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Solution of the nonlinear inverse scattering problem by 7'-matrix completion. I. Theory
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We propose a conceptually different method for solving nonlinear inverse scattering problems (ISPs) such as
are commonly encountered in tomographic ultrasound imaging, seismology, and other applications. The method
is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate
the ISP as a problem whose goal is to determine an unknown interaction potential V from external scattering
data. Although we seek a local (diagonally dominated) V as the solution to the posed problem, we allow V to be
nonlocal at the intermediate stages of iterations. This allows us to utilize the one-to-one correspondence between
V and the T matrix of the problem. Here it is important to realize that not every 7 corresponds to a diagonal V/
and we, therefore, relax the usual condition of strict diagonality (locality) of V. An iterative algorithm is proposed
in which we seek T that is (i) compatible with the measured scattering data and (ii) corresponds to an interaction
potential V that is as diagonally dominated as possible. We refer to this algorithm as to the data-compatible
T -matrix completion. This paper is Part I in a two-part series and contains theory only. Numerical examples of
image reconstruction in a strongly nonlinear regime are given in Part II [H. W. Levinson and V. A. Markel, Phys.
Rev. E 94, 043318 (2016)]. The method described in this paper is particularly well suited for very large data sets

that become increasingly available with the use of modern measurement techniques and instrumentation.
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I. INTRODUCTION

Inverse scattering problems (ISPs) are encountered in opti-
cal diffusion tomography [1,2], diffraction tomography [3,4],
electrical impedance tomography [5-7], in near-field [8—10]
and far-field [11-13] tomographic electromagnetic imaging, in
seismic tomography [14,15], and in many other physical and
engineering applications. Solving nonlinear ISPs is a difficult
computational task, especially in three dimensions. This is
even more true for problems involving large data sets that are
available with the use of modern experimental techniques.
Developing efficient algorithms for solving nonlinear ISPs
remains a fundamental problem of computational physics and
an important challenge.

Nonlinear ISPs are amply reviewed in the literature
[16-20]. The mainstream approach to solving these problems
numerically is Newton’s method and its variants such as
Levenberg-Marquardt method, iteratively regularized Gauss-
Newton method, Newton-Kantorovich method, and steep-
est descent (Landweber iteration). These methods (except
for Newton-Kantorovich) are succinctly explained in [21].
Newton-Kantorovich iterations are closely related [22] to the
method of inverse Born series [7,23,24]. A different class
of nondeterministic inversion approaches that make use of
some form of prior knowledge about the medium is based
on Bayesian inference [25]. The common feature of all these
approaches (except for the inverse Born series) is that a certain
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cost function is minimized and updated iteratively and that
this cost function depends on all available measurements (data
points). In the case of inverse Born series, the solution is
obtained as an analytically computable functional of the data.

The method proposed in this paper is conceptually different
from the methods reviewed above and is based on a digression
into a seemingly unrelated field of physics, namely, into the
theory of nonlocality. This theory accounts for the fact that
certain physical processes occurring at the point r in space
can be influenced by the field in some finite vicinity of that
point. For example, in local electrodynamics, Ohm’s law is
written as J(r) = o(r)E(r). In a nonlocal theory, this linear
relation is generalized by writing J(r) = [ V(r,r’ YE()d>r'.
Of course, we expect on physical grounds that V(r,r') —
0 when |r —r’| > £, where £ is the characteristic scale of
nonlocality (the radius of influence), which is usually much
smaller than the overall size of the sample. If the electric field
E(r) does not change noticeably on the scale of ¢, we can
define the local conductivity as

o(r) = / V(r,x)d*r (1)

and use Ohm’s law in its local form. This is all well known
in physics. However, implications of nonlocality for nonlinear
ISPs have not been considered so far.

Let us assume that we want to find o(r) from the
measurements of voltage drop for a direct current injected into
the sample by two pointlike electrodes attached to its surface at
various points (Calderon problem). It turns out that it is much
easier to find a nonlocal kernel V (r,r’) that is consistent with
the measurements. Of course, V (r,r’) can not be determined
uniquely from a typical data set because the number of
unknown parameters (degrees of freedom) in V (r,r’) is usually
much larger than the number of measurements. However,
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as explained above, we also expect that V(r,r’) should be
approximately diagonal. We then proceed as follows:

(1) First, we define a class of kernels V(r,r’) that are
compatible with the data. This is the only instance when the
data are used, and it turns out that the size of the data set is not
a limiting factor for this step.

(2) Then, we iteratively reduce the off-diagonal norm of
V (r,r’) while making sure that V (r,r’) remains within the class
of “data-compatible” kernels.

(3) Once the ratio of the off-diagonal and diagonal norms
of V(r,r') is deemed sufficiently small, we compute o (r) =
J V(r,r)d®r'. This gives an approximate numerical solution
to the nonlinear ISP.

The above algorithm can be generalized to other ISPs.
We refer to it as to data-compatible 7-matrix completion
(DCTMC) method.

The role of the T matrix in solving nonlinear ISPs has
been recognized previously [14,15,26,27]. The key insight
used in DCTMC is to relax the requirement that V be
strictly diagonal. This allows one to establish a one-to-one
correspondence between 7 and V. The first advantage of
using this approach is that the 7 matrix is source and detector
independent. For example, finite-difference and finite elements
forward solvers must be run anew for each source used. The
T-matrix approach is free from this requirement. The price
of this simplification is that the transformations between T
and V involve inversion of dense matrices. However, the
computational complexity associated with 7 to V and V to
T operations can be reduced, for example, by exploiting the
sparsity of V. Second, the T-matrix-based approach results in
a useful data reduction, which is applicable to both linear and
nonlinear image reconstruction regimes. Finally, the method
does not utilize a cost function in the traditional sense and
therefore it is not affected by the problem of local minima of
the cost function (false solutions).

We underscore that physical interactions are never truly
local and some small degree of nonlocality exists in all physical
systems. However, the radius of influence £ is typically so small
(e.g., equal to the atomic scale) that the nonlocality can be
safely ignored for most practical purposes. In our approach,
we relax this condition and allow V to be off diagonal on
much larger scales. Of course, we will seek to find V that is as
diagonal as possible. However, we do not expect to eliminate
all off-diagonal terms that are separated by more than one
atomic scale, not to mention that such fine discretization of
the medium is practically impossible. Thus, the nonlocality
of V that is utilized in DCTMC is not an intrinsic physical
property of the material but rather a physically inspired trick
that is used to facilitate the solution of nonlinear ISPs. In
other words, we simplify the solution process by relaxing the
underlying physical model.

This paper is Part I of a two-part series wherein we focus
our attention on theory. Numerical examples for the nonlinear
inverse diffraction problem are given in Part II [28]. The
remainder of this paper is organized as follows. In Sec. II,
we state the general algebraic formulation of the nonlinear
ISP that is applicable to many different physical scenarios. In
Sec. 111, we introduce the data-compatible 7" matrix, which is a
central idea of the proposed method. In Sec. IV, we define the
basic iterative algorithm of DCTMC. In Sec. V, we introduce
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“computational shortcuts,” which combine analytically several
steps of the DCTMC algorithm into a single step with a
reduced computational complexity. The DCTMC algorithm
in the linear regime is discussed in Sec. VI. Here, we
also discuss convergence and regularization of the method.
Section VII contains a brief discussion. Auxiliary information
is given in several Appendixes. A summary of linearizing
approximations (first Born, first Rytov, and mean field) is
given in Appendix A. Appendix B contains a derivation
that establishes the correspondence between DCTMC and the
conventional methods in the linear regime. Finally, definitions
and properties of several functionals used in this paper are
summarized in Appendix C.

II. GENERAL FORMULATION OF THE ISP
Consider a linear operator .’ and the equation
Zu(r) = q(r), ©))

where u(r) is a physical field and ¢(r) is the source term. Note
that (2) does not contain time but can depend parametrically
on frequency. It can be said that we work in the frequency
domain. Moreover, we consider only a single fixed frequency.
Using different working frequencies as additional degrees of
freedom for solving an ISP can be very useful (especially if the
contrast is approximately frequency independent, as is often
the case in seismic imaging) but is outside of the scope of this
paper.

Let ¥ =% —V, where % is known and V is the
unknown interaction operator that we seek to reconstruct. As
discussed above, we assume at the outset that V' is an integral
operator with the kernel V (r,r’) but, eventually, the computed
image will be obtained as a function of r only. We also assume
that V(r,r’) # 0 only if r,r’ € Q, where 2 is a spatial region
occupied by the sample. Our goal is to recover V from the
measurements of u performed outside of the sample, assuming
that it is illuminated by various external sources. We can not
perform measurements or insert sources inside the sample,
which would have greatly simplified the ISP solution if it was
physically possible.

The inverse of £ is the complete Green’s function of
the system, denoted by G = .#~!. The formal solution to
(2) is then u = Gg. We know that G exists as long as the
forward problem has a solution. This is usually the case if
V is physically admissible. Likewise, the inverse of % is
the unperturbed Green’s function, denoted by Gy = .Lﬂ(fl.
The field ui,c = Gog is the incident field, in other words,
it is the field that would have existed everywhere in space
in the case V =0. Nonzero V gives rise to a scattered
field us., and the total field is a sum of the incident
and scattered components # = Uinc + Usca- A straightforward
algebraic manipulation yields the following result:

Usear = (G — Go)g = Go(I — VGo) 'VGoq,  (3)

where [ is the identity operator.

A single data point ®(ry,ry) is obtained by illuminating
the medium with a localized source of unit strength, g(r) =
3(r — ry), and measuring the scattered field by a detector at the
location ry [29]. By scanning r; and r; on the measurement
surfaces ¥; and X outside of the sample, we measure a
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FIG. 1. Illustration of the imaging geometry. The symbols A, B,
I', and V in the rectangular frames denote the matrices obtained
by restricting and sampling the kernels Go(r,r’) and V(r,r’). The
scattering diagram corresponds to the second-order term G,V G,V Gy
in the formal power-series expansion of the left-hand side in (4). Note
that in the local limit V (r,r’) = D(r)é(r — r’), the two arrows contract
to two vertexes atr; = rj and r, = r.

function of two variables ®(ry,r;), which is coupled to V (r,r’)
by the equation

Go(I = VGy)~'VGy = &. 4)

All product and inversion operations in (4) should be under-
stood in the operator sense. The ISP can now be formulated as
follows: Given a measured function ®(ry,ry), where ry € 3,
and ry € X, find an “approximately diagonal” kernel V (r,r’),
where r,r' € Q. We do not need to define “approximate
diagonality” precisely at this point, but in the case of matrices
that are inevitably used in all computations, this requirement
implies a sufficiently small ratio of the off-diagonal and
diagonal norms.

It is important to note that G in (4) is the same operator in
all instances where it appears, but for the purpose of computing
the operator products and inverses, its kernel Go(r,r’) is
differently restricted. This is illustrated graphically in Fig. 1.
Thus, for the first term G in the left-hand side of (4),
r=ry € Xy andr’ =r) € Q. For the second term (inside the
parentheses) r =r; € Q and v’ = r; € Q. For the last term,
r=r, € Qandr =r, € X;. We emphasize that the imaging
geometry shown in Fig. 1 is representative but not very general.
In particular, the measurement surfaces ¥; and X, can be
larger or smaller than the face of the cube, or curve, or even
be regions of space of finite volume rather than surfaces [30].
The sample volume €2 does not have to be cubic and, in an
extreme case, it can be a two-dimensional surface. All this has
no bearing on the method of this paper. The only requirement
that we impose, which is physical rather than mathematical,
is that ¥, and ¥; do not overlap with 2. However, X, can
overlap with X;.

Further, in all practical implementations, the data are
sampled rather than measured continuously and the medium is
voxelized. An example of such discretization is given in [28].
At this point, we proceed under the assumption that (4) can
be suitably discretized and converted to a matrix equation. In
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FIG. 2. Block diagram of Eq. (9) with sizes of all matrices
indicated. Here, N; and N, are the numbers of detectors and sources
and N, is the number of voxels.

this case, it is logical to use different notations for the matrices
that are obtained by different restriction and sampling of the
kernel Gy(r,r’). Indeed, the matrices obtained in this manner
are different and can even be of different size. We will denote
the matrices obtained by sampling the first, the second, and
the last terms Gy in (4) by A, I', and B, respectively. These
notations are also illustrated in Fig. 1. Then, the discretized
version of (4) takes the following form:

Al = VD) 'VB = &. (5)

In (5), A, B, and T" are known theoretically, ® is measured,
and we seek to find the unknown V.

Equation (5) is the main nonlinear equation that is discussed
in this paper. It is, in fact, very general and encompasses
many different problems of imaging and tomography. The
underlying physical model is encoded in the operator G and
in the matrices A, B, and I" that are obtained by sampling this
operator. The following three important remarks about this
equation can be made:

Remark 1: Noninvertibility of A and B. If matrices A
and B were invertible in the ordinary sense, the nonlinear
ISP would be solvable exactly by three operations of matrix
inversion. Unfortunately, A and B are almost never invertible.
To construct A and B of sufficiently high rank, one needs
to perform measurements inside the medium. As was noted
above, this is usually impossible. The typical sizes of all
matrices involved will be discussed below (see Fig. 2 and
its discussion).

Remark 2: Linearization. One may seek a linearization of
the ISP by approximating the left-hand side in (5) with various
expressions that allow an analytical linearizing transformation.
The three main approaches to achieve this end are first
Born, first Rytov, and mean-field approximations, and they
are briefly summarized in Appendix A. In the mathematical
formulation of the ISP, the three approximations differ only by
the transformation that is applied to the data matrix @, while
the general form of the linearized equation is in all cases

AVB = U[d], (6)

where W[®] is the appropriate transformation of the data
matrix; in the simplest case of first Born approximation,
V[D] = .

Remark 3: Matrix unrolling for the linearized problem.
The linearization approaches described in Appendix A do not
require or enforce by design the diagonality of V. However,
in the conventional treatments of the problem, it is typical to
assume that V is strictly diagonal and to operate with the vector
|v) composed of the diagonal elements of V. Accordingly, the
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matrix W is unrolled into a vector |{) by the matrix operation
known as vec, that is, by stacking the columns of W into one
column vector. The resultant equation has the form

Klv) = [¥), 7

where K is a matrix obtained by multiplying the elements of
A and B according to the rule K, j = ApjBj, and (mn)
is a composite index. The important point here is that the
conventional methods often treat K in (7) as a matrix of the
most general form. In contrast, the DCTMC algorithm takes
account of the special algebraic structure of K and, therefore,
can be used advantageously even in the linear regime. This is
discussed in more detail in Appendix B.

III. T MATRIX AND ITS REPRESENTATIONS;
“EXPERIMENTAL” T MATRIX

The basic definition of the 7" matrix (which is, actually, an
operator) is through the relation between the complete and the
unperturbed Green’s functions: G = Gy + GoT Gy. By direct
comparison with (3) we find that

T=(-VGy V. (®)

We will not use different notations for the operator 7' and
its discretized version, which is truly a matrix. Consequently,
Eq. (5) can be rewritten as

ATB = @, ©))
where
(I-vD)'v=vu-rv) . (10)
], which

T=T[V]=

Here, we have defined the nonlinear functional 7 - -
contains I' as a parameter.

We can view (10) as a matrix formulation of the forward
problem. If V is known, we can use (10) to compute 7', and
once this is accomplished, we can predict the result of a
measurement by any detector due to any source by matrix
multiplication according to (9). Therefore, computation of
T yields the most general solution to the forward problem.
The forward solution is usually known to exist if V is
physically admissible. In the iterative process of DCTMC,
we can ensure physical admissibility of V every time before
the transformation 7 [V] is used. We can view this procedure
as a particular type of regularization by imposition of physical
constraints. If this type of regularization is used, one can be
sure that the matrix inversion involved in computing 7 [V] is
always well defined.

We can also formally invert 7 and write

V=T 'TI=d+TD) 'T=T7U+TT)"". A1

Much less is known about the existence of the inverse in (11).
In other words, we do not know the conditions of physical
admissibility of T apart from the general but not very useful
symmetry property 7;; = Tj;. Certainly, 7 '[T] does not
exist for all arguments 7. In DCTMC, one of the possible
approaches is to update V iteratively by using (11). In this
case, existence of the inverse is required. While we do not
possess a general proof, numerical simulations for the inverse
diffraction problem have encountered no singularities in (11).
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More importantly, the problem of invertibility of 7 does not
arise at all if Computational Shortcut 2 is used (see Sec. V B).

A block diagram of Eq. (9) with all matrix sizes indicated
is shown in Fig. 2. Here, N; and N; are the numbers of
detectors and sources used (not necessarily equal) and N,
is the number of volume voxels. For a practical estimate of
these numbers, refer to Fig. 1. Let the measurement surfaces
¥, and X; be identical squares located on the opposite
sides of a cubic sample. Let the detectors and sources be
scanned on an L x L square grid and let the sample be
discretized on a L x L x L cubic grid with the same pitch.
Then, Ny = N, = L?, N, = L. These estimates are typical
but, admittedly, not very general. Still, in many practical cases
we can expect that

Nd»Ns < Nu < Nst- (12)

The first inequality in (12) illustrates Remark 1 of Sec. II
because the matrices A and B are in this case clearly not
invertible. The second inequality is important if we wish to
compare DCTMC to some of the traditional approaches. For
example, the conventional formulation of the linearized ISP
starts from Eq. (7). Asis explained in Remark 3, is is commonly
assumed that K in (7) is a general matrix of the size Ny N; X
N, (L* x L?). However, the sizes of A and B are N; x N,
(L* x L3 and N, x N, (L3 x L?), respectively. Computing
numerically the pseudoinverse of K (if we do not account for
its special algebraic structure as is described in Appendix B) is
a much more computationally intensive task than computing
the pseudoinverses of A and B. Therefore, the relaxation of
the strict requirement of diagonality of V allows one to work
with two much smaller “weight matrices” A and B instead of
one large “weight matrix” K.

We now turn to the central idea of DCTMC, namely, to the
concept of data compatibility of the 7 matrix. To formulate
the constraints that Eq. (9) places on T in a computationally
tractable form, consider the singular value decompositions of
A and B:

A= Zkﬂf gl

Here, a

B= 203|f gt a3)

) 4y and |g ) are the singular values and right and
left smgular vectors of A, and similarly for B. Note that | f;?)
and |g 5 ) are vectors of length N; and N, respectively, while

lg/t) and | f,?) are both of length N,, and we have assumed
in (13) that N4, Ny < N,. Using the orthogonality of singular
vectors, we obtain from (9) and (13)

Aaffuv = q)p.\u 1< m< Ny, 1<v <N, (14)

where

T = (g |T[£), 1< v <N,
@ = (f1|Plef), 1<u< Ny 1<v<

By T we denote the T matrix in singular-vector representation
while T that was used previously is the T matrix in real-space
representation. The two representations are related to each
other by the transformation

T = R4TRp = RIT],

(15a)
Ny. (15b)

T =R TRy =R'[T], (16)
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FIG. 3. Left panel: elements of 7 inside the shaded block can
be computed from the data by using (17). Elements outside of the
shaded block are not known and can not be in any way inferred from
the data. Right panel: the initial guess for the T matrix, Ty In this
initial guess, we set the unknown elements of 7 (in singular-vector
representation) to zero.

where R4 is the unitary matrix whose columns are the
singular vectors | g;‘) while Rp is the unitary matrix whose
columns are the singular vectors | ff). Equation (16) defines
the pseudorotation functional R[---]. We note that R[-- -]
is linear and invertible even though it is not equivalent to a
conventional rotation because R4 # Rp. It is useful to keep in
mind that & # R[®]. As can be seen from the definition (15),
@ is related to ® by a similar transformation but with different
unitary matrices.
We now can write the solution to (14) as follows:

1 & ¢ _A_B 2
7o _a;‘ofq)#“’ ifo o, >e€ (17
ny — .

unknown, otherwise.

Here, € is a small positive constant. If computations could be
performed with infinite precision, we could have set € = 0. In
practice, we should take € to be small but at least larger than the
smallest positive floating-point constant for which a particular
implementation of numerical arithmetic adheres to the IEEE
standard. We note that under the assumptions stated above, the
condition 0402 > €2 can be satisfied only for 1 < u < Ny

I
and 1 < v < N,. Singular values o} and o/ with indexes
outside of these ranges are identically zero.

Equation (17) summarizes our knowledge about the system
that is contained in the data. There are few matrix elements
of T that are known with certainty. These matrix elements
can be computed by the first expression in (17). The other
matrix elements can not be determined from Eq. (9). We can
vary these unknown elements arbitrarily and the error of (9)
will not noticeably change. The number of known elements
of T can not exceed NN but can, in principle, be smaller,
e.g., if the rank of A is less than N, or the rank of B is less
than Nj, although this situation is not typical even for severely
ill-posed ISPs. In any event, N, N; is usually much smaller than
the total number of the matrix elements of 7', which is equal to
NZ. Using the previously introduced estimates, NyN, /N2 ~
1/L?. Therefore, only a small fraction of the elements of T are
known. In what follows, we assume that the singular values
of A and B are arranged in the descending order and that
the known elements of 7 can be collected into the upper-left
rectangular block of the size M4 x Mp (see Fig. 3), where
M4 < Ny and Mp < N;. We emphasize again that, in many
practically important cases, equalities will hold in the above
expressions. However, it is possible to arrange the sources in
such a way that the rank of B is less than N, (and similarly

FIG. 4. Assuming that the singular values oj and af are arranged
in the descending order, this sketch shows an example of a more
general shape (compared to Fig. 3) of the region in which the elements
of T are known. The numbers above the thick line satisfy 010 > €.
In the general case, the boundary line can only go from left to right
and from bottom to top if followed from the leftmost boundary of the
matrix.

for detectors and A), at least up to the numerical precision
of the computer [31]. Moreover, the region of known matrix
elements can be of a more general shape than a rectangle, as
is shown in Fig. 4. It is not conceptually difficult to account
for this fact. However, we will proceed under the assumption
that the region is rectangular in order to shorten the discussion.
Besides, in the numerical simulations of [28], this region was,
in fact, rectangular.

Even though we can not gain any knowledge about the
matrix elements of T outside of the shaded area shown in
Fig. 3 by using Eq. (9) alone, we can make an initial guess for
T, which we denote by .y (the “experimental” T matrix).
We define Texp (in real-space representation) as the matrix that
satisfies (9) in the minimum norm sense and has the smallest
entrywise norm || 7'||,. This matrix is uniquely defined by the
equation

Texpt = A+¢B+v (18)

where “4” denotes Moore-Penrose pseudoinverse. If A and B
are rank deficient or invertible, (9) is satisfied by ey exactly
so that ||ATexp B — ®||o = 0. The experimental 7' matrix in
singular-vector representation is obtained from (18) by the
transformation (16). In fact, the experimental 7' matrix is
more easily characterizable in singular-vector representation.
Indeed, all the elements of Texpt in the unshaded area of the
diagram in Fig. 3 (right panel) are equal to zero. This is
expressed mathematically by writing

1 & e A _B 2
5P, ifolo, >¢€

(Texpl)/w = k% .

. (19)
0, otherwise.

This expression is equivalent to (18).

We conclude this section with two important observations
about the experimental 7" matrix:

Remark 4: Lack of sparsity of Teg. The matrix Texpt is
sparse but the same is not true for Texp.
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Remark 5: Lack of symmetry of Texpt. It is known theo-
retically that the correct T matrix is symmetric in real-space
representation. However, this is not generally true for Teyp.
Indeed, Texpr = R~ [Texpi), and in Texp @ large fraction of the
elements are replaced by zeros. The resultant Ty, is not likely
to be symmetric.

IV. BASIC ITERATION CYCLE

In this section we describe a computational algorithm in
which the matrices 7" and V are continuously updated so that T
is kept data compatible and V becomes increasingly diagonally
dominated. Our goal is to fill the unknown elements of 7 (the
white areas in the left panel of Fig. 3) in such a way that the
corresponding interaction matrix V, computed according to
(11), is approximately diagonal. This is a general formulation
of the problem of matrix completion, although the constraint
that we apply to 7 is not the same as in the conventional
statement of the problem.

Before proceeding, we need to introduce several additional
operators. First, define the masking operators M[---] and

N[---1:

0 GAof > 2

. _[o. .

(MIT Dy = {T;w» otherwise (202)
- 7., ofol > €

WDy = {0, otherwise. (20b)

We note that M[T]+ N[T]=T. Then, the operator of
enforcing data compatibility of 7" (in singular-vector repre-
sentation) O[- - - ] can be defined as follows:

O[T] = M[T] + 7~'expt =T - N[T] + Texpt- 21

It can be seen that the action of O[T'] is to overwrite (hence the
notation ) the elements of 7 in the shaded area of Fig. 3 with
the elements of Texp[ and to leave all other elements unchanged.
The operator Of- - - ] is defined for any N, x N, matrix but in
the iterations discussed below we always apply this operator
to the 7" matrix in singular-vector representation.

Next, we will need to define a diagonal approximation to
V. To this end, we define an entrywise “force-diagonalization”
operator D[- - - ], where

(DIVDij = 8 Y Viko(Lii)- (22)
k

Here, p(¢;;) is a weight function that depends on the physical
distance ¢;; between the voxels i and k and not on the relative
position of the lines i and k in the matrix V. The definition
(22) is in agreement with the approximation of the form (1).
We note that a more symmetric definition involving the factor
oUki)(Vir + Vii)/2 seems to be more natural to use but, in
fact, this expression is not of the same form as (1) and we have
verified numerically that it does not produce superior results
compared to (22). If V is symmetric, the two expressions yield
identical results but the iteratively updated V' is not symmetric
in DCTMC, and the physical meaning of the off-diagonal
elements V;; and Vj; is generally not the same. In the simplest
case, we can take p(£y;) = dy;. This corresponds to sending all
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off-diagonal elements of V to zero. This approach allows for a
complete and simple analysis of DCTMC in the linear regime,
as is described in Sec. VI below. However, the use of more
complicated functions p(€) corresponds better to the spirit of
DCTMC; it allows one to take the off-diagonal elements of
V that are generated in the course of iterations. Unlike the
operator O[---], D[- - -] will always be applied in real-space
representation.

We are now ready to describe the iterative process of
DCTMC. The iteration steps will be defined in terms of the
operators R[---]land 7[---],D[---],and O[- - - ]. A summary
of all operators used in this paper is given in Appendix C.
We assume that the singular value decomposition (SVD)
decompositions of matrices A and B and the experimental
T matrix Texpt (19) have been precomputed. Consider the case
when the iterations start from an initial guess for the 7" matrix.
We then set k = 1, T = Tuxpr, and run the following iteration,
as is illustrated schematically in Fig. 5:

1: T = R7T]
This transforms the 7 matrix from singular-vector to
real-space representation. Both 7; and T; are data
compatible.

2: Ve = Tﬁl[Tk]
This gives kth approximation to the interaction matrix V.
V} is data compatible but not diagonal.

3: Dy = D[V]
Compute the diagonal approximation to Vj, denoted here
by Dy. Dy is diagonal but not data compatible.

4: T = T[Dy]
Compute the T matrix that corresponds to the diagonal
matrix Dy. Unlike Ty, T} is no longer data compatible.

5:T) = RIT/]
Transform 7} to singular-vector representation. Here, Tk/
is still not data compatible.

6: Ty = O[T{]
Advance the iteration index by one and overwrite the
elements of Tk’ that are known from data with the
corresponding elements of Texpl. This will restore data
compatibility of Ty;. Then, go to Step 1.

The computational complexity of Steps 1, 2,4, and 5 is O(NS ).
However, the complexity can be dramatically reduced with
the use of the computational shortcuts that are described in
the next section, with the only exception of Step 4. Therefore,
Step 4 is the true computational bottleneck of the method.
Its complexity can be reduced by accounting for sparsity of
V. However, if no a priori knowledge about sparsity of V is
available, then the computational complexity of Step 4 is the
limiting factor of DCTMC, at least to the best of our current
understanding.

V. COMPUTATIONAL SHORTCUTS
A. Shortcut 1: Fast pseudorotations
Consider iteration Steps 5, 6, and 1 written sequentially:
5: T =RIT{l, ON;)=O0(L),
6: Tip1 = O[T{], <O(N4N;) = O(LY),
I: Ty = R Teal. O(N)) = O(L).
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FIG. 5. Basic flowchart of the DCTMC iteration process for the case when the iterations start with an initial guess for 7. Numbered iteration
steps are defined in Sec. IV. Computational shortcuts are described in Sec. V. Matrix representations are abbreviated by SV (singular vector)
and RS (real space). Exit condition can be checked at various steps of the iterations (see [28] for more detail).

To the right, we have indicated the computational complexity
of each step and used the previously introduced estimates for
Ny, Ny, and N, in terms of the grid size L. The complexity of
Step 6 is equal to, at most, N;N;. Therefore, the complexity
of Steps 5 and 1 is dominating. Now, let us combine the steps
by writing

Tir1 = R7OIRITN
= RRIT{1 = NTRIT/N + Texpr], (23)

where in the second equality we have used the definition of
O[---1(21). We now use the linearity and invertibility of R to
rewrite (23) as

Tyt = T} + Texpe — R™INIRITNI (24)

We are therefore left with the task of numerically evaluating an
expression of the type R ™' [N[R[T]]], where we have dropped
all indexes for simplicity. But, this can be accomplished
in much less than O(N?) operations due to the sparsity of
NT---1. Indeed, consider first the computation of NR[T]].
This operation is illustrated in Fig. 6. It can be seen that
NIRIT] = P;T Pg, where the matrix P4 is obtained from
R4 by overwriting all columns of Ry, except for the first
M, columns, with zeros, and Pp is defined analogously.
The complexity of computing P;T Pg is O[min(M 4, M B)sz],
which is less than NS by the factor of at least O(L). Quite
analogously, we can show that

RNIRIT/ = Pa(P;T P)P;. (25)

It should be kept in mind that P4 P} # I and PgPj # I and
that premultiplying these matrices is not a computationally
efficient approach. Doing so will result in an expression of the

type Q4T Qp, where Q4 = PoP}; and Qp = PPy are not
sparse. Instead, one should evaluate the right-hand side of (25)
using the operator precedence implied by the parentheses. We
conclude that the Steps 5, 6, and 1 of the iterative procedure
described above can be combined in the following single
computational step:

Tis1 = T + Texpt — Pa(PiT, Pp)Py. (26)

In this formula, Teyp, P4, and Pp are precomputed and stored
in memory. We finally note that the sparsity of N can be
used efficiently even if the region of “’known” elements of

RIT | R/ T Ry

-0 0} M
0 0 00 0
NRIT ] P T Py

FIG. 6. Schematics of computing N[R[T]]. Matrices P4 and Py
are obtained from R, and Rjp by setting all columns to zero except
for the first M4 and M columns, respectively.
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T is not rectangular. Although matrices P, and P can not
be easily defined in this case, the use of appropriate masks in
computing expressions of the type N[R% T Rp] will achieve a
similar reduction of computational complexity.

B. Shortcut 2: Fast T — D operation

Here, we describe a computational shortcut that can cut
the computational time per one iteration by approximately a
factor of ~2. However, we have found empirically [28] that
this is not the most efficient approach since it does not use one
of the main features of DCTMC, that is, accounting for the
off-diagonal elements of V at the intermediate stages of the
iterations. In [28], it is shown that a more efficient approach is
based on utilization of the formula (22) (weighted summation
to the diagonal). Here, we describe Computational Shortcut 2
for completeness of exposition.

Consider Steps 2 and 3 of the basic iteration cycle:

20 Vi =T '[Ti], O(N])=o0(L,
3: Dy =DV, OW,)=O0(L),

To the right, we have indicated the computational complexity
of each step. The goal of Steps 2 and 3 is to find a diagonal
matrix D that in some sense approximates the previously
computed 7 matrix. More specifically, we compute V that
corresponds to T exactly but is not diagonal in Step 2 and then
seek a diagonal approximation to V denoted by D. The last
operation is governed by the “force-diagonalization” operator
DI- - -1, which in turn depends on the weight function p(¢).
As was mentioned above, the simplest choice of this weight
function is such that p(¢;;) = 8;; [we only need to define p(¢)
for a set of discrete values of the argument]. This choice of
the weight function minimizes the entrywise norm ||V — D||,.
An alternative approach is to seek a diagonal matrix D that
satisfies the equation

T=D+DIT Q7

in the minimum L,-norm sense [of course, (27) can not be
satisfied exactly by any diagonal matrix D]. The above is
a classical minimization problem, which has the following
analytical solution:

- T; + [(TT)*T];
Y14 Ty +(CT)+ T T’

It may seem that evaluation of (28) still requires O(NS)
operations because it contains the matrix-matrix product I'T'.
However, this is not so. The matrix A = I'T can be updated
iteratively during Computational Shortcut 1 by using (26)
multiplied from the left by I, viz.,

A1 = Ap + Aexpe — (DPA(PIT Pp)Py.  (29)

Here, Ary1 =T Tiqpy, Ay =TT], and Aexpe = I'Toypr. The
matrix I'P4 can be precomputed and has exactly the same
sparsity structure as P, itself, that is, all of its columns except
for the first M4 columns are zero. Therefore, computing the
last term in (29) is of the same complexity as Computational
Shortcut 1, that is, O[min(M 4, M B)Nf]. There remains the
question of how A} is computed and whether this computation
requires an extra matrix-matrix multiplication. The answer is,

D;j=5§

(28)

ij
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it can be precomputed at Step 4 of the kth iteration without any
additional matrix-matrix multiplications. Indeed, let us utilize
the second formula in the definition of 7[---] (10) and write
Step 4 of kth iteration as follows:

T, = Dy(I =T D). (30)

We then multiply from the left both sides of (30) by I" and
obtain

A, =TD(I—-TD) ' =U-TDy) "'~ 1. 31)

Now we can compute 7, and Aj without any additional
complexity by using the following substeps:

1: Compute the product A, = I" Dy, which is fast because
Dy is diagonal.

2: Compute the inverse Sy = (I — Ay)~', which has the
complexity of N3.

3: Compute Aj = S — I [as follows from (31)].

4: Compute T, = D;.Si [as follows from (30)], which is
again fast because Dy is diagonal.

Thus, in all the computations outlined above only inversion
of I — Ay has the computational complexity of Ng. This is,
therefore, the true computational bottleneck of the algorithm.

The computational shortcut described here allows one to
cut the computational time per one iteration of DCTMC by
approximately the factor of 2. However, we will show in the
second part of this paper series [28] that a more useful approach
is to use an explicit weight function p(£). This is more in
line with the main idea of DCTMC, which is relaxing the
requirement that V be a strictly local interaction. Weighted
summation to the diagonal is a natural approach to account
for the nonlocality (off diagonality of V). Indeed, we will see
that, although this approach does not allow one to use the
Computational Shortcut 2, it reduces the number of required
iterations and is more beneficial in the end.

C. Streamlined iteration cycle

The computational shortcuts can be integrated into a
single streamlined iteration algorithm. Doing so requires
careful consideration of the flowchart shown in Fig. 5 and
of the associated data dependencies. However, the resulting
algorithm is relatively simple. For ease of programming, we
have broken this algorithm into elementary computational
steps. We describe separately the cases when Computational
Shortcut 2 is and is not used. In both cases, we start from
the initial guess for the T matrix, Ty = Texpe. Modification in
which the process starts from an initial guess for V is quite
obvious and is numerically implemented in [28].

1. Initial setup

1: Permanently store in memory the analytically known
matrix T.

2: Compute the SVD decomposition (13) of A and B.
This will yield a set of singular values olf, of (some of
which are identically zero) and singular vectors | flj‘),
1£5), 180, 1g5).

3: Use the previous result to construct and permanently
store in memory the dense matrices R4 and Rp,
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sparse matrices P4 and Pg. If Computational Shortcut 2
is used, compute also Q4 = I' P4. Note: no additional
memory allocation for P4 and Pg is required.

4: Compute ) v according to (15b) and Texpt according to
(19). Discard the real-space data function, the singular
values and singular vectors, and deallocate the
associated memory.

5: Compute and store permanently in memory
Toxpt = R4 TexptRE = Py Texpt Pg. If computational
Shortcut 2 is used, also compute Aeype = I' Texpt-

6: Initialize iterations by setting 7] = Toypy and Aj =

Aexpt-

The computational cost of the initial setup is comparable to that
of one iteration or less. Step 1 is negligible. Computation of the
SVD of A and B in Step 2 has the cost of O[NU(NX2 + Nj)],
which is also relatively small. The cost of Step 3 is again
negligible as it mostly consists of arranging numerical data
in the computer memory. The cost of Step 4 is O(N,N7 +
NyN?). Finally, in Step 5, the complexity of computing
Py Texpt Py is O(NyN2 + NyN?) or less, depending on the size
of nonzero blocks in P4 and Pg. The only costly operation is
the computation of the matrix-matrix product I' Texp, in Step 5,
with the computational complexity of O(N?). But, this step is
only required if the Computational Shortcut 2 is used.

Exit condition can be defined at different stages of the iter-
ations by using various error measures, as is described in more
detail in [28]. Here, no specific exit conditions are defined.

2. Main iteration with the use of Computational Shortcut 2

Starting from k =1, T = Texpr, and Aj = Aexp, Tun the
following iterations:

(T HALT),,

T =DySi, Ay =S, — I
Tir1 = T + Texpe — Pa(P3T Pp) Py,
Aks1 = Ap + Aexpr — Qa(PRT Pp) Py.

L (Du)ij = 8ij Trarva,azan,
2: Ak = FDk

30 S = — Ap)™!

4:

5:

Operations whose order of execution is insignificant and which
can run independently in parallel threads are shown in the
same numbered step. Note that computation of the terms
(AxTy);; and (A Ag),; fori =1, ..., N, has the computational
complexity of only O(N?). Therefore, the true bottleneck
of each iteration is the operation of matrix inversion S; =
(I — Ap)~! whose computational complexity is O(NS).

3. Main iteration without the use of Computational Shortcut 2

Starting from k = 1, T = Teyy, run the following itera-
tions:

Vi =+ T, 'T;

Dy = D[Vi]

T = — D)™ Dy

Tiy1 = T + Texpe — Pa(PiT/ Pp) Pj;.

S

The computational cost of this iterative scheme is dominated
by the Steps 1 and 3, the computational complexity of each of
these steps being O(N?).
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VI. DCTMC IN THE LINEAR REGIME AND THE
QUESTIONS OF CONVERGENCE
AND REGULARIZATION

In this section, we analyze DCTMC in the linear regime.
Most results will be obtained in the case when the weight func-
tion in (22) is given by p(£;;) = 8. However, generalizations
for a more general (and a more practical) operator DJ- - - | will
be mentioned briefly.

Consider the iteration cycle of Sec. VC in the limit
' — 0. Omitting intermediate steps, we find that each iteration
is reduced to the following two operations:

1: Dk = D[Tk]
2: Tir1 = Dy + Texpe — (P P{) Di(Pp Pp),

where D[---] is defined in (22). These two steps can be
combined in the following simple iteration:

Di11 = Dy + Dexpt — D[(PaP3)Di(Pp Pp)], (32)

where Dexpi = D[Texpi]. Iteration (32) can be obtained simply
by applying the operator D[---] to the equation in Step 2
above. Let us now convert (32) to an equation with respect
to the vector |vy) that contains the diagonal elements of Dy.
From the linearity of (32) we immediately find

[Uk41) = [Vexpt) + (I — W)lug), (33)

where [Uexp) is the vector of diagonal elements of Deypy.

We now specialize to the case when the weight function in
the definition (22) of the operator D[ - - ] is given by p(£y;) =
Si - In this case, the matrix W has the elements

Wij = (PaPy)ij(PsPp)ji. (34)

Itis easy to see that (33) is Richardson first-order iteration with
the fixed point |vy) = W! [Vexpt) - Therefore, DCTMC in the
linear regime simply provides an iterative way of solving the
equation

Wlv) = |Uexpt) - (35)

This equation can be derived independently from DCTMC and
in a more straightforward manner starting from the linearized
equation (7). This derivation is shown in Appendix B and it
takes advantage of the algebraic properties of K (see Remark
3). It is important to realize that, although (35) can be obtained
from (7) by a series of linear transformations, the two equations
are not equivalent in the following sense: if K is not invertible,
then the pseudoinverse solutions of the two equations can be
different. However, if K is invertible, then the two equations
have the same unique solution.

Of course, iteration (33) is only a particular numerical
method of solving (35) and not the most efficient one:
conjugate-gradient descent is expected to provide better com-
putational performance. However, consideration of DCTMC
in the linear regime is not a vain or trivial exercise but is
useful in several respects. First, it gives us an insight into the
convergence properties of DCTMC. Second, it gives us an idea
of how DCTMC iterations can be regularized. Convergence
and regularization will be discussed in the remainder of this
section.
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It is obvious that the iterations converge to the fixed
point provided that |1 — w,| < 1 for all n, where w, are the
eigenvalues of W. Since W is Hermitian, all its eigenvalues are
real and therefore the convergence condition reads 0 < w, <
2. Under the same condition the inverse W~ exists. We will
now prove that

0<w, <1. (36)

The fact that W is non-negative definite is obvious from
(34). We will, however, make an additional step and recall
that the columns of P4 are the singular vectors |g;;‘) for
uw=1,...,M, and zeros otherwise while the columns of Ppg
are the singular vectors | ff y for w =1,...,Mp and zeros
otherwise. We then obtain in a straightforward manner

My Mg

ZZ |gu

n=1 v=1

W lANGLESN A2 @D

Let |x) be an arbitrary nonzero vector of length N, and X be
an N, x N, matrix with the elements of |x) on the diagonal
and zeros elsewhere. Then,

(x|Wlx) = ZZ| AX[FE)N > 0. (38)

n=1 v=1

We therefore have proved that w, > 0. Next, we use the
orthonormality of each set of singular vectors to write the
following identities:

N, N, N,
(xlx) = Y XXy =YY |(gh|X]£7)] (39)
i=1 n=1v=1

Since M,,M;, < Ny, (x|W|x) < (x|x) and we have proved
(36). The equality (x|W]|x) = (x|x) holds only in the case
M, = Mg = N,, in which case W = I and the iteration (33)
trivially converges to its fixed point right upon making the ini-
tial guess. In this unrealistic case, all elements of the 7" matrix
are determined from the data and no iterations are needed.
We thus conclude that convergence can be slow in the
case W has a small (or zero) eigenvalue. We can define the
characteristic overlap of singular vectors related to detectors

and sources as
Ax1P )
’

- {2 |l
T 0 et X1 72)

The iterations (33) converge at least as fast as the power series
> (1 —§&)'. If & is close to zero, the convergence can be
slow. This observation gives us an idea of how the iterations
can be regularized. This can be accomplished by replacing
W by W + A%I, where A is a regularization parameter. As is
shown in Appendix B, this procedure is equivalent to Tikhonov
regularization of Eq. (BS), which can be derived from (7)
by several linear operations. However, the substitution W —
W + A21 is not equivalent to Tikhonov regularization of (7).
We can now introduce regularization of the general iterative
algorithm of Sec. V C, which is applicable to the nonlinear case
as well. Namely, for any matrix X, we replace the linear trans-
formation (P4 P})X(PgP}) by (PaP})X(PgP}) + A*DIX].
This entails the following modification to Step 5 of the

(40)
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streamlined algorithm with Shortcut 2 or Step 4 of the
algorithm without Shortcut 2:

Tir1 = T] — M DIT{1 + Texp — Pa(P;T P5) Py,
A1 = Ay — MDIA] + Aexp — Qa(P;T{ Pp) Py

Finally, we mention briefly which modifications can be
expected if we use a more general weight function p(¢y;) in
the definition (22) of the operator D. The first obvious result is
that the matrix W is modified in this case so that its elements
are given by

i = Z(PAPZ)i_/(PBPE)jkP(fki)
k

= (PoP))ij(PsPgH)ji, 41

where H;; = p(¢;;). This matrix is no longer non-negative
definite. Moreover, its eigenvalues can be complex and we
can not prove easily that they are constrained to the disk
|1 — w,| < 1 (in fact, this may be not so). However, numerical
evidence shows that using weight functions p(¢) that are
nonzero for finite ¢ improves the convergence rate of the
DCTMC iterations [28]. We view this as an indication that
the eigenvalues w, are pushed away from the origin in the
complex plane while staying within the disk |1 — w,,| < 1. The
free term of Eq. (35) is also affected by the choice of the weight
function p(¢). Indeed, we can write (i|Uexpt = (TexptH )ii- The
resultant equation W|v) = |vexp) is still derivable from (7).
In Appendix B, the derivation is shown for the simple case
o(Ly;) = 8r; or H = I, but the more general case can be easily
considered and the resultant transformation between K and W
is given in the end of the Appendix.

VII. DISCUSSION

This paper describes a method for solving nonlinear inverse
scattering problems (ISPs). The method is based on iterative
completion of the unknown entries of the 7 matrix and we
refer to it as to the data-compatible 7-matrix completion
(DCTMC) method. It should be emphasized that the constraint
that we apply to the T matrix (namely, that it corresponds
to a nearly diagonal interaction matrix V) is not the same
as in the conventional formulation of the matrix completion
problem. The method developed in this paper is well suited for
overdetermined ISPs in which the number of volume voxels
is not too large (e.g., <10%) or the target is sparse. The size of
the data set in not a limiting factor for this method, unlike in
many traditional approaches to the same problem.

In the case of ill-posed ISPs, regularization plays the key
role. One should not expect to recover a reasonable image
without some form of regularization. DCTMC allows for two
types of regularization: (i) by imposing physical constraints
and (ii) by regularizing the matrix W;; = (P4 P});ij(Pg Pg)ji.
In the linear regime, the approach (ii) corresponds to Tikhonov
regularization of the linearized equation OU K |v) = OU |¢),
which is obtained from Eq. (7) by multiplying the latter by @ U
from the left; the unitary matrix U and the matrix of diagonal
scaling ® are defined in Appendix B. In the nonlinear regime,
the approach (ii) is somewhat ad hoc and its applicability
requires additional research.

A potential advantage of DCTMC is its computational ef-
ficiency in solving strongly overdetermined inverse problems
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with large data sets. This advance is obtained by exploiting
the algebraic structure of the ISP rather than stating it in the
conventional generic form F[v] = 0 (or Kv = 0 in the linear
approximation) where F[- - - ] is a general nonlinear functional,
K is its linear approximation and v is the vector consisting of
the diagonal elements of V. In our previous work, we have
shown that strongly overdetermined data sets are required
to obtain the optimal image resolution [32,33]. Specifically,
the fundamental limit of lateral resolution of diffuse optical
tomography (DOT) in the slab geometry is equal to the step &
of the mesh of sources and detectors on each face of the slab,
provided that the imaging windows are significantly larger than
the field of view of the reconstruction. Thus, to reconstruct a
lateral central cross section of the slab on a 100 x 100 mesh of
step h, one needs about 3002 sources on one side and the same
number of detectors on the other side of the slab. This translates
into ~10'" data points. This result is not specific to DOT
but also holds for diffraction tomography that we consider
numerically in [28]. However, the fundamental resolution limit
is not always achievable. If the inverse problem is ill posed or
noise is present in the data, the theoretical limit of resolution
can not be achieved and smaller data sets can suffice to obtain
the optimal image quality. Therefore, the optimal size of the
data set is determined by a complex interplay between the ill
posedness of the inverse problem and the statistical properties
of the noise. Experimental DOT reconstruction with large data
sets was demonstrated in [34], experimental determination of
the optimal size of the data set was in [34,35], and further
insights on selection of useful data points in the presence
of strong nonlinearity were provided in [36]. However, all
references just quoted used linearized image reconstruction.
DCTMC allows one to overcome this limitation and obtain
nonlinear reconstructions with very large data sets.

Although the main goal of DCTMC is to solve nonlinear
problems, the methods developed above can be useful for
solving linearized problems with large data sets as well. This
development is conceptually similar to the image reconstruc-
tion methods of [33,37-39] that were developed for solving
linear ISPs. The similarity lies in exploring the algebraic
structure of the matrix K, which is obtained as a product of
two unperturbed Green’s functions. In [33,37-39], the special
structure of K that follows from the translational invariance of
an infinite homogeneous slab was exploited. In this work, we
do not use or assume translational invariance of the medium
and do not work in the infinite slab geometry. Instead, we
obtain an expression of the form AV B, where V is the
unknown potential (in the linear regime, V = T'). This replaces
the traditional approach in which one writes AVB = K,
where v is the vector of diagonal elements of V.

In the full nonlinear regime, DCTMC also bears some
similarity to the methods of [11,13,15] where the notion of the
fundamental unknown is also expanded to include the internal
fields or the complete Green’s function, G, or the 7 matrix, 7.
For example, in the work of Chaumet et al., the dipole moments
d, of voxels are iteratively updated. In our terminology,
dne = (T @)ne, Wwhere @ = x,y,z labels Cartesian components
of three-dimensional vectors and ¢ is the incident field (see
Sec. II). The intermediate dipole results are directly updated by
a step in the Polak-Ribiere conjugate gradient direction. Then,
once an acceptable result has been obtained, the relationship
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between the dipoles and the voxel polarizabilities is used
to obtain the final reconstruction. DCTMC is different in
several respects. It searches in a different direction, which
is determined at each iteration by the experimental T matrix.
Also, the voxel polarizabilities are updated at each iteration
(here we imply a unique one-to-one correspondence between
the voxel polarizabilities and the 7 matrix). Therefore, our
treatment of the unknowns is similar to that in Refs. [11,13,15]
but the method for updating the unknown is different.
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APPENDIX A: LINEARIZING APPROXIMATIONS

In this Appendix, we state the linearizing approximations
without derivation or analysis as this is outside of the scope
of this paper. We only note that first Born approximation
is obtained by retaining the first-order term in the power-
series expansion of the complete Green’s function G; first
Rytov approximation is obtained by retaining the first-order
term in the cumulant expansion of In(G) and the mean-field
approximation is obtained by using the first-order approximant
in the continued-fraction expansion of G. More details are
given in [33]. Only first Born approximation can be stated
in abstract form while the other two approximations involve
entrywise expressions. Correspondingly, the accuracy of these
two approximations depends on the matrix representation,
while the accuracy of first Born approximation is represen-
tation independent.

(i) First Born approximation. The simplest approach to
linearization is the first Born approximation, according to
which

A(I —VI)"'VB ~ AVB.

Obviously, the first Born approximationis validif || V||, < 1.
By substituting the above approximation into the left-hand
side of (5), we obtain (6) in which W = &. Therefore, the
data transformation in the case of first Born approximation is
trivial.

(ii) First Rytov approximation. The first Rytov approxima-
tion can be stated as

1 (AV B);;
1
where C;; = Go(r;,r;) and r; € X4, r; € X;. Thus, we have
encountered yet another restriction of Gy(r,r’). Obviously,
with this restriction used, Gy(r,r’) is the direct (unscattered)
field that would have been produced by a source located at
r and measured by a detector at r’ in the case V =0. If
we substitute the above approximation into the left-hand side
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of (5) and introduce the data transformation
\I’[j = C,‘j ln(l + dJ[j/Cij),

we would arrive again at (6). Therefore, the equation above
defines the data transformation of first Rytov approximation.

(iii) Mean-field approximation. The mean-field approxima-
tion is

(AV B);;

1—(AVB);;/Cij’
The data transformation of the mean-field approximation has
the form of element-wise harmonic average and reads as

1
Yij= 770
1/, +1/C;;

[A(l — VD)'VB]; ~

APPENDIX B: DERIVATION OF THE EQUATION
W|v) = |Vexpt) [EQ. (35)] FROM EQ. (7)

In this Appendix, we derive Eq. (35) from Eq. (7) for the
special case of the weight function p(€y;) = ;. The more
general case can be considered without difficulty, and the
relevant result is adduced in the end of this Appendix.

Consider the linearized equation (7) in the first Born
approximation, that is, with the trivial data transformation
W = @ or equivalently |y) = |¢). We recall that K, ; =
A,,jBj, and use (13) for A,,; and B;, to obtain the following
result for the elements of K:

K(mn);—zzo Jlm] £, e

pn=1 v=1

a0 17N )

Now define the unitary matrix U with the elements

Uguny.mmy = (£ |m)(n|g2).

1 g/“"? mgNda 1 gvv ngNS (Bl)
and multiply (7) by U from the left:
UK)v) =Ulp). (B2)

We emphasize that multiplication of any linear equa-
tion by a unitary matrix does not change its Tikhonov-
regularized pseudoinverse solution. This follows immediately
from (UK)*(UK) = K*K and (UK)*U = K*. Now, we use
the equalities

(UK)w.j =0 0l(gn|iNil£F). ((ulUl¢) =

to rewrite (B2) as

Ny

oto® S el NTLFA)I) = B
Jj=1

1<u<N,y 1<v<N,

Next, we observe that the above set may contain some
equations in which all coefficients are zero or very small.
These equations can be safely discarded and this operation
still does not affect the pseudoinverse. Therefore, we obtain

oo, Z (gt i)i] A2 ) = P,
j=1

l<spu<Ma 1<v< Mg, (B3)
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where M4 and M are the dimensions of the shaded rectangle
A_B 2

in Fig. 3, which is the region where the inequality 0’0, > €
holds and € is the small positive constant introduced in (17).
Note that (B3) is in all respects equivalent to (7).

At this point, however, we make a transformation that will,
in fact, change the equation. Namely, we divide (B3) by the
factor o}a,”, which is larger than € for all equations included
in (B3). In computational linear algebra, this operation is

known as preconditioning by diagonal scaling. We thus obtain

Ny

> e 1) A5G ) = Tepyr

j=1

I<us< My, 1<v< Mp, (B4)

where we have used the definition (19) of Texpt. The diagonal
scaling that was applied to obtain (B4) is invertible. Therefore,
if (7) has a solution in the ordinary sense, then (B4) has the
same solution. However, if (7) is not invertible, then the two
equations have different pseudoinverse solutions that can not
be related to each other by a simple transformation. In this
sense, the two equations (7) and (B4) are no longer equivalent.
To obtain (35), we observe that (B4) can be written as

Qlv) = 1), (BS)

where Q(/Lv),j = <g;j|])(]|fu3) and ((uv)lt) = (Texpl)uv We
then multiply (B3) by Q* from the left and obtain

My Mp

(Q* Q)i =YY (£P]illign)e

n=1 v=l1

AN ER A

where W = Q*Q is the same matrix as in (34) [compare the
above equation to (37)]. In a similar manner, we obtain

(i1Q%|t) = ZZ 07 (uwy Texpv

nrov=I1
= (P4 Texptpg)ii = (Texpl)ii =

Therefore, Q*|T) = |vexpt). We thus conclude that (35) is
obtained from (BS5) by multiplying both sides with Q*.
Moreover, the substitution W — W + A2] is equivalent to
Tikhonov-regularization of (BS).

Finally, we can state the formal relation between K and W
in the following form:

(i [Vexpt)-

= (OUK)*(®OUK) = K*U'®’UK,
where U is the unitary matrix defined in (B1) and ® is
the diagonal conditioning matrix containing the quantities
1/(0;;‘0”3) for 1< u< My and 1 <v< My and zeros
otherwise.

The above consideration applied to the case p(€y;) = 8k
or, equivalently, H = I, where H;; = p({y;). If H # I, the
matrix W is given by

W =(OUK)" HOUK).

The matrix H appears in this expression as an additional filter.
The free term of the equation is modified so that (i|vep) =
(TexptH )i i-
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TABLE 1. Definitions and properties of the various functional used in this paper. The weight function p(£) must be defined separately and
is expected to go to zero for large values of £; ¢;; is the physical distance between voxels k and i.

F Entrywise? Y = F[X] Invertible? X =F Y]
T No Y=(-XD)"'X Sometimes X=U+YD)Y
R No Y =R, XRp Yes X = RsYR}
D Yes Y,’j = 8,'1' Zk Xikp(fki) No N/A
- 0, ohol > ¢
M Yes Yo =1 e No N/A
X, otherwise
- X, 0408 > €2
N Yes V=1 " meve No N/A
0, otherwise
o Yes Y = M[X]+ Texp No N/A

:X_N[)?]_Ffexpt
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[1] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. [19] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter

Kilmer, R. J. Gaudette, and Q. Zhang, IEEE Signal Proc. Mag. Estimation and Inverse Problems (Elsevier, Amsterdam, 2005).
18, 57 (2001). [20] J. K. Seo and E. J. Woo, Nonlinear Inverse Problems in Imaging
[2] S. R. Arridge and J. C. Schotland, Inverse Probl. 25, 123010 (Wiley, Hoboken, NJ, 2012).
(2009). [21] H. W. Engl and P. Kugler, Multidisciplinary Methods for Analy-
[3] M. M. Bronstein, A. M. Bronstein, M. Zibulevski, and H. Azhari, sis Optimization and Control of Complex Systems Mathematics
IEEE Trans. Med. Imag. 21, 1395 (2002). in Industry (Springer, Berlin, 2005), Vol. 6, pp. 3-47.
[4] A.J. Devaney, IEEE Trans. Geosci. Remote Sensing GE-22, 3 [22] V. A. Markel, J. A. O’Sullivan, and J. C. Schotland, J. Opt. Soc.
(1984). Am. A 20, 903 (2003).
[5] J. G. Berryman and R. V. Kohn, Phys. Rev. Lett. 65, 325 (1990). [23] S. Moskow and J. Schotland, Inverse Probl. 24, 065005
[6] D. Isaacson, J. L. Mueller, J. C. Newell, and S. Siltanen, IEEE (2008).
Trans. Med. Imag. 23, 821 (2004). [24] M. Moskow and J. Schotland, Inverse Probl. 25, 095007 (2009).
[7] A. Arridge, S. Moskow, and J. C. Schotland, Inverse Probl. 28, [25] D. Watzenig, e & i Elektrotechnik und Informationstechnik
035003 (2012). (Springer, Berlin, 2007), Vol. 124, pp. 240-247.
[8] P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. [26] R. H. Stolt and B. Jacobs, Stanford Exploration Project (SEP),
Boltasseva, and J. C. Schotland, Phys. Rev. Lett. 92, 163903 Tech. Rep. 24, 1980 (unpublished).
(2004). [27] D. J. Kouri and A. Vijay, Phys. Rev. E 67, 046614 (2003).
[9] K. Belkebir, P. C. Chaumet, and A. Sentenac, J. Opt. Soc. Am. [28] H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043318
A 22, 1889 (2005). (2016).
[10] G. Bao and P. Li, Opt. Lett. 32, 1465 (2007). [29] If the source is not of unit strength, measurements should be
[11] P. C. Chaumet, K. Belkebir, and A. Sentenac, Phys. Rev. B 69, divided by the source amplitude.
245405 (2004). [30] There is no real distinction between the two cases if the data are
[12] K. Belkebir, P. C. Chaumet, and A. Sentenac, J. Opt. Soc. Am. sampled.
A 23, 586 (2006). [31] This possibility is closely related to the existence of nonradiating
[13] E. Mudry, P. C. Chaumet, K. Belkebir, and A. Sentenac, Inverse sources. Indeed, to force the rank of B to be less than N,, we
Probl. 28, 065007 (2012). need to arrange the sources in space and to assign them relative
[14] M. Jakobsen, Stud. Geophys. Geod. 56, 1 (2012). amplitudes and phases so that they produce almost no field
[15] M. Jakobsen and B. Ursin, J. Geophys. Eng. 12, 400 (2015). in .
[16] R. G. Newton, Scattering Theory of Waves and Particles [32] V. A. Markel and J. C. Schotland, Appl. Phys. Lett. 81, 1180
(McGraw-Hill, New York, 1966). (2002).
[17] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic [33] V. A. Markel and J. C. Schotland, Phys. Rev. E 70, 056616
Scattering Theory, Vol. 93 of Applied Mathematical Sciences (2004).
(Springer, Berlin, 1998). [34] Z.-M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland,
[18] R. Snieder, Inverse Probl. 14, 387 (1998). Opt. Lett. 30, 3338 (2005).

043317-13


https://doi.org/10.1109/79.962278
https://doi.org/10.1109/79.962278
https://doi.org/10.1109/79.962278
https://doi.org/10.1109/79.962278
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1088/0266-5611/25/12/123010
https://doi.org/10.1109/TMI.2002.806423
https://doi.org/10.1109/TMI.2002.806423
https://doi.org/10.1109/TMI.2002.806423
https://doi.org/10.1109/TMI.2002.806423
https://doi.org/10.1109/TGRS.1984.350573
https://doi.org/10.1109/TGRS.1984.350573
https://doi.org/10.1109/TGRS.1984.350573
https://doi.org/10.1109/TGRS.1984.350573
https://doi.org/10.1103/PhysRevLett.65.325
https://doi.org/10.1103/PhysRevLett.65.325
https://doi.org/10.1103/PhysRevLett.65.325
https://doi.org/10.1103/PhysRevLett.65.325
https://doi.org/10.1109/TMI.2004.827482
https://doi.org/10.1109/TMI.2004.827482
https://doi.org/10.1109/TMI.2004.827482
https://doi.org/10.1109/TMI.2004.827482
https://doi.org/10.1088/0266-5611/28/3/035003
https://doi.org/10.1088/0266-5611/28/3/035003
https://doi.org/10.1088/0266-5611/28/3/035003
https://doi.org/10.1088/0266-5611/28/3/035003
https://doi.org/10.1103/PhysRevLett.92.163903
https://doi.org/10.1103/PhysRevLett.92.163903
https://doi.org/10.1103/PhysRevLett.92.163903
https://doi.org/10.1103/PhysRevLett.92.163903
https://doi.org/10.1364/JOSAA.22.001889
https://doi.org/10.1364/JOSAA.22.001889
https://doi.org/10.1364/JOSAA.22.001889
https://doi.org/10.1364/JOSAA.22.001889
https://doi.org/10.1364/OL.32.001465
https://doi.org/10.1364/OL.32.001465
https://doi.org/10.1364/OL.32.001465
https://doi.org/10.1364/OL.32.001465
https://doi.org/10.1103/PhysRevB.69.245405
https://doi.org/10.1103/PhysRevB.69.245405
https://doi.org/10.1103/PhysRevB.69.245405
https://doi.org/10.1103/PhysRevB.69.245405
https://doi.org/10.1364/JOSAA.23.000586
https://doi.org/10.1364/JOSAA.23.000586
https://doi.org/10.1364/JOSAA.23.000586
https://doi.org/10.1364/JOSAA.23.000586
https://doi.org/10.1088/0266-5611/28/6/065007
https://doi.org/10.1088/0266-5611/28/6/065007
https://doi.org/10.1088/0266-5611/28/6/065007
https://doi.org/10.1088/0266-5611/28/6/065007
https://doi.org/10.1007/s11200-010-9081-2
https://doi.org/10.1007/s11200-010-9081-2
https://doi.org/10.1007/s11200-010-9081-2
https://doi.org/10.1007/s11200-010-9081-2
https://doi.org/10.1088/1742-2132/12/3/400
https://doi.org/10.1088/1742-2132/12/3/400
https://doi.org/10.1088/1742-2132/12/3/400
https://doi.org/10.1088/1742-2132/12/3/400
https://doi.org/10.1088/0266-5611/14/3/003
https://doi.org/10.1088/0266-5611/14/3/003
https://doi.org/10.1088/0266-5611/14/3/003
https://doi.org/10.1088/0266-5611/14/3/003
https://doi.org/10.1364/JOSAA.20.000903
https://doi.org/10.1364/JOSAA.20.000903
https://doi.org/10.1364/JOSAA.20.000903
https://doi.org/10.1364/JOSAA.20.000903
https://doi.org/10.1088/0266-5611/24/6/065005
https://doi.org/10.1088/0266-5611/24/6/065005
https://doi.org/10.1088/0266-5611/24/6/065005
https://doi.org/10.1088/0266-5611/24/6/065005
https://doi.org/10.1088/0266-5611/25/9/095007
https://doi.org/10.1088/0266-5611/25/9/095007
https://doi.org/10.1088/0266-5611/25/9/095007
https://doi.org/10.1088/0266-5611/25/9/095007
https://doi.org/10.1103/PhysRevE.67.046614
https://doi.org/10.1103/PhysRevE.67.046614
https://doi.org/10.1103/PhysRevE.67.046614
https://doi.org/10.1103/PhysRevE.67.046614
https://doi.org/10.1103/PhysRevE.94.043318
https://doi.org/10.1103/PhysRevE.94.043318
https://doi.org/10.1103/PhysRevE.94.043318
https://doi.org/10.1103/PhysRevE.94.043318
https://doi.org/10.1063/1.1495543
https://doi.org/10.1063/1.1495543
https://doi.org/10.1063/1.1495543
https://doi.org/10.1063/1.1495543
https://doi.org/10.1103/PhysRevE.70.056616
https://doi.org/10.1103/PhysRevE.70.056616
https://doi.org/10.1103/PhysRevE.70.056616
https://doi.org/10.1103/PhysRevE.70.056616
https://doi.org/10.1364/OL.30.003338
https://doi.org/10.1364/OL.30.003338
https://doi.org/10.1364/OL.30.003338
https://doi.org/10.1364/OL.30.003338

HOWARD W. LEVINSON AND VADIM A. MARKEL PHYSICAL REVIEW E 94, 043317 (2016)

[35] S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. Yodh, [37] J. C. Schotland, J. Opt. Soc. Am. A 14, 275 (1997).

and J. C. Schotland, Opt. Express 16, 5048 (2008). [38] J. C. Schotland and V. A. Markel, J. Opt. Soc. Am. A 18, 2767
[36] H.Y.Ban, D.R. Busch, S. Pathak, F. A. Moscatelli, M. Machida, (2001).

J. C. Schotland, V. A. Markel, and A. G. Yodh, J. Biomed. Opt. [39] V. A. Markel, V. Mital, and J. C. Schotland, J. Opt. Soc. Am. A

18, 026016 (2013). 20, 890 (2003).

043317-14


https://doi.org/10.1364/OE.16.005048
https://doi.org/10.1364/OE.16.005048
https://doi.org/10.1364/OE.16.005048
https://doi.org/10.1364/OE.16.005048
https://doi.org/10.1117/1.JBO.18.2.026016
https://doi.org/10.1117/1.JBO.18.2.026016
https://doi.org/10.1117/1.JBO.18.2.026016
https://doi.org/10.1117/1.JBO.18.2.026016
https://doi.org/10.1364/JOSAA.14.000275
https://doi.org/10.1364/JOSAA.14.000275
https://doi.org/10.1364/JOSAA.14.000275
https://doi.org/10.1364/JOSAA.14.000275
https://doi.org/10.1364/JOSAA.18.002767
https://doi.org/10.1364/JOSAA.18.002767
https://doi.org/10.1364/JOSAA.18.002767
https://doi.org/10.1364/JOSAA.18.002767
https://doi.org/10.1364/JOSAA.20.000890
https://doi.org/10.1364/JOSAA.20.000890
https://doi.org/10.1364/JOSAA.20.000890
https://doi.org/10.1364/JOSAA.20.000890



