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The helical magnetorotational instability is known to work for resistive rotational flows with comparably
steep negative or extremely steep positive shear. The corresponding lower and upper Liu limits of the shear
are continuously connected when some axial electrical current is allowed to flow through the rotating fluid.
Using a local approximation we demonstrate that the magnetohydrodynamic behavior of this dissipation-induced
instability is intimately connected with the nonmodal growth and the pseudospectrum of the underlying purely
hydrodynamic problem.
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The magnetorotational instability (MRI) [1] is believed
to trigger turbulence and transport of angular momentum in
magnetized accretion disks [2]. The typical Keplerian rotation
of the disks belongs to a wider class of flows with decreasing
angular velocity and increasing angular momentum that are
Rayleigh-stable [3], but susceptible to the standard version
of MRI (SMRI), with a vertical magnetic field Bz imposed
on the rotating flow. For SMRI to operate, both the rotation
period and the Alfvén crossing time (equal to the ratio of
characteristic scale of the system and Alfvén velocity) have to
be shorter than the time scale for magnetic diffusion [4]. For
a disk of scale height H , this implies that both the magnetic
Reynolds number Rm = μ0σH 2� and the Lundquist number
S = μ0σHvA must be larger than 1 (� is the angular velocity,
μ0 the magnetic permeability, σ the conductivity, and vA the
Alfvén velocity).

These conditions are safely fulfilled in well-conducting
parts of accretion disks. The situation with SMRI is less clear in
the “dead zones” of protoplanetary disks, in stellar interiors,
and in the liquid cores of planets, because of low magnetic
Prandtl numbers Pm = ν/η there, i.e., the ratio of viscosity
ν to magnetic diffusivity η = (μ0σ )−1 [5,6]. Moreover, in
compact objects, such as stars and planets, even the condition
of decreasing angular velocity, necessary for SMRI, is not
everywhere fulfilled: a counterexample is the equator-near
strip of the solar tachocline [7], which is also the region of
sunspot activity [8].

The helical version of MRI (HMRI) is interesting both with
respect to the low-Pm problem as well as for regions with
positive shear. Adding an azimuthal magnetic field Bφ to Bz,
Hollerbach and Rüdiger [9] had shown that this dissipation-
induced instability works also in the inductionless limit,
Pm = 0, and scales with the Reynolds number Re = RmPm−1

and the Hartmann number Ha = S Pm−1/2, in contrast to SMRI
that is governed by Rm and S. Soon after, Liu et al. [10] showed
that HMRI is restricted to rotational flows with negative shear
slightly steeper than the Keplerian, or extremely steep positive
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shear. Specifically, their short-wavelength analysis gave a
threshold of the negative steepness of the rotation profile �(r),
expressed by the Rossby number Ro = r(2�)−1∂�/∂r , of
RoLLL = 2(1 − √

2) ≈ −0.8284, and a corresponding thresh-
old of the positive shear, at RoULL = 2(1 + √

2) ≈ 4.8284
(LLL and ULL refer to the lower and upper Liu limits,
respectively).

Surprisingly, the same Liu limits were later found [11,12] to
apply also to the azimuthal MRI (AMRI)—a nonaxisymmetric
“sibling” of the axisymmetric HMRI that prevails for large
ratios of Bφ to Bz [13]. Recently, the destabilization of
steep positive shear profiles by purely azimuthal fields was
demonstrated by means of both a short-wavelength analysis
[14] and a one-dimensional stability analysis for a Taylor-
Couette flow with narrow gap [15].

By allowing axial electrical currents not only at the
axis, but also within the fluid, i.e., by enabling the radial
profile Bφ(r) to deviate from the current-free case ∝1/r ,
it was recently shown [12] that the LLL and the ULL are
just the end points of one instability curve in a plane that
is spanned by Ro and a corresponding steepness of the
azimuthal magnetic field, called magnetic Rossby number,
Rb = r(2Bφ/r)−1∂(Bφ/r)/∂r . In the limit of large Re and
Ha, this curve acquires the closed form

Rb = −1

8

(Ro + 2)2

Ro + 1
. (1)

A consequence of this curve is that the strictness of the lower
Liu limit RoLLL = −0.828, which would prevent Keplerian
profiles RoKep = −0.75 from being destabilized by HMRI or
AMRI, could be relaxed if only a small amount of the axial
current is allowed to pass through the liquid. This effect is now
to be investigated in a planned liquid sodium Taylor-Couette
experiment [16], which will combine and enhance the previous
experiments on HMRI [17], AMRI [18], and the kink-type
Tayler instability [19].

Apart from these interesting achievements, the very ex-
istence of the two Liu limits has remained an unexplained
conundrum. This Rapid Communication aims at linking these
magnetohydrodynamic features to the nonmodal dynamics of
perturbations in the purely hydrodynamic case.
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The nonmodal approach to the stability analysis of shear
flows focuses on the finite-time dynamics of perturbations,
accounting for transient phenomena due to the shear-induced
non-normality of the flow [20–24], in contrast to the canonical
modal approach, which is concerned with the behavior at
large times. It consists in calculating the optimal initial
perturbations with a given positive norm that lead to the
maximum possible linear amplification during some finite
time. In self-adjoint problems, the perturbations that undergo
the largest amplification are essentially the most unstable
normal modes. By contrast, in non-self-adjoint shear flow
problems, the normal mode eigenfunctions are nonorthogonal
due to the non-normality, resulting in transient, or nonmodal
growth of perturbations, which can be substantially higher
than that of the most unstable normal mode [22,25]. So,
leaving out the effects of the non-normality can lead to an
incomplete picture of the overall dynamics (stability) of shear
flows.

Our main goal is to examine the nonmodal dynamics
of HMRI in differentially rotating flows, which represent a
special class of shear flows, for which the non-normality
inevitably plays a role. This can result in growth factors over
intermediate (orbital) times larger than the modal growth of
HMRI. Recently, the nonmodal dynamics of SMRI was studied
in [25,26]; the present study extends these investigations to
the highly resistive, or low-Pm regime, where only HMRI
survives.

We start with the equations of nonideal magnetohydrody-
namics for incompressible conductive media,

∂u
∂t

+ u · ∇u = − 1

ρ
∇

(
p + B2

2μ0

)
+ B · ∇B

μ0ρ
+ ν∇2u, (2)

∂B
∂t

= ∇ × (u × B) + η∇2B, (3)

∇ · u = 0, ∇ · B = 0, (4)

where ρ is the constant density, p is the thermal pressure, u is
the velocity, and B is the magnetic field.

An equilibrium flow represents a fluid rotating with angular
velocity �(r) and threaded by a magnetic field, which
comprises a constant axial component B0z and an azimuthal
one B0φ with arbitrary radial dependence:

u0 = r�(r)eφ, B0 = B0φ(r)eφ + B0zez.

Consider now small axisymmetric (∂/∂φ = 0) perturbations
about the equilibrium, u′ = u − u0, p′ = p − p0, B′ = B −
B0. Following [10,12,27] we adopt a local Wentzel-Kramers-
Brillouin (WKB) approximation in the radial direction around
some fiducial radius r , i.e., we assume perturbation length
scales much shorter than the characteristic lengths of radial
variations of the equilibrium quantities, and represent pertur-
bations as u′,B′ ∝ exp(ikrr + ikzz), with axial kz and large
radial kr wave numbers, rkr � 1. Linearizing Eqs. (2)– (4)
about the equilibrium and normalizing time by �−1, we arrive
at the following equations for the perturbations (see [12,25]
for details):

dψ

dt
= A · ψ, (5)

where ψ ≡ (u′
r ,u

′
φ,B ′

r ,B
′
φ) is the state vector and the evo-

lution matrix operator A, which is independent of time for
axisymmetric perturbations, is given by [the factor (μ0ρ)−1/2

is absorbed in the magnetic field]

A =

⎛
⎜⎜⎜⎜⎝

− 1
Re 2α2 iωz −2ωφα2

−2(1 + Ro) − 1
Re 2ωφ(1 + Rb) iωz

iωz 0 − 1
Rm 0

−2ωφRb iωz 2Ro − 1
Rm

⎞
⎟⎟⎟⎟⎠,

with α = kz/k, k2 = k2
r + k2

z , ωz ≡ kzB0z/�, and ωφ ≡
B0φ/r�. The Reynolds number, Re = �/νk2, and the mag-
netic Reynolds number, Rm = �/ηk2 are chosen as Re =
4000 and Rm = 0.012, to give a small magnetic Prandtl
number Pm = Rm/Re = 3 × 10−6 typical for liquid metals
and protoplanetary disks [5]. The strength of the imposed axial
field is measured by the Hartmann number Ha = ωz

√
ReRm,

which is fixed to Ha = 15, close to experiments [17], and the
azimuthal field by β = ωφ/ωz. HMRI is most effective for
β ∼ 1 [9,10,12]. We consider Rayleigh-stable rotation with
Ro > −1 and Rb < 0, since the axial current decreases with
radius. It can be shown that A is non-normal (non-self-adjoint),
i.e., does not commute with its adjoint, A† · A 
= A · A† and
the degree of the non-normality increases with shear (|Ro|).

We quantify the nonmodal amplification in terms of the
total perturbation energy, E = ρ

2 (|u′|2 + |B′|2) = ψ† · F †F ·
ψ , where F = √

ρ/2 diag(α−1,1,α−1,1), which is a phys-
ically relevant norm. The maximum possible, or optimal
growth at a specific time t is defined as the ratio G(t) =
maxψ(0) E(t)/E(0), where E(t) is the energy at t and the
maximization is done over all initial states ψ(0) with a
given initial energy E(0) (e.g., Ref. [22]). The final state
at t is found from the initial state at t = 0 by solving the
linear equation (5) and can be formally written as ψ(t) =
K(t) · ψ(0), where K(t) is the propagator matrix. Then, the
maximum possible amplification G(t) is usually calculated by
the singular value decomposition of K at t (e.g., Refs. [21–24]).
The square of the largest singular value gives the value of
G(t) and the corresponding initial condition that leads to this
growth (optimal perturbations) is given by the right singular
vector. Note again that the nonmodal approach combined with
the method of optimal perturbations is the most general way
of analyzing shear flow dynamics at all times, as opposed to
the modal approach, which concentrates only on the behavior
at asymptotic times and hence omits important finite-time
transient phenomena.

The modal analysis in the WKB approximation yields an
expression for the growth rate of HMRI in the relevant limit
of small Pm → 0 and small interaction parameter (Elsasser
number), Ha2/Re � 1, but large Re → ∞ [10,12]. When
maximized with respect to β (which is typically around unity),
this growth rate, given by Eq. (8.30) of [12], becomes (in units
of �)

γ = −Ha2

Re

[
(Ro + 2)2

8(1 + Ro)Rb
+ 1

]
, (6)

while the real part of the eigenfrequency is equal to the
frequency of inertial waves, ωiw = 2α

√
1 + Ro. Equation (6)

yields the stability boundary, Eq. (1), which indicates that
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FIG. 1. Maximum growth G(t) vs t at different (a) Ro =
−0.86, − 0.828 (LLL), −0.75 (Kepler) and (b) Ro = 3,4.828
(ULL),6. Other parameters are α = 1, Rb = −1. For each pair of
Ro and Rb, the parameter β is chosen such as to maximize the modal
growth rate for given other parameters.

for Rb = −1 the instability (i.e., γ > 0) exists at negative,
Ro < RoLLL = −0.828, and positive, Ro > RoULL = 4.828,
shear, while at larger −1 < Rb < 0, the stability region
shrinks and the instability extends beyond the Liu limits.
As a result, the modal growth of HMRI can also exist
for the Keplerian rotation (RoKep = −0.75) starting from
Rb = −0.781 [12].

Now we examine the nonmodal growth of HMRI versus
time. Figures 1 and 2 show the maximum energy growth
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FIG. 2. Maximum growth G(t) vs t at different Rb =
−1, −0.78, −0.6 and at fixed (a) RoKep = −0.75 and (b) Ro = 3
both with α = 1.

G(t) at modally stable and unstable Ro and Rb together with
the growth in the modally stable nonmagnetic case, where
only the nonmodal growth is possible. For comparison, the
dotted curve in Fig. 1(a) shows the modal growth factor of
the energy vs time, exp(2γ t), for the most unstable normal
mode at Ro = −0.86 with the corresponding growth rate γ

given by Eq. (6). In all cases, the initial stage of evolution is
qualitatively similar: the energy increases with time, reaches
a maximum Gm, and then decreases. This first nonmodal
amplification phase is followed by minor amplifications. Like
in the case of modal growth, the kinetic energy dominates over
the magnetic one also during nonmodal growth. As a result, the
duration of each amplification event is set by inertial waves:
the peak value Gm is attained at around one-quarter of the
wave period, tm ≈ π/2ωiw, similar to that in the nonmagnetic
case, although its value is smaller than that in the latter case.
At larger times, the optimal growth follows the behavior of
the modal solution—it increases (for Ro = −0.86,6), stays
constant (for the Liu limits, Ro = RoLLL,RoULL), or decays
(for Ro = −0.75,3), respectively, if the flow is modally
unstable, neutral, or stable; in the latter case HMRI undergoes
only transient amplification. This is readily understood: at
large times the least stable modal solution [with growth rate
given by Eq. (6)] dominates, whereas at small and intermediate
times the transient growth due the interference of nonorthog-
onal eigenfunctions is important. In particular, for the Liu
limits, where the modal growth is absent, there is moderate
nonmodal growth Gm(RoLLL) = 4.06, Gm(RoULL) = 5.46. A
similar evolution of axisymmetric perturbations’ energy with
time for HMRI was already found in [28], where also the
physical mechanism of HMRI was explained in terms of an
additional coupling between meridional and azimuthal flow
perturbations. Importantly, in Fig. 1, G at modally stable and
unstable Rossby numbers are comparable and several times
larger than the modal growth factors during the same time.
Indeed, at Ro = −0.86, the nonmodal growth achieves the first
peak Gm = 4.68 at tm = 1.86, while from the dotted curve in
Fig. 1(a), which shows the growth of the most unstable mode
at the same Ro, we see that by time tm the energy of the latter
would have grown only by a factor of exp[2γ (Ro)tm] = 1.034.
This also implies that in the Keplerian regime, where there is no
modal growth of HMRI for Rb = −1, it still exhibits moderate
nonmodal growth [red curves in Figs. 1(a) and 2(a)]. It is seen
from Fig. 2 that Gm is almost insensitive to Rb, but its effect
becomes noticeable as time passes. Decreasing the slope at
a given Ro increases the optimal growth and at large times
renders the flow modally unstable.

The other notions used to characterize the nonmodal growth
and its connection with the results of modal analysis are
the pseudospectra and numerical range of the non-normal
operator A [22–24]. The maximal protrusion of the numer-
ical range into the upper (unstable) half in the complex
ω plane —a numerical abscissa, λ—defines the maximum
growth rate at the beginning of evolution (at t = 0+), 2λ =
maxψ(0) E(t)−1dE(t)/dt |t=0+ . On the other hand, the extent to
which the pseudospectra contours penetrate into the upper half
of the ω plane determines the amount of transient amplification
over time. This is quantified by the Kreiss constant K =
maxIm(ω)>0 Im(ω)‖(A + iωI)−1‖, where I is the unit matrix
and ‖ · ‖ denotes an appropriately defined norm [22,23].
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FIG. 3. Isolines at ε = 100.25,100.4,100.55, . . . ,103.1 show the ε

pseudospectra of the A matrix in the complex ω plane for Rb =
−1, α = 1 and RoKep = −0.75. The circle indicates the complex ωK

corresponding to the Kreiss constant. The gray curve shows numerical
range and the dot on it is the numerical abscissa. Four black dots
represent the eigenvalues of the normal modes.

It provides a lower estimate for the maximum nonmodal
amplification of energy over time, i.e., maxt>0 G(t) � K2

[22,24].
Figure 3 shows the normal mode spectra of Eq. (5) and the

associated pseudospectra in the ω plane at RoKep = −0.75,
where all the eigenfrequencies (black dots) are in the lower
half plane, indicating modal stability against HMRI. The mode
which is closer to the Im(ω) = 0 axis will first cross it and
exhibit HMRI as Ro changes beyond the Liu limits, while
the other two modes far in the lower half plane are rapidly
damped magnetic (SMRI) modes. The numerical abscissa and
the frequency, ωK, resulting in the Kreiss constant, lie in the
upper plane, which indicates that the nonmodal amplification
larger than K2 occurs over intermediate times.

Figure 4, which illustrates our central result, shows (a)
the numerical abscissa λ, (b) the Kreiss constant K, (c)
the maximum growth Gm for Rb = −1 as well as in the
nonmagnetic case, and (d) the modal growth rate γ given
by Eq. (6) at Rb = −1, −0.8, −0.6 versus Ro. The numerical
abscissa, giving the initial optimal growth rate of the energy,
is equal to |Ro|, i.e., to the maximum growth rate of ideal
SMRI (see Ref. [25]) despite the high resistivity of the flow.
Gm increases linearly with Ro at Ro > 0 and much steeper at
Ro < 0 which can be well approximated by ∝ (1 + Ro)−0.78.
For comparison, in this plot we also show the maximum
transient growth factor for axisymmetric perturbations in
the nonmagnetic case, G(h)

m = (1 + Ro)sgn(Ro), from [29]. So,
although Gm in the magnetic case is slightly smaller than that
in the nonmagnetic one, the two curves are in fact close to each
other and display nearly the same behavior with Ro, a feature
that is also shared by the Kreiss constant (b). Note that the
dependencies of Gm, G(h)

m [Fig. 4(c)] and of the modal growth
rate γ [Fig. 4(d)] on Ro have very similar shapes. Remarkably,
the latter, being given by Eq. (6), can be expressed in terms of
the hydrodynamic nonmodal growth G(h)

m = (1 + Ro)sgn(Ro) in
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FIG. 4. (a) Numerical abscissa, λ, (b) Kreiss constant, K, (c)
Gm for HMRI at Rb = −1 as well as in the nonmagnetic case, and
(d) modal growth rate γ of HMRI from Eq. (6) vs Ro at different
Rb = −1, −0.8, −0.6 and α = 1.

the closed form (for Rb = −1)

γ = Ha2

Re

[(
G(h)

m + 1
)2

8G
(h)
m

− 1

]
, (7)

which is indeed proportional to G(h)
m for larger values. Both Liu

limits are therefore connected with a corresponding threshold
G(h)

m (RoLLL) = G(h)
m (RoULL) = 5.828.

In this Rapid Communication, we have investigated the
nonmodal dynamics of HMRI due to the non-normality of a
magnetized shear flow with large resistivity. The nonmodal
growth of HMRI is generally several times larger than its
modal growth during the dynamical time. Notably, in the
case of current-free azimuthal field, the moderate nonmodal
growth also occurs in the Keplerian regime, where the modal
HMRI is nonexistent (Fig. 1). As illustrated in Fig. 4 and
quantified exactly in Eq. (7), the modal growth rate of HMRI
displays a very similar dependence on Ro as the maximum
nonmodal growth in the purely hydrodynamic shear flow,
which indicates a fundamental connection between nonmodal
dynamics and dissipation-induced modal instabilities, such as
HMRI. Both, despite the latter being magnetically triggered,
rely on hydrodynamic means of amplification, i.e., extract
energy from the background flow mainly by Reynolds stress
due to shear [28].

Because of the general character of linear equation (5)
the results obtained here can, in principle, apply to any
differentially rotating magnetized cylindrical flow system with
viscosity and resistivity threaded by helical magnetic field.
Such systems are ubiquitous, ranging from laboratory [17,18]
to liquid cores of planets, stars, and protoplanetary disks.
It is the differential rotation (shear) that plays a pivotal
role, and all these objects involve this type of nonuniform
motion to various extents. MRI was already examined in the
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resistive liquid core of the Earth [6] and in stars [7,30–32] by
means of the modal approach, thereby missing out nonmodal
effects.

The next step will be to generalize the nonmodal analysis
to AMRI, which consists in the growth of nonaxisymmetric
perturbations. Recently, it was shown in [33] that in a hydrody-
namic Taylor-Couette flow the effects of non-normality play
an important role, resulting in large (∼Re2/3) transient ampli-
fication of nonaxisymmetric modes. Since the amplification in

the highly resistive regime is determined by velocity shear, it
is expected that the non-normality will influence AMRI too,
although the dynamics is more complex compared to that for
axisymmetric HMRI due to the time dependence of the radial
wave number.

This work is supported by Alexander von Humboldt
Foundation and German Helmholtz Association in the frame
of Helmholtz Alliance LIMTECH.
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