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Emergent interparticle interactions in thermal amorphous solids
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Amorphous media at finite temperatures, be them liquids, colloids, or glasses, are made of interacting particles
that move chaotically due to thermal energy, continuously colliding and scattering off each other. When the
average configuration in these systems relaxes only at long times, one can introduce effective interactions that

keep the mean positions in mechanical equilibrium. We introduce a framework to determine the effective
force laws that define an effective Hessian that can be employed to discuss stability properties and the density
of states of the amorphous system. We exemplify the approach with a thermal glass of hard spheres; these
experience zero forces when not in contact and infinite forces when they touch. Close to jamming we recapture
the effective interactions that at temperature 7' depend on the gap & between spheres as 7'/ h [C. Brito and M.
Wyart, Europhys. Lett. 76, 149 (2006)]. For hard spheres at lower densities or for systems whose binary bare
interactions are longer ranged (at any density), the emergent force laws include ternary, quaternary, and generally
higher-order many-body terms, leading to a temperature-dependent effective Hessian.
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I. INTRODUCTION

The experimental determination of the interparticle forces
in amorphous glassy systems is a nontrivial challenge that
has motivated a great deal of effort both in athermal granular
systems [1-3] and in thermal systems such as colloids [4-8].
The aim of this Rapid Communication is to introduce a
method to determine the emergent force laws of the effective
interactions between particles in thermal amorphous systems,
especially in systems where direct measurements are either
very difficult or even impossible. The suggested approach is
only relevant for thermal amorphous systems that are arrested
in the sense that the thermal dynamics of every particle
is restricted to vibrations within a cage. We thus aim at
glassy systems, at temperatures below the glass transition,
or colloids at densities sufficiently high to suppress diffusion
for sufficiently long times. Thus the basic prerequisite for the
discussion below is the possibility to measure the average
positions of the particles in the amorphous system, usually
by averaging over the trajectory of each particle for times
that are sufficiently long to produce a converged answer,
but shorter than any relaxation time that destroys the cage
structure to allow diffusion of the particles outside their cages.
Denote then, in a system of N particles at temperature 7', the
average positions of the particles by {r'i}fv= - These average
positions define a configuration that is time independent. It is
therefore legitimate and useful to ask what the effective forces
are that are holding the configuration in force balance [9]. In
the present Rapid Communication we exemplify the approach
with thermal hard spheres near jamming and at lower densities.
We will find that near jamming there exist almost only binary
interactions and therefore binary effective forces f;; are
sufficient [10]. For hard sphere at lower densities and for
systems with binary longer-range bare interactions, emergent
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binary forces are not sufficient. Generically, the emergent
effective forces will include also ternary, quaternary, and
generally higher-order interactions.

Needless to say, the effective forces will generically turn
out to be dependent on both the temperature and the density
of the amorphous glass. However, once determined, they can
be manipulated in much the same way as the given forces
of athermal systems, including the availability of an effective
Hessian from which one can determine stability properties
and the density of states. The definition of such effective
interactions opens a useful path for the discussion of thermal
amorphous systems using a host of methods developed in the
context of athermal systems.

II. THEORY: DETERMINING THE EFFECTIVE FORCES

When only binary effective forces are needed, the necessary
algorithm for determining them had been already developed
elsewhere [11] and it will only be summarized here briefly.
Below we will extend the formalism for cases that call for
higher-order effective interactions. To keep the notation as
simple as possible, we describe the algorithm for systems in
two dimensions [12], with an obvious generalization to three
dimensions. The mechanical equilibrium constraints for the
average positions read

M| fij) =0, (D

where | fi;) is a vector whose entries are the magnitudes of
the ¢ interparticle central forces f;;. The number ¢ depends
on the density and on the temperature. For simplicity we
assume here periodic boundary conditions; otherwise walls
introduce external forces that can be easily taken into account
(cf. Ref. [11]). The matrix M contains the x and y components
of the unit vectors #i;; = r;;/r;j, with r;; being the vector
distances between the particle positions r;; = r; — r ;. Explicit
examples of such a matrix can be found in Ref. [13].
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Next the interparticle force magnitudes are presented as
Taylor-Laurent polynomials

123

AB AB AB\k

ij :Zak (’ij_"o ) 2)
k=¢,

where £,,£, are the most negative and most positive powers in
the expansion, respectively. Below we will define the number
of terms in the expansionas { = ¢, — £; + 1. Here A B denotes
the interaction type. For example, in the case of a binary system
these willbe AA, BB, and A B, as determined by the nature of
the particles 7, j. In general we can have n types of particles.
Further, r(‘)“B are the positions of the possible singularities
around which we expand the forces for each type of interaction.
The coefficients a{'® can be grouped into a vector |a) of
size n(n + 1)¢/2 and the force vector can now be written
as

Ifij) = Sla), 3)

where S is the appropriate ¢ x n(n + 1)£/2 matrix containing
the Taylor-Laurent monomials.

To have a unique solution for the coefficients of the
Taylor-Laurent expansion we need to fix one scale parameter.
While in experiment we would measure the pressure (see
Ref. [11] for details), in simulation of hard spheres we
have to calculate the impulse applied in collisions (divided
by duration) ZAp,-j/At, where the sum is over all the
collisions of the same pair of particles and At is the time of
measurement. Given the vector distances between the average
position of the particles, say, r;; we can calculate the virial v

as
v= <rij ZApij/At>. 4

The problem of finding the effective forces then takes the form

0
M\ . (MS\la)_. . [.]_
((I’iﬂ)'ﬁ]) B ((rij|S> =Yla)=1: =1, )
v

where Y is a (2N + 1) x £ matrix. We now multiply by Y7
from the left

Y'Y|a) = YT |t). (6)

The set of unknown coefficients |a) is then solved for using
standard least-squares methods.

One should note at this point that indeed the calculation
of the impulse } Ap,;/At provides a direct measurement
of the effective forces between particles (see, for example,
Refs. [14,15]). The procedure proposed here provides, how-
ever, the emergent effective force laws and not just the forces.
Moreover, while in numerical simulations the measurement of
the impulse is possible, it would be a hopeless proposition in
any experimental setting, where nevertheless the measurement
of the pressure and mean positions are readily available. The
method proposed here remains valid when the pressure instead
of the virial is provided (cf. Ref. [11]).
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III. EXAMPLE: THERMAL HARD SPHERES

To exemplify the above procedure we choose a two-
dimensional hard-sphere event-driven simulation of over 107
collisions with a system size of N =400 particles with
periodic boundary conditions. The particles follow ballistic
trajectories until they make contact and undergo an elastic
collision. The particle radii R are slightly polydispersed around
a binary distribution with mean values and standard deviation
of (Ry) = 0.5,0r, = 0.0081, (Rg) = 0.7,and o, = 0.0123.
A jammed state is used as the initial configuration to be
expanded as explained below. The system has constant volume
V and a constant energy 7 = 1 (in units for which Boltzmann
constant is unity), with the initial momenta | p) of the particles
chosen randomly, with constant distributions on p, and p,
separately in the interval [—1,1), subject to the constraint that
T = m(p|p). In hard spheres the temperature only sets the
time scales, so we set 7 = 1 and run the system at different
densities as determined by the volume. To analyze systems
with different packing fractions, the jammed state is expanded
during the initialization of the simulation. Expansions from
an initial box of length L, to length L are applied such
that

L = Lipi(1 +€), (N

with € between 107> and 5.5 x 1072. The average positions are
determined using averaging times that are well below the time
for which particle diffusion destroys the meaning of the mean
positions, but higher than the typical time between collisions.
In practice, this means that we are limited in choosing the
values of € in Eq. (7). For value of ¢ > 5.5 x 102 we cannot
determine the mean positions of the particles with sufficient
accuracy. To ensure that early dynamics due to the initial
expansion do not affect the analysis, the first configuration
of a simulation is discarded. To ensure that the noisy transition
events from one stable configuration to another [14,15] do not
affect the analysis, the first 10* collisions in the analyzed stable
configuration are discarded.

For densities very close to jamming one expects the
effective forces to remain binary [14,15]. In hard spheres the
energy is simply 7. If one assumes that the only important
scale is the gap h between close-by particles, dimensional
considerations predict that the effective forces would be simply
T/ h. As shown below, this simple assumption is likely to fail
at lower densities [14,15]. We first examine the efficacy of
our proposed method in supporting this binary effective force
law.

IV. RESULTS

A. Binary effective forces

Having computed the average positions of the centers of
mass r; of all the N particles, we determine the vector distances
r;; and relative gaps between particles as h;;, where

hlel",j—Rl—RJ (8)
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Identifying in Eq. (2) r§'® = R} + R?, we rewrite that
equation in the form '

2]

£ = "atPh;. ©)

k=t

This simplifies the S matrix in the present problem to the
monomials in the gap values hf.‘j. For hard disks we expect that
the effective interactions will depend only on the gap 4;; and
we can simplify things further by dropping the distinction
between particles of different size and the superscripts A,

10°

10"k

FIG. 1. Shown on top is a comparison of the computed effective
forces for € = 107*. The blue line shows the results obtained from
the present algorithm, i.e., 7/ h;;. The red dots show the results of
estimating the forces from the direct momentum transfer method.
For small values of h;; the agreement is excellent; it deteriorates at
higher values. The black dashed line is the expected result C/h;;,
with C > T to allow comparison. The bottom panel shows the same
data plotted after excluding any particle pair that collided less than
100 times during the measurement period and the corresponding
measured forces.
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B, and AB. Taking then, for example, six monomials in
Eq. (9) with £; = —3 and ¢, = 3 (without a constant term),
we solve the problem set by Eq. (6) and find thata_; ~# T =1
and all the other coefficients vanish to high accuracy (better
than 10~°). This result should be compared with the direct
measurement of the effective forces between the particles,
which, as said above, can be evaluated from the momentum
transfer, following verbatim the approach of Refs. [14,15].
The blue line in the top panel of Fig. 1 represents the
solution described here for € = 10~* and the red dots are the
estimates from the direct momentum transfer method. The
black dashed line represents the law C/h;; and coincides
with the predicted emergent force law when C = T. The
deviation of the red dots from the observed law indicates
inaccuracies in the direct simulation that occur at larger values
of h;;. We have checked and determined that the infrequent
collisions between spheres separated by high gaps cause the
decline in accuracy of the direct measurements of the effective
forces. The mean number of collisions between pairs in this
simulation is 11547. By demanding that there should be at
least 100 collisions between an ij pair whose force f;; is
taken into account, we obtain the comparison shown in the
bottom panel of Fig. 1. The improvement in agreement is
obvious.

The first sign that these results are not necessarily generic
appear while trying to repeat the same calculation for thermal
glasses with Lennard-Jones bare forces. The effective binary
forces contain a large number of Taylor-Laurent coefficients
but fail to satisfy the mechanical constraints (1). The reason
for this failure is deep. In the algorithm proposed above we
allow only binary effective forces, with flexible Taylor-Laurent
expansions, but only binary. This is appropriate in the dense
hard sphere example since there are almost only binary
interactions. In Lennard-Jones glasses even in very dense
packings, any momentum exchange between two particles
is strongly effected by other particles residing within the

FIG. 2. Comparison of the measured forces (red dots) and the
best fit to binary forces (dashed black line), for € = 1072, The
measured forces are no longer a graph of &;; since they reflect the
existence of multiple-body interactions. The dashed line is a graph
by construction, but obviously it does not represent the data well (see
also Fig. 3).
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FIG. 3. Net forces on each particle, rescaled by T'/(h;;). We have
reordered the indices of the particles according to the increasing
magnitude of the net force. Black circles show the net forces computed
from the best binary approximation. Blue squares represent the net
forces computed with binary and some ternary contributions. The
addition of even a limited number of ternary interactions improves
the approximation.

interaction distance. Accordingly, we expect that the emergent
effective interactions will contain ternary, quaternary, and
higher-order terms, depending on the density, the range of
interactions, and probably the temperature. In fact, the same
issues appear also for hard spheres when we reduce the density,
as we demonstrate next.

B. Binary and ternary effective forces

Reducing the density of the thermal hard spheres by
using an expansion € = 1072 in Eq. 7 changes the situation
altogether. First, the direct measurements of the forces do
not yield a function of A4;;. This is demonstrated in Fig. 2,
where the red dots represent the forces measured directly from
momentum transfer, plotted against /;;. The data scatter since
not only are the forces functions of £;;, but they are functions
of more variables and do not fall on a graph as a function
of h;;. Trying to fit the “best” binary forces f;; results in the
black dashed line in Fig. 2. Obviously, this resulting function
does not do justice to the scattered red dots; a good way
to demonstrate the failure of the best binary approximation
is to compute the net force on each particle f; =) j fij-
This should vanish for every i if the approximation is good.
In Fig. 3 we show the net forces f; in order of increasing
magnitude as black circles. Obviously, the situation calls for
the introduction of additional terms to the emergent effective
forces.

For the sake of brevity we will demonstrate here how
the addition of a limited type of three-body terms leads to
an improvement in satisfying the conditions of mechanical
equilibrium of the mean positions. We will add only two types
of terms, respecting the dimensionality of the binary forces,
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ie.,

a®T
(hijhi)'*
a®T
(hijhixh ji)'73’

FOMi; hi) =

FOij hig,hjy) = (10)

where a® and a'® are dimensionless coefficients to be
determined. We recognize that, in general, other three-body
and higher-order terms may be necessary, but for the purposes
of this Rapid Communication it will be enough to determine
our effective forces in the present approximation as

f[j = _ﬁij (ﬁ](l’ll}) + Z[f(z)(hij»hik)
k

+f@mmmbmwo, (11)

where the sum over k goes over k # ij. One should recognize
that the resulting forces f;; are not a function of h;; as is
required. The method described above can be easily extended
to determine the best fit in this form and the results for the
net forces when these terms are included are shown as the
blue squares in Fig. 3. The improvement with respect to
the binary approximation is obvious, although convergence
certainly requires additional terms.

V. CONCLUSION

We have demonstrated an approach based on measuring the
average positions of particles in thermal amorphous systems
in which the structural relaxation is slow. This allows us to
define and compute emergent effective force laws that hold
the system stable. In general, the emergent forces include
ternary, quaternary, and in general higher-order terms. Since
the average positions are time independent, we can now study
how the Hessian of the effective interactions can be used to
predict the stability, the mechanical responses, and the density
of states of thermal systems in much the same way as is done
in athermal systems. The actual emergent theory, including a
full consideration of the many-body interactions, is beyond
the scope of this Rapid Communication. In particular, the
convergence properties of this theory, both as a function of
distance from jamming and as a function of the order of the
many-body terms, call for an exciting and novel theory of
thermal glasses.
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