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Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models
for the compressible Navier-Stokes equations with arbitrary specific heat ratio
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A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the
compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium
distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local
equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of
particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite
expansion, namely one is in relation to the translational velocity and the other is connected with the rotational
velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled
into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution
equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are
constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To
validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results
agree with the analytical solutions very well.
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I. INTRODUCTION

The lattice Boltzmann method (LBM) has been successfully
applied to isothermal fluids [1,2]. However, when it is applied
to thermal fluids, the LBM encounters some difficulties. One
of them is that the specific heat ratio γ in the macroscopic
equations derived from the Bhatnager-Gross-Krook (BGK)
equation via the Chapman-Enskog expansion is fixed, in other
words, the specific heat ratio γ is not realistic. Several lattice
Boltzmann (LB) schemes with flexible specific heat ratio have
been proposed [3–6]. These LB schemes are derived in a
similar way. The discrete velocities and the local equilibrium
distribution function are determined by a set of constraints
which makes sure the macroscopic equations match the ther-
mohydrodynamic equations with certain accuracy. Since 2006,
a new way to construct LB models has been developed [7–17].
Contrary to the previous way, the new way derives the discrete
velocities and the equilibrium distribution function via the Her-
mite quadrature and the Hermite expansion. It is easy to con-
struct LB models of higher order via the Hermite expansion.

In this work, we apply the new way to constructing LB
schemes for the compressible Navier-Stokes equations with
flexible specific heat ratio.

The local equilibrium distribution function including the
rotational velocity of particle is decoupled into two parts—one
is in relation to the translational velocity and the other
is connected with the rotational velocity. The distribution
function is also decoupled into two parts accordingly. Two
LB models are derived via the Hermite expansion. One is
for the distribution function of the translational velocity and
the other is for that of the rotational velocity. After this, we
decouple the evolution equation into the evolution equation
of the translational velocity and that of the rotational velocity.
The two evolution equations evolve separately. The decoupled
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scheme given above is validated by a shock tube simulation.
The results of simulation agree with the analytical solutions
very well.

II. DECOUPLING THE LOCAL EQUILIBRIUM
DISTRIBUTION FUNCTION f eq(ξ,η) AND THE

DISTRIBUTION FUNCTION f (ξ,η)

We begin with the local equilibrium distribution function.
The origin that the specific heat ratio is fixed is that gases are
supposed to be monatomic, so there is only the translational
free degree and the rotational free degree is limited. To describe
diatomic gases or polyatomic gases, the rotational velocity of
particle should be introduced. The local equilibrium distri-
bution function including the rotational velocity of particle
is [5,18]

f eq(ξ ,η) = ρ
1

(2πRgT )
D
2

1

(2nπRgT )
1
2

× exp

[
− (ξ − u)2

2RgT
− η2

2nRgT

]
, (1)

where ρ is the density, T is the absolute temperature, u is the
macroscopic velocity, ξ is the translational velocity of particle,
η is the rotational velocity of particle, n is the free degree of
the rotational velocity of particle, D is the dimension, and Rg

is the universal gas constant.
The dimensionless local equilibrium distribution function

is

f̃ eq(ξ̃ ,η̃) = ρ̃

(2πθ̃ )
D
2

1

(2πθ̃ )
1
2

exp

(
−|ξ̃ − ũ|2

2θ̃

)
exp

(
− η̃2

2θ̃

)
,

(2)

where

f̃ eq = f eqθ
N/2
0 (nθ0)1/2, θ = RgT ,

ρ̃ = ρ/ρ0, ξ̃ = ξ/
√

θ0,

η̃ = η/n
√

θ0, ũ = u/
√

θ0,

θ̃ = T̃ = θ/θ0, θ0 = RgT0.
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Omitting the tildes on ρ, ξ , η, u, and θ (T ), we simplify
Eq. (2),

f eq(ξ ,η) = ρ

(2πθ )
D
2

1

(2πθ )
1
2

exp

(
−|ξ − u|2

2θ

)
exp

(
− η2

2θ

)
.

(3)

The dimensionless local equilibrium distribution function
can be decoupled into the local equilibrium distribution
function of ξ and that of η,

f eq(ξ ,η) = geq(ξ )heq(η), (4)

where

geq(ξ ) = ρ

(2πθ )
D
2

exp

(
−|ξ − u|2

2θ

)
,

heq(η) = 1

(2πθ )
1
2

exp

(
− η2

2θ

)
.

Taking the moment integrals of f eq(ξ ), we obtain

ρ =
∫

geq(ξ )dξ , (5a)

ρu =
∫

geq(ξ )ξdξ , (5b)

ρ

(
et + 1

2
u2

)
=

∫
geq(ξ )

1

2
ξ 2dξ , (5c)

where et = D
2 T is the translational internal energy.

Taking the moment integrals of f eq(η), we get

1 =
∫

heq(η)dη, (6a)

er =
∫

heq(η)
n

2
η2dη, (6b)

where er = n
2 T = n

D
et is the rotational internal energy.

Taking the moment integrals of the local equilibrium
distribution function f eq(ξ ,η), we obtain

ρ =
∫∫

f eq(ξ ,η)dξdη, (7a)

ρu =
∫∫

f eq(ξ ,η)ξdξdη, (7b)

ρ

(
E + 1

2
u2

)
=

∫∫
f eq(ξ ,η)

(
1

2
ξ 2 + n

2
η2

)
dξdη, (7c)

where E = D+n
2 T = D+n

D
et is the internal energy. It is the

sum of the translational energy et and the rotational energy er .
According to the kinetic theory, we get

ρ =
∫∫

f (ξ ,η)dξdη, (8a)

ρu =
∫∫

f (ξ ,η)ξdξdη, (8b)

ρ

(
E + 1

2
u2

)
=

∫∫
f (ξ ,η)

(
1

2
ξ 2 + n

2
η2

)
dξdη. (8c)

Now we assume that the translational velocity of particle
ξ is independent of the rotational velocity of particle, so the
distribution function f (ξ ,η) can be decoupled into g(ξ ) and
h(η),

f (ξ ,η) = g(ξ )h(η), (9)

where we define

f (ξ ,η) = ρb(ξ ,η) = ρb1(ξ )h(η), (10a)

g(ξ ) =
∫

f (ξ ,η)dη, (10b)

h(η) =
∫

b(ξ ,η)dξ . (10c)

Section III will discuss the reasonableness of this assumption.
It should be noted that b(ξ ,η) is a joint probability distribu-

tion, b1(ξ ) and h(η) are marginal probability distributions, and
g(ξ ) is the product of ρ and a marginal probability distribution.

According to Eqs. (8) and (10), the moments of the
distribution function g(ξ ) are

∫
g(ξ )dξ =

∫∫
f (ξ ,η)dξdη = ρ, (11a)∫

g(ξ )ξdξ =
∫∫

f (ξ ,η)ξdξdη = ρu, (11b)

∫
g(ξ )

1

2
ξ 2dξ =

∫∫
f (ξ ,η)

1

2
ξ 2dξdη = ρ

(
et + 1

2
u2

)
.

(11c)

Similarly to (11), the moments of the distribution function
h(η) are

∫
h(η)dη =

∫∫
b(ξ ,η)dξdη = 1, (12a)∫

h(η)
n

2
η2dη =

∫∫
b(ξ ,η)

n

2
η2dξdη = er . (12b)

III. DECOUPLING THE EVOLUTION EQUATION

We have decoupled the equilibrium distribution function
f eq(ξ ,η) and the distribution function f (ξ ,η) in Sec. II,

f eq(ξ ,η) = geq(ξ )heq(η),

f (ξ ,η) = g(ξ )h(η).

After decoupling f eq(ξ ,η) and f (ξ ,η), we can decouple
the evolution equation of f (ξ ,η). The evolution equation of
f (ξ ,η) can be expressed as

∂f (ξ ,η)

∂t
+ ξ · ∇f (ξ ,η) = − 1

τ
[f (ξ ,η) − f eq(ξ ,η)], (13)

where τ is the relaxation time.
Integrating (13) on η, and substituting (10b) into it, we

obtain the evolution equation of g(ξ ),

∂g(ξ )

∂t
+ ξ · ∇g(ξ ) = − 1

τ
[g(ξ ) − g(ξ )eq]. (14)
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Substituting Eq. (4) and Eq. (9) into Eq. (13), we obtain

∂g(ξ )h(η)

∂t
+ ξ · ∇g(ξ )h(η) = − 1

τ
[g(ξ )h(η) − geq(ξ )heq(η)].

(15)
Expanding Eq. (15) and simplifying it, we obtain

h(η)

[
∂g(ξ )

∂t
+ ξ · ∇g(ξ )

]
+ g(ξ )

[
∂h(η)

∂t
+ ξ · ∇h(η)

]

= − 1

τ
[g(ξ )h(η) − geq(ξ )heq(η)]. (16)

Substituting Eq. (14) into Eq. (16), integrating on ξ , and
simplifying it, we obtain the evolution equation of h(η),

∂h(η)

∂t
+ u · ∇h(η) = − 1

τ
[h(η) − h(η)eq]. (17)

Discretizing the evolution equation of g(ξ ) and h(η) in
the discrete velocity space, we obtain the discrete evolution
equations of gi and hj ,

∂gi

∂t
+ ξ i · ∇gi = − 1

τ

(
gi − g

eq
i

)
, (18a)

∂hj

∂t
+ u · ∇hj = − 1

τ

(
hj − h

eq
j

)
, (18b)

where gi and hj are the discrete form of g(ξ ) and h(η).
Equation (18a) is the evolution equation of the discrete
translational velocity ξ i and Eq. (18b) is the evolution equation
of the discrete rotational velocity ηj . It should be noted that
Eq. (18a) is independent of ηj and Eq. (18b) is indirectly
connected to Eq. (18a) via the macroscopic velocity u.

From the two evolution equations of gi and hj , i.e.,
Eqs. (18a) and (18b), the Navier-Stokes equations with flexible
specific heat ratio via the Chapman-Enskog expansion can be
derived,

∂

∂t
ρ + ∇ · ρu = 0, (19a)

∂

∂t
ρu + ∇ · (ρuu + P δ) = ∇ · μ

[
(∇u + u∇) − 2

D + n
∇ · uδ

]
, (19b)

∂

∂t
ρ

(
E + 1

2
u2

)
+ ∇ · ρu

(
E + 1

2
u2 + P

ρ

)
= ∇ · μu

(
∇u + u∇ − 2

D + n
∇ · uδ

)
+ ∇ · κ∇E, (19c)

where P = 2
D

ρet is the pressure, μ = 2
D

ρetτ is the dynamic
viscosity coefficient, κ = 2(D+n+2)

D(D+n) ρetτ is the heat conductiv-
ity, and the specific heat ratio γ is defined as

γ = D + n + 2

D + n
. (20)

The derivation shows that it is reasonable to assume
the distribution function f (ξ ,η) can be decoupled into g(ξ )
and h(η).

The Appendix will give the derivation in details.

IV. LB MODELS FOR THE TRANSLATIONAL VELOCITY
AND THE ROTATIONAL VELOCITY

In this section, we derive LB models from geq(ξ ) and
heq(η), respectively, via the Hermite expansion. The process
of deriving LB models via the Hermite expansion has been
discussed intensively by X. Shan [9,19], C. Philippi [7,8,10],
and J. W. Shim [12,13].

In this work, we only discuss two-dimensional fluids. The
case of three dimensions is similar. Employing the Hermite
expansion, we construct a two-dimensional LB model of
fourth-order accuracy, i.e., D2Q37, from geq(ξ ). The discrete
particle velocities ξ i and the weights ωi of D2Q37 are showed
in Table I. The discrete equilibrium distribution function g

eq
i (ξ )

of D2Q37 is

g
eq
i (ξ ) = ωiρ

4∑
k=0

1

k!
a(k) · H (k), (21)

where

a(0) · H (0) = 1,

a(1) · H (1) = ξ · u,

a(2) · H (2) = (ξ · u)2 + (θ − 1)(θ2 − D) − u2,

a(3) · H (3) = (ξ · u)[(ξ · u)2 − 3u2

+ 3(θ − 1)(u2 − D − 2)],

a(4) · H (4) = (ξ · u)4 − 6(ξ · u)2u2 + 3u4

+ 6(θ − 1)[(ξ · u)2(u2 − D − 4)

+ (D + 2 − u2)ξ 2]

+ 3(θ − 1)2[u4 − 2(D + 2)u2 + D(D + 2)],

and D = 2.

TABLE I. Discrete velocities and weights of D2Q37. Perm
denotes permutation and k denotes the number of discrete velocities
included in each group. The scaling factor is r =1.1969797752.

k ξ i ωi

1 (0,0) 2.03916918 × 10−1

4 Perm(r,0) 1.27544846 × 10−1

4 Perm(r,r) 4.37537182 × 10−2

4 Perm(2r,0) 8.13659044 × 10−3

4 Perm(2r,r) 9.40079914 × 10−3

4 Perm(3r,0) 6.95051049 × 10−4

4 Perm(3r,r) 3.04298494 × 10−5

4 Perm(3r,3r) 2.81093762 × 10−5
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TABLE II. Discrete velocities and weights of D1Q7. k denotes
the number of discrete velocities included in each group. The scaling
factor is r =1.1969797752.

k ηj ωj

1 0 4.766698882 × 10−1

2 ±r 2.339147370 × 10−1

2 ±2r 2.693818936 × 10−2

2 ±3r 8.121295330 × 10−4

It should be noted that the LB model given above differs
from the LB model given by Ref. [7].

In a similar way, a one-dimensional LB model of fourth-
order accuarcy can be derived from heq(η). Here, we adopt
the D1Q7 model proposed by J. W. Shim [13]. The discrete
velocities ηj and the weights ωj are shown in Table II. The
discrete equilibrium distribution function is

h
eq
j (η) = ωj

4∑
j=0

1

j !
a(j ) · H (j ), (22)

where

a(0) · H (0) = 1,

a(1) · H (1) = 0,

a(2) · H (2) = (θ − 1)(θ2 − D),

a(3) · H (3) = 0,

a(4) · H (4) = 3(θ − 1)2[η4 − 2(D + 2)η2 + D(D + 2)],

and D = 1.
D2Q37 and D1Q7 are both models of fourth-order accuracy,

so the scheme given above is of fourth-order accuracy. In this
way, the higher-order of accuracy can be achieved easily.

We can also construct or adopt other LB models. But it
should be noticed that the scaling factors r of LB models
derived form geq(ξ ) and heq(η) should be equal or else
interpolation is necessary.

V. CALCULATION PROCEDURE

In this section, we first discretize the evolution equations of
g(ξ ) and h(η) in time and space, then we give the computational
algorithm.

A. Discretized the evolution equation in space and time

Now we discretize the discrete evolution equations of ξ i and
ηj in time and space. The first-order difference is employed for
the time discretization and the convection term is performed
by the third-order upwind scheme. The discretized form of
Eq. (18a) is

gi(x,t + 
t) = gi(x,t) − 
tξ i · ∇gi

− 
t

τ

[
gi(x,t) − g

eq
i (x,t)

]
, (23)

where 
t is the time increment, and the convection term along
the coordinate x is

ξix

∂gi

∂x
= 1

2

ξi,x + |ξi,x |
6
x

[gi(x−2
x) − 6gi(x−
x)

+ 3gi(x) + 2gi(x+
x)]

+ 1

2

ξi,x − |ξi,x |
6
x

[−gi(x+2
x) + 6gi(x+
x)

− 3gi(x) − 2gi(x−
x)],

and 
x is the space increment. The convection term along the
y coordinate is similar. In a similar way, the discretized form
of the discrete evolution equation of ηj , i.e., Eq. (18b), is

hj (x,t + 
t) = hj (x,t) − 
tu · ∇hj

− 
t

τ

[
hj (x,t) − h

eq
j (x,t)

]
, (24)

where the convection term is similar with that of Eq. (18a),

ux

∂hj

∂x
= 1

2

ux + |ux |
6
x

[hj (x−2
x) − 6hj (x−
x)

+ 3hj (x) + 2hj (x+
x)]

+ 1

2

ux − |ux |
6
x

[−hj (x+2
x) + 6hj (x+
x)

− 3hj (x) − 2hj (x−
x)].

The convection term along the y coordinate is similar.

B. Computational algorithm

The computational algorithm is as follows:
(1) Update gi by Eq. (23);
(2) Update hj by Eq. (24);
(3) Calculate the density ρ, the macroscopic velocity u and

the translational internal energy et ,

ρ =
∑

i

gi, (25a)

ρu =
∑

i

giξ i , (25b)

1

2
ρu2 + ρet =

∑
i

gi

1

2
ξ 2
i , (25c)

where the translational internal energy et is

et = D

2
T . (26)

The pressure is defined as P = 2
D

ρet .
(4) Calculate the rotational internal energy er ,

er =
∑

j

n

2
hjη

2
j , (27)

and combine Eq. (27) with (25c); we then obtain

1

2
ρu2 + ρE =

∑
i

gi

1

2
ξ 2
i + ρ

∑
j

hj

n

2
η2

j . (28)

As defined above, the internal energy E is the sum of the
translational internal energy et and the rotational internal
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FIG. 1. The density, pressure, temperature, and velocity profiles of the shock tube are drawn. The red lines are the numerical results of
simulation and the blue lines are the analytical resolutions. These are the results at the 180th step, i.e., the time t = 0.1504. The specific heat
ratio is γ =1.4 and the relaxation time is τ = 2/3.

energy er ,

E = et + er = D + n

D
et . (29)

Substituting Eq. (29) into (28) we obtain the internal
energy E,

E =
∑

i gi
1
2ξ 2

i + ρ
∑

j
n
2 hjη

2
j − ρ 1

2u2

ρ
. (30)

Substituting Eq. (26) and (29) into (30), we obtain the absolute
temperature T ,

T = 2

D + n

∑
i gi

1
2ξ 2

i + ρ
∑

j
n
2 hjη

2
j − ρ 1

2u2

ρ
. (31)

(5) Implement the boundary conditions.

VI. NUMERICAL VALIDATION

In this section, we apply the decoupled scheme given above
to simulating a shock tube. The grid is X × Y = 1000 × 16.
The initial condition of the left tube is ρ = 4, T = 1, u = 0
and that of the right tube is ρ = 1, T = 1, u = 0. The specific
heat ratio is γ = 1.4, the rotational free degree is n = 3, and the
relaxation time is τ = 2/3. All of these macroscopic variables

are dimensionless. The periodic boundary condition is em-
ployed for the up and down boundaries and the open boundary
condition is employed for the left and right boundaries.

Figure 1 gives the results of simulation employing the
decoupled scheme given above at step = 180, i.e., time

t = step

Xr
= 180

1000 × 1.1969797752
= 0.1504.

The analytical solutions [20] at the same time are also given.
The red lines show the numerical results and the blue lines
show the analytical resolutions. It can be seen from Fig. 1
that the numerical simulation results agree with the analytical
resolutions very well.

Table III gives the relative error of density ρ, pressure p,
absolute temperature T , and the velocity u. The relative error

TABLE III. Relative error of the numerical solutions.

ρ p T ux

Error 0.0077 0.0055 0.0064 0.0242
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is defined as

Error =
∑

i |xnume,i − xanal,i |∑
i |xanal,i | , (32)

where xnume is the numerical solutions, xanal is the analytical
solutions, and i = X + 1. Table III shows that the maximum
of relative error is 2.42%. This relative error is acceptable.

VII. CONCLUSION

This work proposes a way based on the Hermite expansion
to construct LB schemes for the compressible Navier-Stokes
equations with arbitrary specific heat ratio. The equilib-
rium distribution function f eq(ξ ,η), the distribution function
f (ξ ,η), and the evolution function are decoupled into two
parts, namely one is in relation to the translational velocity ξ

and the other is connected with the rotational velocity η. The
two evolution equations evolve separately. The translational
velocity ξ is discretized in a two- or three-dimensional LB
model and the rotational velocity η is discretized in another
one-dimensional LB model. The Hermite expansion is applied
to deriving these two LB models. The correct flexible specific
heat ratio is obtained and the correct relation between the
temperature T and the internal energy E is derived via
the Chapman-Enskog expansion. The decoupled scheme is
validated by a shock tube simulation. The simulation results
agree with the analytical resolutions very well.

The LB models used in the decoupled scheme are the same
as the ones used in the schemes with fixed specific heat ratio.
It is not necessary for the decoupled scheme to construct
new LB models specifically. The models with fixed specific
heat ratio can applied to the decoupled scheme without any
recommendation. This differs from the existing schemes which
construct new models in order to adjust the specific heat ratio.

The decoupled scheme proposed by this work can make
use of the models constructed via the Hermite expansion, so
the process of constructing new schemes is simple and higher-
order accuracy can be achieved easily.

APPENDIX: DERIVATION OF THE NAVIER-STOKES
EQUATIONS FROM THE EVOLUTION EQUATIONS OF

g(ξ ) AND h(η) VIA THE CHAPMAN-ENSKOG EXPANSION

In this Appendix, we derive the Navier-Stokes equations
with flexible specific heat ratio from the evolution equations
of g(ξ ) and h(η) via the Chapman-Enskog expansion.

Expanding the distribution functions gi and hj , the deriva-
tives of the time t , and the space in terms of the Kundsen
number ε, we obtain

∇ = ε∇1, (A1a)

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, (A1b)

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + · · · , (A1c)

hj = h
(0)
j + εh

(1)
j + ε2h

(2)
j + · · · . (A1d)

Substituting Eq. (A1c) into the evolution equation of the
translational velocity, i.e., Eq. (18a), and comparing the order

of ε we obtain

g
(0)
i = g

(eq)
i , (A2a)(

∂

∂t1
+ ξ i · ∇1

)
g

(0)
i + 1

τ
g

(1)
i = 0, (A2b)

∂g
(0)
i

∂t2
+

(
∂

∂t1
+ ξ i · ∇1

)
g

(1)
i + 1

τ
g

(2)
i = 0. (A2c)

Considering the discrete form of Eq. (11) in the discrete
velocity space,

∑
i

gi =
∑

i

g
eq
i = ρ, (A3a)

∑
i

gi =
∑

i

g
eq
i = ρu, (A3b)

∑
i

gi

1

2
ξ 2
i =

∑
i

g
eq
i

1

2
ξ 2
i = ρ

(
1

2
u2 + et

)
, (A3c)

we obtain ∑
i

g
(n)
i = 0,

∑
i

g
(n)
i ξ i = 0,

∑
i

g
(n)
i

1

2
ξ 2
i = 0, n = 1,2, . . . . (A4)

Substituting Eq. (A1d) into the evolution equation of the
rotational velocity, i.e. Eq. (18b), and comparing the order of
ε we obtain

h
(0)
j = h

(eq)
j , (A5a)(

∂

∂t1
+ u · ∇1

)
h

(0)
j + 1

τ
h

(1)
j = 0, (A5b)

∂h
(0)
j

∂t2
+

(
∂

∂t1
+ u · ∇1

)
h

(1)
j + 1

τ
h

(2)
j = 0. (A5c)

Considering the discrete form of Eq. (12) in the discrete
velocity space,

∑
j

hj =
∑

j

h
eq
j = 1, (A6a)

∑
j

hj

n

2
η2

j =
∑

j

h
eq
j

n

2
η2

j = er , (A6b)

we obtain∑
j

h
(n)
j = 0,

∑
j

h
(n)
j

n

2
η2

j = 0, n = 1,2, . . . . (A7)

Some velocity moments of gi and hj will be used in the
derivation of the Navier-Stokes equations and we list them as
follows:

∑
i

g
eq
i = ρ, (A8a)

∑
i

g
eq
i ξ i = ρu, (A8b)
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∑
i

g
eq
i ξ iξ i = ρuu + P δ, (A8c)

∑
i

g
eq
i ξ iξ iξ i = ρuuu + P uδ, (A8d)

∑
i

g
eq
i

1

2
ξ 2
i = ρ

(
1

2
u2 + et

)
, (A8e)

∑
i

g
eq
i

1

2
ξ 2
i ξ i = ρ

(
1

2
u2 + et

)
u, (A8f)

∑
i

g
eq
i

1

2
ξ 2
i ξ iξ i = P

(
2

D
et + 1

2
u2 + et

)
δ,

+
(

2P + 1

2
ρu2 + ρet

)
uu, (A8g)

where P uδ = P (urδst + usδtr + utδrs). Here, the Grad notes
are used [21].

Two velocity moments of hj will be used in the following
parts: ∑

j

h
eq
j = 1, (A9a)

∑
j

h
eq
j

n

2
η2 = er . (A9b)

1. Derivation of the continuity equation

Taking the zeroth-order moment of Eq. (A2b), we obtain∑
i

(
∂

∂t1
+ ξ i · ∇1

)
g

(0)
i + 1

τ

∑
i

g
(1)
i = 0. (A10)

Substituting Eq. (A4) and (A8) into (A10), the continuity
equation of the first order is obtained,

∂

∂t1
ρ + ∇1 · ρu = 0. (A11)

Taking the zeroth-order moment of Eq. (A2c), we obtain

∂
∑

i g
(0)
i

∂t2
+

∑
i

(
∂

∂t1
+ ξ i · ∇1

)
g

(1)
i + 1

τ

∑
i

g
(2)
i = 0.

(A12)
Substituting Eq. (A4) and (A8) into (A12), and then summing
on i, we obtain the continuity equation of the second order,

∂ρ

∂t2
= 0. (A13)

Making use of Eq. (A1b) and combining the continuity
equation of the first and second orders, i.e., Eq. (A11)
and (A13), the continuity equation is obtained,

∂

∂t
ρ + ∇ · ρu = 0. (A14)

2. Derivation of the momentum conservation equation

Taking the first-order moment of Eq. (A2b),∑
i

(
∂

∂t1
+ ξ i · ∇1

)
g

(0)
i ξ i + 1

τ

∑
i

g
(1)
i ξ i = 0, (A15)

and inserting Eqs. (A4) and (A8), we get the conservation
momentum equation of the first order,

∂

∂t1
ρu + ∇1 · (ρuu + P δ) = 0. (A16)

Taking the first-order moment of Eq. (A2c),

∂
∑

i g
(0)
i ξ i

∂t2
+

∑
i

(
∂

∂t1
+ ξ i · ∇1

)
g

(1)
i ξ i

+ 1

τ

∑
i

g
(2)
i ξ i = 0, (A17)

substituting Eq. (A2b) into Eq. (A17), and simplifying, we
obtain

∂
∑

i g
(0)
i ξ i

∂t2
− τ∇1 ·

(
∂

∂t1

∑
i

ξ iξ ig
(0)
i

+ ∇1 ·
∑

i

ξ iξ iξ ig
(1)
i

)
= 0. (A18)

Inserting the moments of gi , i.e., Eq. (A8), into Eq. (A18) we
obtain

∂ρu
∂t2

− τ∇1 ·
[

∂

∂t1
(ρuu + P δ) + ∇1 ·

∑
i

ξ iξ iξ ig
(1)
i

]
= 0,

(A19)

where ∂P
∂t1

is a difficult point to simplify. To simplify ∂P
∂t1

, we
should obtain the energy conservation equation of the first-
order first.

Multiplying 1
2ξ 2

i to Eq. (A2b) and summing on i we obtain

∑
i

(
∂

∂t1
+ ξ i · ∇1

)
g

(0)
i

1

2
ξ 2
i + 1

τ

∑
i

g
(1)
i

1

2
ξ 2
i = 0. (A20)

Substituting the moments of ξ i , i.e., Eq. (A8), into Eq. (A20),
we obtain the translational internal energy conversation equa-
tion of the first order,

∂

∂t1

(
1

2
ρu2 + ρet

)
+ ∇1 ·

(
1

2
ρu2 + ρet + P

)
u = 0.

(A21)
Multiplying 1

2η2 to Eq. (A5b), summing on j , and inserting
the moments of hj , i.e., Eq. (A9), we obtain the rotational
internal energy conversation equation of the first order in
nonconservation form,

∂

∂t1
er + u · ∇1er = 0. (A22)

Multiplying ρ to Eq. (A22) and multiplying er to Eq. (A11),
and then adding, we obtain

ρ

(
∂

∂t1
er + u · ∇1er

)
+ er

(
∂

∂t1
ρ + ∇1 · ρu

)
= 0. (A23)

Simplifying Eq. (A23), we obtain the rotational internal
conversation energy equation of the first order in conservation
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form,

∂

∂t1
ρer + ∇1 · ρuer = 0. (A24)

Combining the translational internal energy conversation
equation of the first order, i.e., Eq. (A21), and the rotational
internal energy conversation equation of the first order, i.e.,
Eq. (A24), we obtain the energy conversation equation of the
first order,

∂

∂t1

(
1

2
ρu2 + ρE

)
+ ∇1 ·

(
1

2
ρu2 + ρE + P

)
u = 0.

(A25)
Substituting P = 2

D+n
ρE into Eq. (A25) we obtain

∂

∂t1

(
1

2
ρu2 + D + n

D
P

)

+∇1 ·
(

1

2
ρu2 + D + n + 2

D
P

)
u = 0. (A26)

Expanding Eq. (A26), and substituting Eqs. (A11) and (A16)
into it, after some algebra, we obtain

∂P

∂t1
= −∇1 · P u − 2

D + n
P∇1 · u. (A27)

Substituting Eq. (A27) into Eq. (A19), after some algebra,
we obtain the momentum conversation equation of the second
order,

∂

∂t2
ρu = ∇1 · 2

D
ρetτ

[
(∇1u + u∇1) − 2

D + n
∇1 · uδ

]
.

(A28)

Combining the momentum equation of the first order and
second order, we obtain the moment conversation equation

∂

∂t
ρu + ∇ · (ρuu + P δ)

= ∇ · μ

[
(∇u + u∇) − 2

D + n
∇ · uδ

]
, (A29)

where μ = 2
D

ρetτ is the dynamic viscosity coefficient.

3. Derivation of the energy conversation equation

We have obtained the energy conversation equation of the
first order, i.e., Eq. (A25),

∂

∂t1

(
1

2
ρu2 + ρE

)
+ ∇1 ·

(
1

2
ρu2 + ρE + P

)
u = 0.

Now we derive the energy conversation equation of the second
order.

Multiplying 1
2ξ 2

i to Eq. (A2c), substituting (A2b) into it,
and summing on i, we obtain

∂

∂t2

∑
i

g
(0)
i

1

2
ξ 2
i = ∇1 · τ

(
∂

∂t1

∑
i

g
(0)
i

1

2
ξ 2
i ξ i

+∇1 · g
(0)
i ξ iξ i

1

2
ξ 2
i

)
. (A30)

Substituting the moments of gi into Eq. (A30), we obtain

∂

∂t2

(
1

2
ρu2 + et

)
= ∇1 · τ

[
∂

∂t1

(
1

2
ρu2 + et + P

)
u

+∇1 · P

(
2

D
et + 1

2
u2 + et

)
δ

+
(

2P + 1

2
ρu2 + et

)
uu

]
. (A31)

Inserting Eq. (A11), (A16), (A26), and (A27) into
Eq. (A31), after some algebra, we get the translational internal
energy conversation equation of the second order

∂

∂t2

(
1

2
ρu2 + et

)

= ∇1 · τP u
[

(∇1u + u∇1) − 2

D + n
∇1uδ

]

+∇1 · τP
D + 2

D
∇1et . (A32)

Multiplying h
(0)
j to Eq. (A2c), multiplying g

(0)
i to Eq. (A5c),

and adding them yields

∂

∂t2
g

(0)
i h

(0)
j +

(
∂

∂t1
+ ξ · ∇1

)
g

(1)
i h

(0)
j

+
(

∂

∂t1
+ u · ∇1

)
g

(0)
i h

(1)
j

+ 1

τ

(
g

(2)
i h

(0)
j + g

(0)
i h

(2)
j

)
= 0, (A33)

and substituting Eq. (A2b) into Eq. (A33), we get

∂

∂t2
g

(0)
i h

(0)
j − ∇1 · τ

(
∂

∂t1
ξ ig

(0)
i h

(0)
j + ∇1 · ξ iξ ig

(0)
i h

(0)
j

)

+
(

∂

∂t1
+ u · ∇1

)
g

(0)
i h

(1)
j

+ 1

τ

(
g

(2)
i h

(0)
j + g

(0)
i h

(2)
j

) = 0. (A34)

Multiplying n
2 η2 to Eq. (A34) and summing on i and j we

obtain

∂

∂t2
ρer = ∇1 · τ

[
∂

∂t1
ρuer + ∇1 · (ρuu + P δ)er

]
. (A35)

Inserting Eqs. (A16) and (A24) into Eq. (A35), after some
algebra, we obtain the rotational internal energy conversation
equation of the second order,

∂

∂t2
ρer = ∇1 · τρet

n

D
∇1er . (A36)
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Combining the rotational internal energy conversation
equation of the second order, i.e., Eq. (A36), with the
translational internal conversation energy of the second order,
i.e., Eq. (A32), we obtain the energy conversation equation of
the second order,

∂

∂t2

(
1

2
ρu2 + ρE

)

= ∇1 · τP u
[

(∇1u + u∇1) − 2

D + n
∇1uδ

]

+∇1 · D + n + 2

D
τρet∇1et . (A37)

Combining the energy conversation equation of the second
order, i.e., Eq. (A37), with the energy conversation equation
of the first order, i.e., Eq. (A25), we obtain the energy

conversation equation
∂

∂t
ρ

(
E + 1

2
u2

)
+ ∇ · ρu

(
E + 1

2
u2 + P

ρ

)

= ∇ · μu
(

∇u + u∇ − 2

D + n
∇ · uδ

)
+ ∇ · κ∇E,

(A38)

where

P = 2

D
ρet , μ = 2

D
ρetτ, κ = 2(D + n + 2)

D(D + n)
ρetτ.

Equation (A38) is the energy conversation equation with
flexible specific heat ratio and the specific heat ratio γ is

γ = D + n + 2

D + n
.

The specific heat ratio γ can be adjusted by changing the free
degree of the rotational velocity n.
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