symmetry, this point is the minimum of the largest eigenvalue
�∗(s). At this point the slope of the eigenvalue is zero, hence
the average current is zero. This means that the effective
process is in equilibrium. From Eq. (15), one finds

Ĥeff

(
E

2

)
= UTTI

(
E

2

)
ĤT

eff

(
E

2

)
U−1

TTI

(
E

2

)
,

which is a self-enantiodromy relation for the stochastic gener-
ator of the effective process at s = E/2 [4]. Since at s = E/2
the effective process is in equilibrium, the detailed-balance
condition has to be recovered; i.e.,

PTTI

(
c,

E

2

)
ωeff

c→c′

(
E

2

)
= PTTI

(
c′,

E

2

)
ωeff

c′→c

(
E

2

)
.

Using Eqs. (12), (13), and (14) one can readily find

ωc→c′e− E
2 θc→c′

ωc′→ce
− E

2 θc′→c

=
〈
�̃∗(E

2

)∣∣c〉〈c′∣∣�∗(E
2

)〉
〈
�̃∗(E

2

)∣∣c′〉〈c∣∣�∗(E
2

)〉 .
Comparing this relation with Eq. (4), we also find

Peq(c) =
〈
c
∣∣�∗(E

2

)〉
〈
�̃∗(E

2

)∣∣c〉 .
Note that we have [5]

PTTI

(
c,

E

2

)
=

〈
c

∣∣∣∣�∗
(

E

2

)〉〈
�̃∗

(
E

2

)∣∣∣∣c
〉
.

Finally, at s = 0, the relation Eq. (16) becomes

ωeff
c→c′(E) = ωc′→c

P ∗(c′)
P ∗(c)

, (18)

in which ωc′→c’s and P ∗(c) are the transition rates and the
steady-state probability distribution of our original nonequi-
librium process.

III. AN EXACTLY SOLVABLE EXAMPLE

In what follows we use Eq. (18) to investigate the effective
dynamics at s = E of an exactly solvable coagulation-
decoagulation model of classical particles on a one-
dimensional lattice of length L with reflecting boundaries.
The system evolves in time according to the following reaction
rules:

A + A → ∅ + A with rate q−1,

A + ∅ → ∅ + A with rate q−1,

A + A → A + ∅ with rate q,

∅ + A → A + ∅ with rate q, (19)

∅ + A → A + A with rate �q,

A + ∅ → A + A with rate �q−1,

where A and ∅ stand for the presence of a particle and a
vacancy at a given lattice-site, respectively. There is no input
or output of particles at the boundaries. We assume that q � 1
and � > 0. The steady-state properties of the model have
been studied in detail using different techniques [24–27]. The
full spectrum of the stochastic generator and also the density
profile of the particle in the steady-state have been calculated
exactly [24,25]. The stochastic generator of the system is
reducible. The system does not evolve in time if it is completely
empty. However, there is a nontrivial steady-state where there
is at least one particle on the lattice. It is known that in the
nontrivial case the system undergoes a phase transition from
a high-density phase (q2 < 1 + �) into a low-density phase
(q2 > 1 + �) at q2 = 1 + �. Last but not least, it has been
shown that the steady-state of this system can be written as a
linear superposition of shocks that perform random walk on
the lattice [27].

In Ref. [28] the authors have shown that one can define
an entropic reaction-diffusion current in this system with the
Gallavotti-Cohen symmetry respecting to the conjugate field
E = ln q2. Assigning an occupation number ci to the lattice
site i, we assume that ci = 0 (ci = 1) corresponds to the
presence of a vacancy (particle) at the lattice-site i. The vector
space of each lattice site is two-dimensional with the basis
vector |ci = 1〉 = (0

1

)
and |ci = 0〉 = (1

0

)
. The configuration

space of the system (C2)
⊗L

is 2L-dimensional. The modified
Hamiltonian Ĥ(s) for this current should be written as

Ĥ(s) =
L−1∑
k=1

I⊗(k−1) ⊗ ĥ(s) ⊗ I⊗(L−k−1), (20)

052107-3



S. A. A. TEROHID, P. TORKAMAN, AND F. H. JAFARPOUR PHYSICAL REVIEW E 94, 052107 (2016)

FIG. 1. In (a) we have plotted the largest eigenvalue of Eq. (20) and in (b) its first derivative for L = 8, q = 2, and � = 0.5. For these
values of the reaction rates the system is in the low-density phase. We have also plotted the large deviation function of the current I (J ) in (c).

in which I is a 2 × 2 identity matrix in the basis (0,1) and that

ĥ(s) =

⎛
⎜⎜⎝

0 0 0 0
0 −q(� + 1) q−1es q−1es

0 qe−s −q−1(� + 1) qe−s

0 q�e−s q−1�es −q − q−1

⎞
⎟⎟⎠,

which is written in the basis (00,01,10,11).
In Fig. 1 we have plotted the numerically obtained largest

eigenvalue of Eq. (20) and its derivative and also the large
deviation function of the current for a system of size L = 8.
The quantity −d�∗(s)/ds at s = 0 gives the average current
in the steady-state J ∗, which can be calculated using a matrix
product method quite straightforwardly [25,29]. At s �= 0 the
quantity −d�∗(s)/ds gives the average of the current. At
s = s∗ = ln q2 the average current is −J ∗.

Let us briefly review the basics of the matrix product
method [29]. According to this method the steady-state proba-
bility distribution of a given configuration c = {c1, . . . ,cL} is
given by

P ∗(c) = 〈c|P ∗〉 ∝ 〈W |
L∏

i=1

(ciD + (1 − ci)E)|V 〉, (21)

in which E and D are noncommuting square matrices while
〈W | and |V 〉 are vectors. These matrices and vectors satisfy
a quadratic algebra, which has a four-dimensional matrix
representation [25]. Using Eq. (21) one can, in principle,
calculate the average of any observable in the steady-state
including the reaction-diffusion current explained before. This
has actually been done in Ref. [28], hence the average current
at s∗ is exactly known.

In a separate work [27], it has been found that the process
defined by Eq. (19) has the following property: it has an
invariant state space under the evolution generated by Ĥ(0) in
Eq. (20). This state space consists of product shock measures
with two shock fronts at the lattice sites i and j , where
0 � i � j − 1 � L. Note that the lattice sites 0 and L + 1 are
auxiliary lattice sites to have a well-defined shock measure.
The structure of the product shock measure is

|i,j 〉 =
(

1
0

)⊗i

⊗
(

1 − ρ

ρ

)⊗j−i−1

⊗
(

1
0

)⊗L−j+1

, (22)

in which ρ = �/(1 + �), so that

Ĥ(0)|i,j 〉 =
∑
i ′,j ′

χi ′,j ′ |i ′,j ′〉. (23)

The coefficients χi ′,j ′ are explicitly given in Ref. [27]. It has
been shown that the shock fronts at two lattice sites i and j

perform simple random walk on the lattice. More precisely,
while for q > 1 the left shock front is always biased to the left,
the bias of the right shock front depends on the values of both
q and �. For q2 > 1 + �, the right shock front is biased to the
left while for q2 < 1 + � the right shock front is biased to the
right. Moreover, using Eq. (23) the steady state of the system
can be constructed as a linear superposition of the states of
type Eq. (22) with exactly known coefficients. It is clear that
|P ∗〉 = |�∗(s = 0)〉.

It is not difficult to check that at s∗ we have

Ĥ(s∗)|i,j 〉 = q|i + 1,j 〉 + q−1(1 + �)|i − 1,j 〉
+ q(1 + �)|i,j + 1〉 + q−1|i,j − 1〉
− (q + q−1)(2 + �)|i,j 〉,

for i = 1, . . . ,L − 2

and j = i + 2, . . . ,L,

Ĥ(s∗)|0,j 〉 = q(1 + �)|0,j + 1〉 + q−1|0,j − 1〉
− (q + q−1(1 + �))|0,j 〉,

for j = 2, . . . ,L,

Ĥ(s∗)|i,L + 1〉 = q|i + 1,L + 1〉
+ q−1(1 + �)|i − 1,L + 1〉
− (q−1 + q(1 + �))|i,L + 1〉,

for i = 1, . . . ,L − 1,

Ĥ(s∗)|i,i + 1〉 = 0, for i = 0, . . . ,L,

Ĥ(s∗)|0,L + 1〉 = 0. (24)

These relations mean that as long as the shock fronts are far
from the boundaries of the lattice, i.e., i �= 0 and j �= L + 1,
they show the same simple random walk behavior. However,
as soon as the right (left) shock front attaches to the right (left)
boundary, it will not detach (reflect) from there. In other words,
the following product measure,

|0,L + 1〉 =
(

1 − ρ

ρ

)⊗L

, (25)

is the right eigenvector of Ĥ(s∗) with zero eigenvalue that
is we have |�∗(s∗)〉 = |0,L + 1〉. We can also calculate the
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elements of the left eigenvector of Ĥ(s∗) as follows:

〈�̃∗(s∗)|c〉 = 〈W | ∏L
i=1(ciD + (1 − ci)E)|V 〉

Zρ
∑L

i=1 ci (1 − ρ)L−∑L
i=1 ci

, (26)

where the normalization factor Z, which is given by
〈W |(D + E)L|V 〉, can be calculated using the matrix rep-
resentation of the algebra given in Ref. [25].

From Eq. (15) at s = 0 one can easily see that Ĥeff(s∗)
and Ĥeff(0) have exactly the same right eigenvector with zero
eigenvalue:

|P TTI(s = 0)〉 = |P TTI(s = s∗)〉.
Using Eq. (18) one can easily recognize that the effective

transition rates at s∗ depend on both the initial and final
configurations. On the other hand, they can be calculated
exactly using the matrix product method explained earlier.
For two arbitrary configurations, c = {c1, . . . ,cL} and c′ =
{c′

1, . . . ,c
′
L}, we have

ωeff
c→c′ (ln q2) = ωc′→c

〈W | ∏L
i=1(c′

iD + (1 − c′
i)E)|V 〉

〈W | ∏L
i=1(ciD + (1 − ci)E)|V 〉 . (27)

Because of the local interaction nature of the original process,
c and c′ are different from each other only in the configurations
of two consecutive lattice sites (say, i and i + 1)

· · · cici+1 · · · → · · · c′
ic

′
i+1 · · · .

As we mentioned, E and D do not commute with each other.
At the same time, neither the numerator nor denominator of
the fraction appeared in Eq. (27) can be decomposed into
productive factors so that the final result depend only on the
local configurations. This means that the interactions in the
effective process at s∗ are nonlocal yet the effective transition
rates can be calculated exactly. In what follows we will
give an explicit example by considering the initial and final
configurations as

c ∅ . . . ∅︸ ︷︷ ︸
i−1

A∅ . . . ∅︸ ︷︷ ︸
j−i−1

A∅ . . . ∅︸ ︷︷ ︸
L−j

and

c′ ∅ . . . ∅︸ ︷︷ ︸
i

A∅ . . . ∅︸ ︷︷ ︸
j−i−2

A∅ . . . ∅︸ ︷︷ ︸
L−j

,

respectively. This indicates the diffusion of the leftmost
particle to the right. One can now write

ωeff
c→c′ = q

〈W |EiDEj−i−2DEL−j |V 〉
〈W |Ei−1DEj−i−1DEL−j |V 〉 . (28)

This expression can be calculated exactly using the matrix
representation of the operators and vectors. It turns out that
the final result depends on i (or i and j ) explicitly. Since the
mathematical expression is rather complicated, we have plot-
ted Eq. (28) in Fig. 2 for the system in the low-density phase.

For q = 2 the diffusion rate to the right in the original
process is 0.5. However, as it can be seen in Fig. 2 the diffusion
rate to the right can be as large as 2 depending on the lattice-site
numbers i and j . In contrast in the high-density phase where
q2 < 1 + �, the effective diffusion rate to the right is almost
constant and independent of i and j except where i and j are
very close to each other.

FIG. 2. Density plot of Eq. (28) as a function of i and j for
L = 500, q = 2, and � = 0.5.

IV. CONCLUDING REMARKS

In this paper we have investigated the connection between
the stochastic generators of effective processes corresponding
to two specific atypical values of an entropic current with the
Gallavotti-Cohen symmetry. For a specific family of processes
we have shown that the effective stochastic generators at
the points s and E − s are enantiodromic with respect to
each other. These two generators have the same spectrum
and the same steady states; however, one of them generates
the process backward in time with respect to the other
one. It is important to note that the characteristics of the
interactions corresponding to these points could be completely
different as we have shown in an exactly solvable example
with nonconserving dynamics, including coagulation and
decoagulation processes on a one-dimensional lattice with
reflecting boundaries. Although the original model includes
nearest-neighbor interactions, we have shown that the adjoint
process consists of nonlocal interactions.

The Gallavotti-Cohen symmetry has been observed in
the systems for which the characteristic polynomial of the
modified Hamiltonian is symmetric with respect to some
external field. However, there are also situations in which
only the dominant eigenvalue of the modified Hamiltonian
is symmetric. On the other hand, it has been shown that under
some conditions on the structure of the configuration space
and the reaction rates, the large deviation functions for the
probability distributions of time-integrated currents satisfy a
so-called Gallavotti-Cohen-like symmetry [30]. It would be
interesting to investigate the connections between the effective
stochastic generators corresponding to specific fluctuations in
these cases.
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