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Eigenvalue spectra of large correlated random matrices
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Using the diagrammatic method, we derive a set of self-consistent equations that describe eigenvalue
distributions of large correlated asymmetric random matrices. The matrix elements can have different variances
and be correlated with each other. The analytical results are confirmed by numerical simulations. The results
have implications for the dynamics of neural and other biological networks where plasticity induces correlations
in the connection strengths within the network. We find that the presence of correlations can have a major impact
on network stability.
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Random matrices serve as a useful tool for analyzing
the stability and dynamics of a variety of networks, from
neuroscience [1–4] and genetic circuits [5] to ecology [6,7].
Spectra of random matrices also help determine solutions to
problems in nuclear [8] and condensed matter physics [9,10] as
well as in data compression [11,12]. In particular, the rightmost
eigenvalue (the eigenvalue with largest real component)
determines the stability of the system’s linear dynamics and
the onset of chaos of the nonlinear dynamics. Knowledge of
the onset of chaos is useful for determining the network’s
computational capabilities [13,14] as well as the network’s
response to inputs [15].

However, most of these results do not address an important
feature of biological circuits where connection strengths are
correlated [16–18]. While correlated Hermitian ensembles
have received some attention, [19–22], results about correlated
non-Hermitian ensembles are scarce [23,24]. Most notably, the
correlations in the connection strengths arise as the result of
plasticity, where connections are modified depending on node
activity and network input. One of the predominant effects of
plasticity is that it induces correlations between forward and
reverse connections [16,18]. That is, the degree to which node
i affects node j is correlated with the strength of the reverse
connection from node j to node i. We focus here on this
circuit motif when considering correlations between matrix
elements.

Consider a network with N nodes i = 1, . . . ,N , with linear
dynamics

ẋi(t) = −xi(t) +
N∑

j=1

Jij xj (t), (1)

where xi(t) describes the activity of each node and J is the
N × N connectivity matrix. The solution of this system is
x(t) = e(1−J)tx(0). This system has stable equilibria only if the
rightmost eigenvalue of J is less than one. For networks with
nonlinear dynamics, mean-field methods can be used to show
that the transition to chaotic behavior still occurs when the
rightmost eigenvalue of J is =1 [1,3,4].

In this Rapid Communication we use the diagrammatic
approach to analyze the case where the matrix elements of J

are correlated and not identically distributed. Specifically, we
consider an N × N complex non-Hermitian Gaussian random

matrix J whose elements are distributed according to

P (J ) ∝ exp

⎡
⎣−N

2

∑
i,j

(J ∗
ij J ∗

ji)V
−1

(
Jij

Jji

)⎤
⎦, (2)

where covariance matrix V consists of real-valued variances

〈JijJ
∗
ij 〉 = 1

N
g2

ij , (3)

and real-valued covariances

〈JijJji〉 = 1

N
τijgij gji . (4)

All other second-order correlations vanish. The gain matrix
gij has positive elements. Correlation values τij are symmetric
in i,j , |τij | � 1, and denote the degree of correlation between
forward j,i and reverse i,j connections in the corresponding
random network.

To outline the steps of the derivation, we first seek the
expected density of eigenvalues of J for large N by first writing
the density in terms of the Green’s function G. While G is
analytic for Hermitian matrices, G is generally nonanalytic
for non-Hermitian matrices, so we cannot directly apply
the diagrammatic method. We therefore relate G to the analytic
Green’s function of a Hermitian random matrix H , which we
compute with standard diagrammatic techniques. We derive
a set of self-consistent equations for G for the case where
the gain matrix gij is a continuous function in the limit
N → ∞, and the case where gij is block structured. Finally,
we apply our method to two example problems and compare
the results to empirical eigenvalue distributions obtained by
exact diagonalization of realizations of J .

We start by writing the expected density of eigenvalues of
J in the complex plane as

ρ(x,y) =
〈

1

N

∑
k

δ(x − Re λk)δ(y − Im λk)

〉
. (5)

where 〈·〉 indicates an average over realizations of J according
to Eq. (2). Defining ∂ = (∂x − i∂y)/2 and ∂̄ = (∂x + i∂y)/2,
and using the identity ∂̄ 1

x+iy
= πδ(x)δ(y) [25], we can write

the density (5) in terms of the Green’s function

G(z,z̄) ≡
〈

1

N
tr

1

z − J

〉
(6)
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as

ρ(x,y) = 1

π
∂̄G(z,z̄). (7)

Since J is non-Hermitian, the eigenvalues of J will in general
lie in some region of the complex plane. For example, Ginibre’s
circular law states that if the elements of J are independently
and identically distributed with variances g2/N , then the
eigenvalues lie in a disk of radius g [26]. The Green’s function
is therefore not in general holomorphic, and we cannot expand
in powers of 1/z as required for the diagrammatic expansion.
Following Ref. [27], we can find the Green’s function by
solving a related Hermitian random matrix problem, to which
we can apply the diagrammatic approach. Define the 2N × 2N

Hermitian matrix

H =
[

0 J − z

(J − z)† 0

]
. (8)

The matrix Green’s function for H is

G(η,z,z̄) =
〈

1

η − H

〉
, (9)

where we think of the eigenvalues of H as lying on the complex
plane η. Since H is Hermitian, these eigenvalues will lie on
the real axis, and G is holomorphic in η except for cuts on the
real axis. Once G is computed, we obtain the original Green’s
function G from G by extracting the lower left matrix block
and taking the limit η → i0+,

G(η = 0,z,z̄) =
〈[

0 1
(z−J )†

1
z−J

0

]〉
, (10)

yielding Eq. (6):

G(z,z̄) = 1

N
trG21(η = 0,z,z̄). (11)

Here, G21 is the lower left block of G. To compute G (9), we
first rewrite η − H = G−1

0 − J with

G−1
0 ≡

[
η z

z̄ η

]
and J ≡

[
0 J

J † 0

]
, (12)

so that the random part J has zero mean. Note that G0 is just
G with J = 0. We expand G in G0 as follows:

G =
∞∑

n=0

G0〈(JG0)n〉 = G0 + 〈G0JG0JG0〉 + · · · . (13)

Here, the odd terms vanish since 〈J 〉 = 0. Since the distri-
bution over J is Gaussian, each term in the sum reduces
to the Wick contraction of n factors of J . We therefore
use the diagrammatic technique [28,29] to represent each
term in the sum. We denote the N node indices by roman
letters i,j = 1, . . . ,N and index the blocks by greek letters
α,β = 1,2. We represent G0 by a single directed line carrying
one set of indices, and the correlator 〈JJ 〉 by a double line
carrying two sets of indices (Fig. 1) [27,30,31]. Indices are
summed at each connecting vertex. The nth term inG is the sum
of all diagrams with n vertices. In the large N limit diagrams
which have crossing lines vanish, and only “planar” diagrams
remain [32–34]. This greatly simplifies the sum, since the
only allowed diagrams are nested “rainbow diagrams” such as

FIG. 1. Diagrams used in the expansion (13) of G. G is the sum
of all planar diagrams in the large N limit. G can be resummed in
terms of the self-energy matrix �. In the large N limit, � consists of
all diagrams nested under a double line (15).

those depicted in Fig. 1. This allows us to evaluate (13) by
performing a resummation of G in terms of the “self-energy”
matrix �:

G =
∞∑

n=0

G0(�G0)n =
(

1

G−1
0 − �

)
. (14)

In the planar limit, the self-energy matrix is

� = 〈JGJ 〉, (15)

encoding the nested “rainbow” structure of the diagrams [29].
This is depicted diagrammatically in Fig. 1.

In block form, Eq. (14) is

G =
[
A B

C D

]
=

[
η − �11 z − �12

z̄ − �21 η − �22

]−1

, (16)

and Eq. (15) is

� =
[
�11 �12

�21 �22

]
=

〈[
JDJ † JCJ

J †BJ † J †AJ

]〉
, (17)

where we have denoted the blocks of G as A, B, C, and
D. Substituting (17) into (16) will give us self-consistent
equations for the blocks of G.

Equations (16) and (17) describe the eigenvalue distribution
in the general case, with or without correlations. Before ana-
lyzing the impact of correlations on the eigenvalue distribution,
we first check that this result reproduces previous results
obtained in the absence of correlations. When elements of
J are independently distributed, the covariances (4) vanish. In
this case we find [35]

�11
il =

∑
j,k

〈JijDjkJ
†
kl〉 = 1

N
δil

∑
j

gij gljDjj , (18)

�22
il =

∑
j,k

〈J †
ijAjkJkl〉 = 1

N
δil

∑
j

gjigjlAjj , (19)
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and �12 = �21 = 0. This means that the matrix � is diagonal.
Then, since each block on the right-hand side (RHS) of Eq. (16)
is diagonal, each block ofG is also diagonal. Inverting the RHS
and equating matrix elements yields

Aii = η − 1
N

∑
j Ajjg

2
ji

qi(η,|z|) , Dii = η − 1
N

∑
j g2

ijDjj

qi(η,|z|) , (20)

Cii = z̄/qi(η,|z|), (21)

where

qi(η,|z|) =
⎛
⎝η− 1

N

∑
j

Ajjg
2
ji

⎞
⎠

⎛
⎝η− 1

N

∑
j

g2
ijDjj

⎞
⎠ − |z|2.

(22)

Writing out the blocks of G in Eq. (9),

[
A B

C D

]
=

〈[
η

η2−(J−z)(J−z)†
J−z

η2−(J−z)†(J−z)
(J−z)†

η2−(J−z)(J−z)†
η

η2−(J−z)†(J−z)

]〉
, (23)

and rewriting η = iε, with ε > 0, we see that blocks A and D

are positive definite matrices multiplied by −i. We therefore
define aj ≡ iAjj and dj ≡ iDjj , where ai and di are positive
real numbers. We also define cj = Cjj . This allows us to
rewrite (20) and (21) as

ai = âi/qi, di = d̂i/qi, ci = z̄/qi(ε,|z|), (24)

with qi(ε,r) ≡ −qi(η,|z|) = âi d̂i + r2 and

âi ≡ ε + 1

N

∑
j

ajg
2
ji , d̂i ≡ ε + 1

N

∑
j

g2
ij dj , (25)

where r = |z|. We now have a set of 2N self-consistent
equations (24) for the elements ai and di of the Green’s
function G. These can be solved numerically with ε = 0 (or ε

set to a small value if many elements gij are also small). Once
the ai and di are found, the ci can be computed and used to find
the original Green’s function G with Eq. (11), since the trace
of G21 ≡ C is the sum of the coefficients ci ≡ Cii . Note that
since cj = re−iθ /qj (ε,r) in polar coordinates, |cj | depends
only on r . This allows us to rewrite Eq. (7) as a function of r

only:

ρ(r) = 1

2πN

∑
j

(
∂|cj |
∂r

+ |cj |
r

)
. (26)

The resulting eigenvalue distribution has support on the disk
with radius r = √

λ1(K), where λ1(K) is the largest eigenvalue
of the matrix Kij ≡ g2

ij /N (see the Appendix).
Symmetric covariances. We now allow J to have correlated

elements across its diagonal [Eq. (4)]. Then �12 and �21 
= 0,
yielding a new expression for c,

ci = ĉi/qi(ε,z,z̄), ĉi ≡ z̄ − 1

N

∑
j

τij gij gji c̄j , (27)

where now qi = âi d̂i + |ĉi |2, bi = c̄i . The τij denote the degree
of correlation between i and j as in Eq. (4). In this case, the

eigenvalue density has the more general form

ρ(x,y) = 1

π
∂̄G(z,z̄) = 1

Nπ
∂̄

N∑
j=1

cj (z,z̄). (28)

The density ρ depends on x and y in a nontrivial way, and
the support of the distribution is in general neither circular nor
elliptical. The boundary of the eigenvalue distribution now
satisfies (see the Appendix for a derivation)

λ1(K(z)) = 1, Kij (z) = 1

N
|ci(z)|2g2

ij , (29)

where the complex-valued ci(z) are now given by the self-
consistent equations

ci =
⎛
⎝z −

∑
j

τij gij gjicj

⎞
⎠

−1

. (30)

Now, to obtain the boundary, it is necessary to simultaneously
solve (29) and (30) for each boundary point. For example, we
can set z = reiθ and solve the above for r for each θ . Note
that these expressions reduce to the circularly symmetric case
when τij = 0.

Block structured. We now consider the special case for
which the gain matrix gij is block structured. Block structured
matrices describe networks with nodes partitioned into sub-
groups, for example, neural networks with cell-type-specific
connectivity [3], or networks of ecological communities [24].
Suppose the nodes of the network are grouped into M

populations of size fmN , for m = 1, . . . ,M , and that J is
block structured so that the gain g2

minj
= g2

mn and correlations
τminj

= τmn depend only on the population indices m and
n of the output and input nodes i and j , respectively. This
allows us to sum (24) and (27) over each population. Let
Nm ≡ N

∑m
n=1 fn. Then define [36]

am ≡ 1

Nfm

Nm∑
i=Nm−1+1

ai, (31)

and define cm and dm similarly. Then qm ≡ qi depends only
on the population index, and now we have

am = âm/qm, dm = d̂m/qm, cm = ĉm/qm, (32)

and qm = âmd̂m + |ĉm|2, with

âm = ε +
M∑

n=1

fnang
2
nm, d̂m = ε +

M∑
n=1

g2
mnfndn, (33)

ĉm = z̄ −
M∑

n=1

τmngmngnmfnc̄n. (34)

Now the dependence on N is removed, and we need only solve
3M self-consistent equations. The eigenvalue density is now

ρ(x,y) = 1

π
∂̄

∑
m

fmcm(z,z̄). (35)

The boundary of the distribution satisfies equations similar
to (29) and (30) (see the Appendix). When τmn = 0, the
distribution has boundary |z| = √

λ1(K), where λ1(K) is the
largest eigenvalue of the matrix Kmn ≡ g2

mnfn [3].
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FIG. 2. Eigenvalue density for block structured J with gain and
covariance given by (36). (a) Eigenvalue density calculated from
self-consistent equations (32). (b) Empirical histogram of eigenvalues
from exact diagonalization of realizations of J with independent
elements. The empirical histogram for J with covariance is shown
with (c) complex and (d) real entries. (e), (f) Cross sections of
the density along the (e) real and (f) imaginary axes, showing the
theoretical result (solid red line), the complex-valued empirical result
(blue dots), and the distribution with no covariance (dashed curve).

To verify our results, we consider a network with M = 3
populations, with relative population sizes f = ( 1

6 , 1
3 , 1

2 ), and

g2
mn =

⎡
⎣0.54 0.83 0.65

0.95 0.46 0.01
0.72 0.59 0.55

⎤
⎦,

τmn =
⎡
⎣ 0.5 −0.2 0.9

−0.2 0.3 0.1
0.9 0.1 −0.6

⎤
⎦. (36)

We iteratively solved the self-consistent Eqs. (32) for a grid of
points on the complex plane and approximated the eigenvalue
distribution using finite differences, shown in Fig. 2(a). We
compare this distribution with eigenvalue histograms gener-
ated by exact diagonalization of 1000 realizations of J . We find
that realizations of J with complex elements agree with our
result [Figs. 2(c), 2(e), and 2(f)]. Removing the correlations (4)
from realizations of J yields a circular distribution [Fig. 2(b)].
Notably, we find that including these correlations distorts the
eigenvalue distribution in a nontrivial way: The distribution is
neither a circle nor an ellipse. Furthermore, we find using
Eqs. (A4) and (A2) (in the Appendix) that the rightmost
eigenvalue of the distribution has moved from ∼0.713 to

FIG. 3. Analysis of eigenvalue distribution with continuously
varying gain (37). (a) Orientation map of neurons. (b) Gain matrix gij .
(c) Eigenvalue density calculated from self-consistent equations (top)
and from realizations of J (bottom). Density cross sections along the
(d) real and (e) imaginary axes, plotted as in Fig. 2(e).

∼0.890, so that the corresponding linear system (1) becomes
more unstable.

For any finite N , J has nonuniversal features that disappear
as N → ∞. In particular, the matrix J with real elements will
have a higher density of eigenvalues on the real axis [Fig. 2(d)].
However, we find that the proportion of eigenvalues on the real
axis drops off as 1/

√
N , as anticipated for large N [37].

To demonstrate that our technique applies to situations
where the variance and covariance depend continuously on
the node indices i,j , we consider a neural network inspired
by connectivity around pinwheels in the visual cortex [38,39].
The neurons are arranged on a square grid on the unit square
and assigned orientations based on their position, shown in
Fig. 3(a). For neurons i and j with positions ri and rj , the gain
is

gij = g0 exp
[ − |ri − rj |2/w2

r − �θ2(ri ,rj )/w2
θ

]
, (37)

where �θ (ri ,rj ) denotes the difference in orientation of
neurons at ri and rj . We choose the covariance to be
proportional to the gain: τij = τ0gij . In this example, wr =
0.2, wθ = 20◦, g0 = 1, and τ0 = 0.8. The gain matrix for a grid
of 16 × 16 neuron populations is shown in Fig 3(b). This grid
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size requires us to solve N = 256 self-consistent equations
to determine the eigenvalue density. For comparison, we
generated 1000 realizations of J with N = 2048; to mitigate
finite-N effects [4], we used block structured matrices with
16 × 16 populations, with eight nodes in each population. We
find that our result closely matches the empirical distribution
[Figs. 3(c)–3(e)]. Increasing the grid size to 32 × 32 and
64 × 64 did not appreciably change the resulting eigenvalue
distribution, indicating that the current resolution is sufficient.
Finally, using Eqs. (29) and (30), we find that including
correlations moves the rightmost eigenvalue from 0.24 to 0.41,
decreasing the stability of the system.

Our results can be extended to more general correlation
structures, such as correlations between arbitrary blocks
or clusters. However, including more general correlations
increases the number of self-consistent equations that must
be solved in (16). Our results can also be extended to the case
of nonzero mean as in Ref. [33]. The diagrammatic technique
can also be used to study further quantities of interest such as
eigenvalue correlations [30], eigenvector correlations [40,41],
and linear dynamics not captured by the eigenvalues [33].

In conclusion, we have adapted the diagrammatic technique
to study correlated connectivity matrices that are not indepen-
dently or identically distributed, and relevant to biological
circuits. The results indicate that the presence of correlations
can dramatically influence the network stability and dynamics.
The correlation structure is determined by plasticity rules,
which act locally on connections between nodes [16,18]. The
presented analytical framework therefore makes it possible to
evaluate the impact of local plasticity rules on global network
activity.

This research was supported by NSF CAREER Award No.
IIS-1254123 and NSF Grant No. IOS-1556388, as well as NEI
Grants No. P30 EY019005 and No. T32 EY020503 and the
Salk Institute Innovations Grant Program. The authors thank
Nicolas Brunel for discussions.

APPENDIX

Derivation of the boundary of the eigenvalue distribution
in the absence of covariance between matrix elements. Here
we first show that the eigenvalue density (26) for J with
independent elements (τij = 0) has support on the disk with
radius R = √

λ1(K), where λ1(K) is the largest eigenvalue
of the matrix Kij ≡ g2

ij /N . There are two solutions to the
self-consistent equations (24) in the limit ε → 0: a trivial
solution, with all ai = di = 0, and a nontrivial solution, with
all ai,di > 0 [42]. The trivial solution corresponds to the region
where ρ(r) = 0 [27,31]. Indeed, we see that when ai = di = 0,
all qi = r2. Then, by (24), ci = 1/z, and therefore ρ(r) = 0
by (26).

Now consider the region where ρ 
= 0, where all the ai and
di are nonzero. Then, combining (24) and (25) for di in the

ε → 0 limit yields

qidi = 1

N

∑
j

gij dj . (A1)

We determine the radius R of the boundary by finding where
the two solutions match. Assuming continuity of the ai and
di , then as di → 0+ as we approach the boundary, all the
qi → R2. Then, in the limit, (A1) indicates that d is an
eigenvector of Kij = g2

ij /N with eigenvalue R2. Furthermore,
since K and d have only positive entries, R2 must be
the largest eigenvalue λ1(K) of K by the Perron-Frobenius
theorem. Thus, the boundary of the eigenvalue distribution
has radius R = √

λ1(K). A nearly identical argument shows
Kmn = g2

mnfn for the block structured case. This result was
previously presented in Refs. [43] and [4], and a similar
argument was used in Ref. [33] for the case of matrices with
nonzero mean. However, previous analyses do not hold when
J has covariant elements.

Boundary with covariance. Now we show that when τij 
=
0, the boundary of the eigenvalue distribution satisfies (29)
and (30). Again, we have ai,di 
= 0 on the support of the
eigenvalue distribution, and ai = di = 0 otherwise. Plugging
the trivial solution into (27), the ci now satisfy

ci =
⎛
⎝z −

∑
j

τij gij gjicj

⎞
⎠

−1

. (A2)

Now, approaching the boundary from the inside as before, in
the limit di → 0+,

di =
∑

j

|ci |2g2
ij dj , (A3)

where the ci satisfy (A2) in the limit. Since all the di > 0, this
means that d is the Perron-Frobenius eigenvector of the matrix
Kij = |ci |2g2

ij with eigenvalue 1. This means that the points z

on the boundary satisfy

λ1(K) = 1, (A4)

where λ1(K) is the largest modulus eigenvalue of K . To-
gether, (A2) and (A4) determine the points z that lie on the
boundary of the eigenvalue distribution. We have found that
these equations can be solved efficiently as follows: First we
write z = reiθ and fix θ . Then, to find the r satisfying (A4), we
use a root finding algorithm: At each step of the root finding
algorithm, we iterate (A2) to find the ci(z).

If gij is block structured, then we have only M variables
cm, with

cm =
(

z −
∑

n

τmngmngnmfncn

)−1

(A5)

and

Kmn = |cm|2g2
mnfn. (A6)
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