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In this Comment, we review the results of pattern formation in a reaction-diffusion-advection system following
the kinetics of the Gray-Scott model. A recent paper by Das [Phys. Rev. E 92, 052914 (2015)] shows that
spatiotemporal chaos of the intermittency type can disappear as the advective flow is increased. This study,
however, refers to a single point in the space of kinetic parameters of the original Gray-Scott model. Here we
show that the wealth of patterns increases substantially as some of these parameters are changed. In addition to
spatiotemporal intermittency, defect-mediated turbulence can also be found. In all cases, however, the chaotic
behavior is seen to disappear as the advective flow is increased, following a scenario similar to what was reported
in our earlier work [I. Berenstein and C. Beta, Phys. Rev. E 86, 056205 (2012)] as well as by Das. We also point
out that a similar phenomenon can be found in other reaction-diffusion-advection models, such as the Oregonator
model for the Belousov-Zhabotinsky reaction under flow conditions.
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In a recently published paper, Das [1] discusses the
influence of advection on the spatiotemporal dynamics of
the Gray-Scott model, which is a prototypical model for
autocatalytic chemical reactions. This model reads

∂α

∂t
+ σ∇α = 1 − α − μαβ2 + Dα∇2α,

∂β

∂t
+ σ∇β = β0 − φβ + μαβ2 + Dβ∇2β.

In these equations, α and β represent the concentration of
two reactants with Dα and Dβ their respective diffusion
coefficients. The model also includes kinetic parameters
(β0,μ,and φ) and a flow rate σ . All these variables and
parameters are dimensionless. More specifically, the study
in [1] focuses on the case of one-dimensional systems and
for values of parameters such that the advection-free (σ = 0)
system displays spatiotemporal chaos in the form of spa-
tiotemporal intermittency. Das shows that by increasing σ ,
chaos disappears by stabilization of the unstable state from
which the chaotic dynamics emerges. After a second transition,
the system displays a specific stationary pattern known as
flow-distributed oscillations. In this Comment we would like
to point out that the results published in [1] are an instance of
a much more general trend observed and explained for various
reaction-diffusion-advection models.

First we will recall some of the basic dynamical features
of the Gray-Scott model. The author considers in [1] the case
β0 = 0, for which the system can present up to three homoge-
neous steady states. One of these states corresponds to (α,β) =
(1,0) and is always a stable node. Two additional steady
states appear after a saddle-node bifurcation at μs = 4φ2.
One of them is a saddle Ss = (α−,β−) and the other one an
unstable focus Sf = (α+,β+), with

α± = 1 ∓
√

1 − 4φ2/μ

2
, β± = 1 ±

√
1 − 4φ2/μ

2φ
.

Just after crossing the saddle-node bifurcation, the state
(1,0) is the only attractor in the system. However, as μ is further
increased it can cross a critical value μA corresponding to a
homoclinic bifurcation, after which a limit cycle associated
with the unstable focus can also be found. This transition
is known as an Andronov homoclinic bifurcation [2]. The
focus Sf eventually becomes stable for μ > μH , where μH =
φ4/(φ − 1) denotes the location of a Hopf bifurcation. This
bifurcation is subcritical for 2 < φ < 4, while it is supercritical
for φ > 4 [3].

In the case of spatially extended systems with no advection,
two types of chaos can be observed in the above model [4]. Spa-
tiotemporal intermittency occurs when the (1,0) stable steady
state coexists with the saddle and the unstable focus and is
the only attractor of the system, i.e., whenever μs < μ < μA.
Note that the results shown and discussed in [1] correspond
to this regime. For μA < μ < μH a limit cycle and a stable
node coexist, however, the limit cycle alone displays a form of
chaos known as defect-mediated turbulence.

The effect of advection on a system with a single unstable
steady state that shows defect-mediated turbulence has been
studied earlier [5]. The model used in [5] is the two-variable
Oregonator model of the Belousov-Zhabotinsky reaction and
what was found is that below a certain velocity for the
advection term, the system remains in the defect-mediated
turbulence state. After a first threshold, the system displays
traveling waves. After a second threshold in velocity of
advection, the originally unstable steady state becomes stable.
Linear stability analysis is able to predict this transition
[5]. Then there are two further transitions, first to damped
flow-distributed oscillations, seen near the Dirichlet boundary
(the inlet of the system) that decay into the now stable steady
state, and then to fully developed flow-distributed oscillations.

Figure 1(a) shows the possible regimes without advective
flow (σ = 0) for the Gray-Scott model. At low φ and
intermediate values of μ, only spatiotemporal intermittency
can be observed. At intermediate and large values of φ, a
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FIG. 1. (a) Phase diagram of patterns at σ = 0, where the Hopf and Andronov bifurcations are pointed out. Beyond the Hopf bifurcation,
Sf denotes the stable focus. Here DMT corresponds to defect-mediated turbulence. The red marks correspond to conditions for which the
effect of advection is analyzed. (b) Space time plots [size (100 space units) × (20 time units)], where the number at the top corresponds to the
velocity of advection σ for φ = 10 and μ = 1010; the corresponding phase diagram is at the bottom. (c) Phase diagram of patterns for φ = 5
and μ = 155 and (d) phase diagram for φ = 2.8 and μ = 33.7. In (b)–(d), C corresponds to spatiotemporal chaos [DMT in (b) and (c) and
intermittency in (d)], d-FDO to damped flow-distributed oscillations, and FDO to flow-distributed oscillations.

transition from spatiotemporal intermittency to defect-
mediated turbulence can be observed by changing μ.

In the regime of defect-mediated turbulence (μA<μ<μH )
at high φ, the effect of advection is similar to the case seen in
the Oregonator model, and as the velocity of advection is aug-
mented, the same succession of spatiotemporal patterns is ob-
served: defect-mediated turbulence, waves, stable steady state,
damped flow-distributed oscillations, and flow-distributed
oscillations [Fig. 1(b)]. Not surprisingly, for systems showing
spatiotemporal intermittency (i.e., whenever μs < μ < μA)
the scenario is qualitatively the same. At high φ, there is
also a small region where, using no-flux boundary conditions,
homogenous oscillations can be observed [4]. However, by
adding a Dirichlet boundary, the system turns into the defect-
mediated state and the system shows the same scenario of
patterns as the velocity of the advection is increased.

The regime studied by Das [1] corresponds to a system
where, in the absence of advection, spatiotemporal chaos of
the intermittency type should be observed for intermediate
φ. We note, however, that the value used for μ in [1] places
the system just at the boundary between the intermittent and
the defect-mediated regimes. The patterns observed by Das
[1] are actually the same as the patterns observed for φ = 5
and μ = 155 in our study [6], where the spatiotemporal chaos
corresponds to defect-mediated turbulence. The succession of
patterns as σ is augmented is shown in Fig. 1(c). The transition
to the (1,0) state depends on the boundary condition at the inlet

so it may or may not appear [6]. In the regime of spatiotemporal
intermittency at low φ, the advection does not produce the
regime of damped flow-distributed oscillations [6] [Fig. 1(d)].

In his paper Das points out that the transition from absolute
to convective instability appears as the transition to the steady
state [1]. However, for higher μ, the transition from absolute
to convective instability, for the chaotic state, is seen as a
transition to waves, which come from an instability that keeps
on being absolute. The transition to the stabilized steady state
occurs when the waves become convectively unstable, as seen
in the Oregonator model [5].

To conclude, for high φ, the effect of advection on pattern
formation in the Gray-Scott model is the same as seen for a
system with only one unstable state that generates a limit cycle
and develops defect-mediated turbulence (e.g., the Oregonator
model). As the velocity of advection is augmented, the patterns
observed are spatiotemporal chaos, waves, stable steady state,
damped flow-distributed oscillations, and flow-distributed os-
cillations. For the Gray-Scott model, spatiotemporal chaos can
take the form of defect-mediated turbulence or spatiotemporal
intermittency, which does not influence the type of patterns
seen by adding advection. For intermediate φ, the succession
of patterns as σ is augmented is spatiotemporal chaos
(intermittency [1] or defect-mediated turbulence [6]), stable
steady state, and damped flow-distributed oscillations. For low
φ, only spatiotemporal intermittency is observed, and as σ

increases, there is a transition that stabilizes the unstable state.
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