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Universality and dependence on initial conditions in the class of the nonlinear
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We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam
epitaxy (nMBE) class, on flat (fixed-size) and expanding substrates (ES). In both d = 1 + 1 and 2 + 1, we
find that growth regime height distributions (HDs), and spatial and temporal covariances are universal, but are
dependent on the initial conditions, while the critical exponents are the same for flat and ES systems. Thus,
the nMBE class does split into subclasses, as does the Kardar-Parisi-Zhang (KPZ) class. Applying the “KPZ
ansatz” to nMBE models, we estimate the cumulants of the 1 + 1 HDs. Spatial covariance for the flat subclass
is hallmarked by a minimum, which is not present in the ES one. Temporal correlations are shown to decay
following well-known conjectures.
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Scaling invariance and universality, two pillars of the theory
of phase transitions and critical phenomena, have been also
very important in the study of nonequilibrium systems [1]. One
of the most prominent examples is the dynamics of growing
interfaces, whose width w(L,t) increases in time as w ∼ tβ

(while the correlation length ξ parallel to the substrate scales as
ξ ∼ t1/z), and with the system size as w ∼ Lα (when ξ ∼ L).
A set of exponents α, β, and z defines a universality class and,
interestingly, only a few classes exist, which are determined
by some fundamental symmetries [2]. For example, interfaces
evolving under tension and growing in the direction of its
local normal are expected to belong to the Kardar-Parisi-Zhang
(KPZ) class, being described at a coarse-grained level by the
KPZ equation [3]

∂h

∂t
= F + ν2∇2h + λ2

2
(∇h)2 + ζ (�x,t). (1)

The Edwards-Wilkinson (EW) [4] equation (class) is given by
λ2 = 0. On the other hand, when the growth is dominated by
the surface diffusion of adatoms, as is the case in molecular
beam epitaxy (MBE), it is expected to fall into the nonlinear
MBE (nMBE) class, associated with the equation by Villain [5]
and Lai and Das Sarma [6],

∂h

∂t
= F − ν4∇4h + λ4∇2(∇h)2 + ζ (�x,t), (2)

or in its linear counterpart (with λ4 = 0). In all these growth
equations, h(�x,t) is the height at substrate position �x and time
t ; F , νi , and λi , with i = 2,4, are constants, and ζ (x,t) is
a white noise, with 〈ζ 〉 = 0 and variance 〈ζ (x,t)ζ (x ′,t ′)〉 =
2Dδds (x − x ′)δ(t − t ′) [2].

Recent theoretical [7], experimental [8], and numerical [9]
works on KPZ systems have changed our view of KPZ uni-
versality by demonstrating that this class splits into subclasses
depending on initial conditions (ICs), or surface geometry.
More specifically, while the scaling exponents (α, β, and z)
are the same for KPZ growth starting from a flat substrate (flat
IC or geometry) or from a seed, so that the active growing zone
expands in time (usually called curved or droplet geometry),
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the (one-point) height distributions (HDs) and (two-point)
spatial and temporal correlators are different, but universal
in each IC or geometry. In d = 1 + 1, the height fluctuations
are given by Tracy-Widom distributions [10], and spatial
covariances are associated with Airy processes [11]. In higher
dimensions, universality and IC dependence of KPZ HDs
have been demonstrated numerically [9,12,13] and confirmed
experimentally for the (2 + 1) flat subclass [14].

Despite the importance of the nMBE class—since MBE
is the main technique for thin film deposition—basically
nothing is known about universality of (growth regime) HDs
and IC dependence in these systems. In order to decrease
this abyss between KPZ and nMBE classes, in this Rapid
Communication we present a detailed numerical analysis of
nMBE models studied on flat substrates of fixed size (flat
IC) and enlarging sizes (ES IC, which mimic the curved
geometry [15]). Results from large scale simulations, in d =
1 + 1 and 2 + 1, demonstrate that universal and IC-dependent
HDs and correlators also exist in nMBE growth. Beyond the
obvious application of the flat subclass (for MBE growth on
flat substrates), we note that the ES one might be appealing
for deposition on textured substrates. A prominent example,
which is very important for several applications [16], is
etched Si(100) surfaces, where inverted pyramid holes can
be formed [17], and, depending on the growth conditions and
Si-adsorbate affinity, expanding surfaces might be observed
while growth proceeds inside the holes.

To distill the universality of HDs, let us consider the so-
called “KPZ ansatz” [18]

h = v∞t + (
t)βχ + η + · · · , (3)

where v∞ (the asymptotic growth velocity), 
 (setting the am-
plitude of w), and η (a stochastic correction) are nonuniversal
(system-dependent) parameters, while χ is a random variable
yielding the height fluctuations (which are universal in the
KPZ class). A simple analysis of Eq. (2), considering periodic
boundary conditions (PBCs), shows that the mean height is
always given by 〈h〉 = F t . Comparing this with Eq. (3),
one sees that v∞ is equal to the deposition flux (v∞ = F ),
while the mean of the nMBE HDs is null (i.e., 〈χ〉 = 0),
as well as are corrections in 〈h〉. This implies that the shift
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observed in the mean of KPZ HDs does not exist in the nMBE
ones, since 〈η〉 = 0. The exponents α = (4 − ds)/3 − δ and
z = (8 + ds)/3 − 2δ, and so β = α/z, are exactly known from
two-loop renormalization, where δ = 0.013 61(2 − ds/2)2 is a
correction to the one-loop result [19]. Following a dimensional
analysis of the nMBE equation, as done in Ref. [20] for
one-loop exponents (δ = 0), we find here the scaling of the
variance of HDs (for two-loops) as

〈h2〉c = w2(L,t) = AL2αf [(ξ (t)/L)z], (4)

where ξ (t) = (DA−1t)1/z is the correlation length and A =
(D/λ4)2/3[ν3

4/(λ2
4D)]

2δ/(4−ds )
sets the roughness amplitude at

the steady state regime (where f (x) ∼ const). In the growth

regime, f (x) 	 bx2β , so that w2(∞,t) = b[DA
1

2β
−1

t]
2β

.

Comparing this with Eq. (3), one may identify 
 = DA
1

2β
−1

and b = 〈χ2〉c.
The standard discrete model in the nMBE class is the

conserved restricted solid-on-solid (CRSOS) model [21],
where a (randomly deposited) particle aggregates in a site i

(i.e., hi → hi + 1) if the restriction |hi − hj | � m is satisfied
for all nearest neighbors (NNs) j . Otherwise, it is deposited at
the nearest site of i satisfying the restriction [21]. Theoretical
calculations [22] for this model with m = 1 (hereafter called
CRSOS1), in d = 1 + 1, have demonstrated that it is described
by the nMBE equation, in the hydrodynamic limit, with
parameters ν4 = (21 − 12

√
2)/2, λ4 = (10 − 3

√
2)/2, and

D = (2
√

2 − 1)/2. Therefore, A = 0.4662 and 
 = 0.6167
for this model [23], which will be used as a benchmark in
our analyses. Another classical nMBE model is the one from
Das Sarma and Tamborenea (DT) [24], where the freshly
(randomly) deposited particle, in a site i, can move to its
NN sites in order to increase the number of lateral neighbors.
While the scaling of the original DT model is featured by
strong corrections, a version with noise reduction, where an
aggregation occurs at a given site i only after N deposition
is attempted at that site, displays scaling exponents in good
agreement with the nMBE class in d = 1 + 1 [25]. Data
for N = 20 are presented in the following [26]. Extensive
simulations of the CRSOS model on substrates of fixed lateral
sizes up to L = 217 (d = 1 + 1) and L = 212 (2 + 1) were
carried out for m = 1, 2 (CRSOS2) and 4 (CRSOS4). The
DT model is investigated in d = 1 + 1 for the same sizes.
Furthermore, these models are also studied on enlarging
substrates, using the method introduced by us in Ref. [15].
In this case, the growth starts on (flat) substrates of lateral size
L0 = vd , which expand (in each dimension) at a constant rate
vd by randomly duplicating columns. Here, one sets vd = 12 in
d = 1 + 1 and vd = 1

2 and 2 in 2 + 1. In all models, PBCs are
considered, and the deposition flux is defined as one particle
per site per time unit, so that v∞ = F = 1.

Effective growth exponents for CRSOS models with flat
and ES ICs are compared in Fig. 1(a). The convergence to
the same asymptotic value demonstrates that the substrate
enlargement preserves the roughness scaling properties, as
expected [15,27]. In general, one observes a very slow
convergence of βeff, which is still a bit smaller than the
two-loop exponent even after very long times. This suggests
the existence of additional corrections in the ansatz, so that h =
t + (
t)βχ + μtε + · · · , where 〈μ〉 = 0, but 〈μ2〉c �= 0 and/or
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FIG. 1. (a) Convergence of effective growth exponents βeff ≡
1
2

d(ln 〈h2〉c )
d(ln t) . (b) Estimates of the cumulants of χ from 〈hn〉c/(
t)nβ

for the 1 + 1 CRSOS1 model. (c) Extrapolation of skewness (higher)
and kurtosis (lower values) for d = 1 + 1 (top) and 2 + 1 (bottom
panel). (d) Estimates of g2 from 〈h2〉c/t2β . All data in (b)–(e) are for
flat ICs.

the covariance 〈χμ〉cov �= 0. Hence, 〈h2〉c/(
t)2β = 〈χ2〉c +

−β〈χμ〉covt

ε−β + 
−2β〈μ2〉ct2(ε−β) + · · · . Indeed, by plot-
ting 〈h2〉c/(
t)2β versus time for the 1 + 1 CRSOS1 model
[see Fig. 1(b)], instead of a constant (〈χ2〉c), one finds a
slightly decreasing behavior consistent with 〈χ2〉c + ct−β/2,
so that ε = β/2 if 〈χμ〉cov �= 0 or ε = 3β/4 otherwise. In any
case, the extrapolation of 〈h2〉c/(
t)2β to t → ∞ gives us
the variance of the HDs (for the CRSOS1 model). Higher
order cumulants are determined in the same way, from
〈hn〉c/(
t)nβ = 〈χn〉c + · · · , as shown in Fig. 1(b), for n = 3
and 4. The asymptotic cumulants for both ICs are summa-
rized in Table I. While 〈χ4〉c ≈ 0 in both cases, mild and
considerable differences exist in 〈χ3〉c and 〈χ2〉c, respectively,
demonstrating that the HDs are IC dependent. In our analysis,
we are assuming that 
 is the same for flat and ES ICs [15].

Since the parameter 
 is known only for the 1 + 1
CRSOS1 model, to confirm the universality of the HDs,
we investigate the (adimensional) cumulant ratios: skew-
ness S = 〈h3〉c/〈h2〉3/2

c 	 〈χ3〉c/〈χ2〉3/2
c and kurtosis K =

〈h4〉c/〈h2〉2
c 	 〈χ4〉c/〈χ2〉2

c . In the flat case, corrections
O(t−β/2) and O(t−β) are found in d = 1 + 1 and 2 + 1,
respectively [see Fig. 1(c)]. For ES, the exponents seem
consistent with twice the ones for flat ICs, but the extrapolated
values are almost the same if we assume identical corrections.

TABLE I. Asymptotic estimates of the first four cumulants of the
HDs for the CRSOS1 model in d = 1 + 1.

IC 〈χ〉 〈χ 2〉c 〈χ 3〉c 〈χ 4〉c

Flat 0 0.375(5) 0.0315(5) 0.000(2)
ES 0 0.612(8) 0.0487(3) 0.001(3)

050801-2



RAPID COMMUNICATIONS

UNIVERSALITY AND DEPENDENCE ON INITIAL . . . PHYSICAL REVIEW E 94, 050801(R) (2016)

TABLE II. Asymptotic skewness S, kurtosis K , and ratio R2

for nMBE models in d = 1 + 1 (top) and 2 + 1 (bottom). Data for
vd = 1/2 in 2 + 1 ES ICs.

Flat ES

Model S K S K R2

CRSOS1 0.137(8) − 0.002(8) 0.094(2) 0.001(5) 1.63(4)
CRSOS4 0.134(9) − 0.001(1) 0.090(2) 0.000(1) 1.62(5)
DT 0.136(8) 0.001(1) 0.093(4) 0.001(2) 1.69(6)

CRSOS1 0.13(2) 0.00(1) 0.066(7) 0.01(1) 2.26(4)
CRSOS2 0.13(1) 0.000(8) 0.065(6) 0.003(7) 2.27(5)
CRSOS4 0.13(2) 0.007(9) 0.062(8) 0.003(6) 2.28(4)

The asymptotic values of S and K for all investigated models,
in the same dimension and IC, agree quite well, as shown
in Table II, confirming the universality of the HDs, as well
as their IC dependence. Interestingly, K is always very
close to zero. Moreover, for flat ICs, S is almost the same
for 1 + 1 and 2 + 1, so that these HDs have quite similar
shapes, while in the ES case a decreasing S is observed. This
contrasts with the KPZ HDs, whose S and K are increasing
functions of d [13], and it is possibly related to the fact
that the nonlinearity in nMBE growth becomes irrelevant
at its upper critical dimension du = 4 [2], where S and K

are expected to vanish. We recall that the corresponding
values of |S| and |K| for KPZ HDs (with flat and ES ICs
in 1 + 1 and 2 + 1) fall into the ranges 0.22 � |S| � 0.43
and 0.09 � |K| � 0.35 [12,18], being considerably larger than
the ones in Table II. Larger ratios (|S| ≈ 0.32 and |K| ≈ 0.1
in d = 1 + 1 and |S| ≈ 0.20 in d = 2 + 1) have also been
reported for the steady state HDs of the CRSOS model [28],
while a much smaller skewness (|S| ≈ 0.0441) was recently
found in a (one-loop) renormalization analysis of the nMBE
equation in this regime [29].

Although, without knowing 
, we cannot determine 〈χ2〉c
for all models, the product g2 ≡ 
2β〈χ2〉c = 〈h2〉c/t2β + · · ·
can be estimated, as done in Fig. 1(d). Then, assuming the
universality of the 〈χ2〉c’s in Table I, one readily obtains

 = (g2/〈χ2〉c)

1/2β = 2.7(1) (CRSOS4) and 
 = 0.035(2)
(DT, with N = 20) in one dimension. The reliability of such
estimates is confirmed by the nice data collapse shown in
Fig. 2(a), where the HDs P (q), with q ≡ (h − t)/(
t)β , for
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FIG. 2. Rescaled HDs for models in (a) d = 1 + 1 and
(b) 2 + 1. Distributions for flat (open: inner) and ES (solid symbols:
outer curves, with vd = 2 in 2 + 1) ICs are shown. The insets show
the same data in a linear scale.
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FIG. 3. Rescaled spatial covariances for models with flat (open:
bottom) and ES (solid symbols: top) ICs, in (a) d = 1 + 1 and (b)
2 + 1 (with vd = 2 in ES ICs).

different models are compared. We remark that these collapses
confirm that 
 is the same for fixed-size and enlarging
substrates. Additional evidence of this is provided by the
universality of the “cross-subclass” [30] variance ratios R2 ≡
gES

2 /g
f

2 	 〈χ2〉ES
c /〈χ2〉fc , as shown in Table II. To compare

the 2 + 1 HDs, we use the variable q∗ ≡ (h − t)/(
√

g
f

2 tβ),

which turns out to be simply q∗ = q/
√

〈χ2〉fc , so that flat and
ES P (q∗)’s have variances 1 and 〈χ2〉ES

c /〈χ2〉fc , respectively.
Again, a very good collapse is found [see Fig. 2(b)], which
confirms that 2 + 1 HDs are also universal and IC dependent.

Now, we turn to the analysis of the spatial covariance

Cs(r,t) = 〈h̃(x,t)h̃(x + r,t)〉 	 (
t)2β�[Ar2α/(
t)2β], (5)

where h̃ ≡ h − 〈h〉, � is a scaling function, and A is the same
as defined above, in d = 1 + 1. Figures 3(a) and 3(b) show
the rescaled Cs for all investigated models in d = 1 + 1 and
2 + 1, respectively. Interestingly, the curves for flat ICs cross
the zero and have a minimum in the negative region, indicating
the existence of a characteristic length in the interfaces, which
is not present when the substrate expands. Since the A’s are
not known for the CRSOS4 and DT models (in 1 + 1), we
determine them by making the minima of their curves (in flat
case) to coincide with the one for the CRSOS1 model. This
yields A = 8.67(8) (CRSOS4) and A = 0.599(6) (DT). The
constant A′ is obtained in the same way for 2 + 1 curves,
but shifting all minima to 1. Moreover, in this dimension one
uses w

f

2 (obtained from simulations), instead of (
t)2β in the

rescaling, so that �f (0) = 1 and �ES(0) = 〈χ2〉ES
c /〈χ2〉fc . The

good collapse of rescaled curves confirms that �f (x) and
�ES(x) are universal, but �f (x) �= �ES(x). Hence, different
processes exist for generating the flat and ES nMBE interfaces.
It is worthy noting that the scaling functions [�(x)’s] for
1 + 1 and 2 + 1 are very similar (for a given IC), when
appropriately rescaled. For instance, in the ES subclass, one
finds approximately �ES(x) ∼ x−1/2, for large x, in both
dimensions.

As an aside, from estimates of A’s and 
’s in d = 1 + 1,
one finds D = 
/A

1
2β

−1 ≈ 0.89 (CRSOS4) and D ≈ 0.046
(DT, N = 20). Moreover, disregarding the (small) two-loop

correction in A, one obtains λ4 ≈ 
/A
1

2β
+ 1

2 ≈ 0.03 (CRSOS4)
and λ4 ≈ 0.098 (DT, N = 20).

We also investigate the temporal covariance

Ct (t,t0) = 〈h̃(x,t0)h̃(x,t)〉 	 (
2t0t)
β�(t/t0). (6)
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FIG. 4. Rescaled temporal covariances for flat (open: bottom) and
ES (solid symbols: top) ICs, in (a) 1 + 1 and (b) 2 + 1 (with vd = 2
for ES ICs). Dashed lines have the indicated slopes. The inset shows
nonextrapolated curves for the ES case, in d = 2 + 1, for different
t0 ∈ [125,1000].

Once more, the nice data collapse displayed in Fig. 4
demonstrates that universal IC-dependent scaling functions
�(x) exist in the nMBE class. In d = 2 + 1, we have used
w(t) rather than (
t)β in rescaling. Only data for 2 + 1 ES
ICs do not collapse well [see the inset of Fig. 4(b)], due to
strong finite-time corrections O(t−2β

0 ), but when extrapolating
the (rescaled) curves to t0 → ∞, a very good agreement is
obtained, as the main plot of Fig. 4(b) shows. A similar
procedure has been employed to analyze the universality of
�(x) in the KPZ class [15]. Substantially, in both dimensions,
we find a power law decay �(x) ∼ x−λ̄, with exponents

λ̄ = β + ds/z (flat) and λ̄ = β (ES), in striking agreement
with conjectures by Kallabis and Krug [31] and Singha [32],
respectively.

In summary, we have demonstrated that one-point height
fluctuations in the nMBE class evolve, in the growth regime,
according to the KPZ ansatz [Eq. (3)] with universal and
IC-dependent HDs. Moreover, two-point spatial and temporal
correlators are also IC dependent. Therefore, the nMBE class
splits into subclasses sharing the same critical exponents,
similarly to KPZ systems. The absence of such splitting in
HDs of linear classes, which are Gaussian for flat and ES
ICs [33], suggests that this is a feature of nonlinear interfaces,
possibly due to the lack of an up-down reflection symmetry
in them. We claim that our findings will be very useful to
confirm the universality class of growing systems, along the
same lines of Refs. [8,14,34], especially because effective local
roughness exponents close to the nMBE value (α ≈ 2

3 ) have
been found in grained and/or mounded films [2,35], but they
can be a simple consequence of a geometric effect [35]. From
a theoretical side, our results will certainly motivate and guide
analytical works toward exact solutions of the nMBE equation
and related discrete models.
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