
PHYSICAL REVIEW E 94, 043312 (2016)

Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation
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The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method
is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling
function without using any parametric model function, which makes the results more reliable and reproducible
and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced
and a numerical discrimination for the transition type is proposed.
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I. INTRODUCTION

The transition into the Kosterlitz-Thouless (KT) phase
[1–4] can be found in models such as the XY and q-
state clock models in two dimensions and it corresponds to
experimentally observed phenomena such as in the super-fluid
film of 4He. In the KT phase, there is no spontaneous
magnetization, but the correlation length always diverges.
Though theoretical studies for the KT transition have been
reported, there are some difficulties in its numerical analysis.
In KT transitions, the correlation length diverges exponentially
as the system approaches the transition temperature, unlike the
usual second-order transitions in which it diverges according
to a power law. Therefore, numerical simulations require very
long computation times to reach the system equilibrium near
the KT transition temperature, making it difficult to conduct
analysis using equilibrium simulations.

This difficulty has been overcome by the nonequilibrium
relaxation (NER) method [5] combined with dynamical
scaling analysis [6]. The NER method is an efficient numer-
ical technique for analyzing equilibrium phase transitions.
It provides the critical temperature and critical exponents
accurately for second-order transition systems and has been
used successfully to study problems including frustrated
and/or random systems. In NER analysis, the equilibration
step is not necessary. The simulation only proceeds up to the
point at which the asymptotic behavior indicates the properties
of the equilibrium state. Thus, one can analyze larger systems
than with equilibrium simulations. The NER method has been
extended beyond second-order transitions, including the KT
transition and the first-order transition [7–20].

Regarding the KT transition, NER analysis is an efficient
tool because of the dynamical scaling for the relaxation of the
order parameter. To estimate the KT transition temperature,
one may calculate the relaxation of the order parameter
for several temperatures and fit the data to a dynamical
scaling formula. As the equilibration step is not necessary
and the treatment is systematic, irrespective of the detail of
interactions, it has been used successfully to study various
problems including frustrated and/or random systems [5,18].
Despite such results, the method still faces some problems (see
the next section for details). (i) In the fitting procedure, a model
of the scaling function is necessary. (ii) Although simulations
are necessary to calculate the relaxation of magnetization near
the transition temperature, it is difficult to obtain data showing

the critical crossover in the regime close to the transition point.
(iii) It remains problematic to estimate the error bars.

In the present study, we propose an improved dynamical
scaling analysis for NER data. The Bayesian inference and the
kernel method, which have already been applied to finite-size
scaling analysis for static data [21], are used to solve the
above-mentioned problems in the conventional dynamical
scaling analysis. In the improved method, one can fit data
to a scaling function without using any parametric model
function. The result does not depend on the scaling method,
making it more reliable and reproducible. This makes the
fitting task simple and efficient and realizes automatic and
faster parameter estimation. Further, we propose applications
suitable for our method; the bootstrap method is introduced to
improve the precision and obtain error bars for the estimated
parameters and a numerical discrimination is presented for the
transition type.

The remainder of this paper is organized as follows. The
NER method and its dynamical scaling analysis are explained
in Sec. II. In Sec. III the improved dynamical scaling analysis
is introduced and demonstrated. Section IV emphasizes the
advantages of our method and proposes an application to
the bootstrap method. In Sec. V another application, the
discrimination of the transition type, is proposed. Section VI
gives a summary of this study and our results.

II. NONEQUILIBRIUM RELAXATION ANALYSIS

The NER analysis for an equilibrium phase transition
is based on the relaxation of the order parameter m(t),
which estimates the transition temperature, and a dynamical
exponent. In the case of ferromagnetism, it is the magnetization
from the all-aligned state. It is expected that m(t) decays
to zero exponentially in the paramagnetic (PM) phase and
to the value of the spontaneous magnetization meq in the
ferromagnetic (FM) phase. The algebraic decay appears at the
critical temperature. The asymptotic behavior is summarized
as

m(t) ∼

⎧⎪⎨
⎪⎩

exp(−t/τ ), T > Tc

t−λ, T = Tc

meq T < Tc,

(2.1)

where τ is the relaxation time and λ is a dynamical expo-
nent. To distinguish the asymptotic relaxation behavior, it is
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convenient to introduce the following logarithmic derivative
of m(t):

λ(t) = −d ln m(t)

d ln t
. (2.2)

The function λ(t) is called the local exponent for the dynamical
exponent λ. In practice, we estimate the transition temperature
Tc from the temperature at which λ(t) clearly approaches zero
as the lower bound and that at which λ(t) shows diverging
tendency as the upper bound. Note that these estimated lower
and upper bounds of Tc are reliable, because the estimated error
bar defined by the difference between them does not include a
statistical uncertainty.

This NER analysis of the order parameter can be applied to
the case of KT transition systems, although some difficulties
arise. The asymptotic behavior of the order parameter is
expected to be

m(t) ∼
{

exp(−t/τ ), T > TKT

t−λ(T ), T � TKT.
(2.3)

The dynamical exponent λ(T ), the asymptotic power of the
relaxation, is defined as completely in the KT phase and
depends on the temperature. One cannot estimate the lower
bound of TKT, only the upper bound. Thus, it is difficult to
estimate a reliable error bar.

To overcome this difficulty in applying the NER method to
transition temperature estimates in KT transition systems, we
introduce a dynamical scaling analysis based on the following
natural scaling form [18]:

m(t,T ) = τ−λ�(t/τ ), (2.4)

where m(t,T ) is the relaxation of magnetization obtained by
the NER method and λ is a dynamical exponent. The relaxation
time τ depends on the temperature and is expected to diverge
at the KT transition temperature with the asymptotic form

τ (T ) = a exp

(
b√

T − TKT

)
, (2.5)

similarly to the correlation length. Note that the same dynami-
cal scaling can be applied to the second-order transition, where
a typical power-law form

τ (T ) = a|T − Tc|−b (2.6)

is substituted for the asymptotic form of the relaxation time.
To estimate TKT we can calculate m(t,T ) in a sufficient

interval of Monte Carlo Steps (MCSs) for several values of T

and fit the data to the above formula. Let us use the label i

for all data points m(ti ,Ti). The corresponding relaxation time
is also dependent on i, i.e., τi , which should be identical for
those with the same temperature, i.e., τi = τj when Ti = Tj .
If one assumes the scaling law, all data points converted as

Xi ≡ ti/τi, (2.7)

Yi ≡ τλ
i m(ti ,Ti), (2.8)

Ei ≡ τλ
i δm(ti ,Ti) (2.9)

should collapse according to a scaling function as

Yi = �(Xi), (2.10)

where δm(ti ,Ti) is the statistical error of m(ti ,Ti) estimated
in the simulation and Ei is that of Yi . Estimating the critical
exponent and corresponding transition temperature is known
as scaling analysis (dynamical scaling).

As mentioned in the Introduction, although this method has
been used successfully to study problems such as frustrated
and/or random systems, it faces certain problems. (i) A model
function for �(x) is necessary for the fitting procedure.
This presents the problem of overfitting. (ii) We have used
least-squares fitting or some standard nonlinear fitting method.
Thus, simulations are needed to calculate the relaxation of
magnetization near the transition temperature and observe the
critical crossover from the critical power-law relaxation to the
off-critical exponential one. The closer to the transition point
the simulation is performed at, the longer MCS we need to
reach the critical crossover. As the NER analysis uses data from
large lattices in which the finite-size effect does not appear in
the observed MCS, it is difficult to obtain data showing the
critical crossover in the regime close to the transition point.
(iii) It remains a problem to estimate the error bars.

III. IMPROVEMENT OF DYNAMICAL SCALING

In this section we present an improved dynamical scaling
for NER data and resolve the difficulties encountered by the
previous method. In the present method we use the kernel
method with Bayesian statistics, which have been used for
finite-size scaling analysis [21,22] and are known to be
efficient. The basic formalism for the dynamical scaling is
similar to that for the finite-size scaling case. We explain this
in detail in the following, because the parameter t (the MCSs)
appears in the dynamical analysis, unlike the static scaling
case.

Let us use the vector form �Y ≡ {Y1,Y2, . . .}. The conditional
probability of observing the values of the scaling function � by
Y1,Y2, . . . with conditions of physical parameters �θp such as the
transition temperature and/or the critical exponents is denoted
by P ( �Y |�, �θp) and is assumed to be a multivariate Gaussian
distribution with mean vector �� and covariance matrix E given
by

P ( �Y |�, �θp) ≡ N ( �Y | ��,E), (3.1)

where

( �Y )i ≡ Yi, (3.2)

( ��)i ≡ �(Xi), (3.3)

(E)ij ≡ E2
i δij , (3.4)

and

N ( �Y | �μ,�) ≡ 1√|2π�| exp

(
−1

2
( �Y − �μ)t�−1( �Y − �μ)

)
.

(3.5)

Introducing a statistical model P (�| �θh) for the scaling
function, where �θh contains the control parameters (hyper
parameters), the conditional probability of �Y for �θp and �θh
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is defined as

P ( �Y | �θp, �θh) ≡
∫

P ( �Y |�, �θp)P (�| �θh)d�. (3.6)

In Bayes’s theorem, the conditional probability of �θp and
�θh for �Y is written as

P ( �θp, �θh| �Y ) = P ( �Y | �θp, �θh)P ( �θp, �θh)/P ( �Y ), (3.7)

where P ( �θp, �θh) denotes the prior distribution for �θp and �θh and
P ( �Y ) denotes the prior distribution of �Y . In Bayesian statistics,
the conditional probability P ( �θp, �θh| �Y ) is called a posterior
estimator, by which a posterior probability of �θp and �θh can
be estimated for a given �Y . The resulting parameter values are
estimated by maximizing this conditional probability, known
as the maximum a posteriori (MAP) estimate. In general, it
is difficult to obtain any information on the prior distribution
P ( �θp, �θh). Thus, we assume that it is uniform. In addition, P ( �Y )
can be recognized as a constant to normalize the posterior
probability, allowing Eq. (3.7) to be rewritten as

P ( �θp, �θh| �Y ) ∝ P ( �Y | �θp, �θh). (3.8)

In this formalism, the MAP estimator is identical to the
maximization of the likelihood function

L( �θp, �θh) = P ( �Y | �θp, �θh), (3.9)

which is called the maximum likelihood (ML) estimator. In
practice, the log-likelihood function ln L( �θp, �θh) is used in the
ML estimator. From Eqs. (3.1)–(3.6), as the posterior proba-
bility is expressed by a multivariate Gaussian distribution, the
log-likelihood function can be written as

ln L( �θp, �θh) ≡ − 1
2 ln |2π�| − 1

2 ( �Y − ��)t�−1( �Y − ��),

(3.10)

where the covariance matrix � is obtained by an inner product
of model functions of the scaling function. In the previous
method, various model functions can be tested. Instead, the
present approach applies the kernel method and considers the
scaling function � to be nonparametric. Then, � is expressed
by a linear combination of kernel functions K(Xi,Xj ) and the
covariance matrix � is assumed to be

� = E + �′, (3.11)

(�′)ij = K(Xi,Xj ). (3.12)

The Bayesian inference based on Eqs. (3.10)–(3.12) is called a
Gauss process regression, where the scaling function is given
by

�(X) ≡ �kt�−1 �Y , (3.13)

(�k)i ≡ K(Xi,X). (3.14)

Following the static case [21], we use the Gauss kernel function

K(Xi,Xj ) = θ2
0 δij + KG(Xi,Xj ), (3.15)

KG(Xi,Xj ) ≡ θ2
1 exp

(
− (Xi − Xj )2

2θ2
2

)
, (3.16)

where θ0, θ1, and θ2 are hyper parameters. Then the covariance
matrix � in Eq. (3.10) is obtained by

(�)ij =
{

θ2
1 exp

(
− (Xi−Xj )2

2θ2
2

)
, i �= j

θ2
0 + θ2

1 + E2
i , i = j.

(3.17)

To maximize the log-likelihood function practically, we use
the conjugate gradient algorithm [23]. This algorithm requires
the derivative of the log-likelihood function

∂ ln L( �θp, �θh)

∂θ

= −1

2
Tr

(
�−1 ∂�

∂θ

)
− ( �Y − ��)t�−1 ∂( �Y − ��)

∂θ

−1

2
( �Y − ��)t�−1 ∂�

∂θ
�−1( �Y − ��), (3.18)

where the iterations are performed by modifying the parame-
ters along the direction of steepest descent. In this study, we
perform dynamical scaling for the logarithms of Xi and Yi as

X′
i ≡ ln Xi = ln ti −

(
ln a + b√

Ti − TKT

)
,

Y ′
i ≡ ln Yi = ln m(ti ,Ti) + λ

(
ln a + b√

Ti − TKT

)
,

E′
i ≡ ln

(
1 + Ei

Yi

)
≈ Ei

Yi

= δm(ti ,Ti)

m(ti ,Ti)
. (3.19)

We apply dynamical scaling analysis using the present
method with previously calculated data from the XY model in
two dimensions [5]: The Hamiltonian is given by

H = −J
∑
〈ij〉

cos(φi − φj ), (3.20)

where 〈ij 〉 runs over all nearest-neighboring pairs on a square
lattice. We use

m(t) = N−1
∑

i

cos φi(t) (3.21)

as the dynamical order parameter at time t , which is usually
averaged over independent samples. Hereafter, we measure
the temperature in the unit of J/kB. The calculations were
carried out on a 1001 × 1000 square lattice with skew
boundary conditions up to an observation time of 1.5 × 105

MCSs. Approximately 256 independent samples were taken
for statistical averaging at each temperature. In the NER
analysis of KT transitions, we usually prepare relaxation data
for about 103−105 MCS points for each temperature. Note
that the proposed method requires the inverse matrix to be
calculated; the dimension of the matrix Nm is the total number
of input data points. As the calculation time is proportional
to N3

m, we do not use all of the data points and, practically,
we sample about 103 points from the data. We use data for
12 temperatures, as shown in Fig. 1, and sample 100 points
for each temperature so as to give equal intervals of ln t (the
X axis). To minimize the log-likelihood function (3.10), the
parameters TKT, λ, a, b, θ0, θ1, and θ2 appearing in Eqs. (2.4),
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T = 1.01
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T = 1.05

FIG. 1. Relaxation of magnetization for the XY model
in two dimensions for T = 0.92,0.93,0.94,0.95,0.96,0.97,0.98,

0.99,1.00,1.01,1.02,1.05 plotted on a double-logarithmic scale. For
each temperature, 100 data points are chosen so as to give equal
intervals on the X axis.

(2.5) and (3.16) are optimized. The results are shown in Fig. 2
with TKT = 0.8955 and λ = 0.069, which are consistent with
the estimates of TKT = 0.894(4) and λ = 0.068(6) given by
the previous method [18]. The error bars are not shown here,
but will be introduced later to demonstrate the advantage of
our method.

 0.1

1

 10

Y
 =

 τ
λ m

(t
,T

)

X = t/τ
10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 1

FIG. 2. Scaling plot for the data in Fig. 1 with TKT = 0.8955 and
λ = 0.069.

IV. ADVANTAGES OF THE IMPROVED DYNAMICAL
SCALING ANALYSIS

The proposed method for dynamical scaling analysis has
two advantages over the previous approach. First, by means of
the kernel method for constructing the scaling function, there
is no uncertainty regarding the suitability of various scaling
functions. This reduces the workload of a trial-and-error
approach. Next, by means of the conjugate gradient method for
minimizing the likelihood function, the scaling function can
be optimized almost automatically and proceeds much faster.
Note that this automation is another result of using the kernel
method to guarantee a suitable trial function. These advantages
enhance the effectiveness of dynamical scaling analysis.

A. Automation and efficiency

In the previous method, relaxation data were fitted for
every two adjacent temperatures and the relative relaxation
time was estimated because of the slower optimization. This
means that we needed to calculate the relaxation so that the
scaling function � for the two temperatures overlapped. As
the relaxation time increases rapidly in KT systems, it can be
difficult to add data for temperatures close to the transition
point, where the relaxation time is too large to overlap with
those of adjacent temperatures. The faster optimization process
in the present method allows us to fit relaxation data for
all analyzed temperatures simultaneously, which provides a
reliable scaling function over these temperatures and the
adjacent regime. Thus, temperatures for which the relaxation
data have no overlap with other analyzed temperatures can be
used for the dynamical scaling.

As an example, in Fig. 3, we add data for T = 0.90,0.91,
which have no overlap with the original data in Fig. 1. The
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FIG. 3. Relaxation of magnetization for the XY model in two
dimensions including T = 0.91,0.90. The data points for T = 0.90
have no overlap with those for other temperatures.
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FIG. 4. Scaling plot for the data in Fig. 3 with TKT = 0.8977 and
λ = 0.070. The isolated sector corresponds to the data for T = 0.90.

resulting scaling fit given by the present method is shown in
Fig. 4. There is no overlap between the data for T = 0.90 and
those for other temperatures. Regardless, we obtain TKT =
0.8977 and λ = 0.070, which agree with the values obtained
by the previous method.

B. Bootstrap method

One remarkable feature of dynamical scaling in NER
analysis is the huge number of data points required to fit the
scaling. In the usual finite-size scaling analysis, one observes
the temperature dependence of some physical quantities for
several different-size systems. Thus, the number of data points
is the number of temperatures multiplied by the number
of sizes, which is O(10) ∼ O(102). In NER analysis, one
observes the relaxation of some physical quantities for several
temperatures. Thus, the number of data points is the number
of temperatures multiplied by the maximum number of
observation steps, which is O(103) ∼ O(106). This feature
has not yet been exploited. The efficiency and automation of
the improved dynamical scaling process can be employed in
the following bootstrap method [24,25], which systematically
obtains precise estimates and their error bars. This provides a
clear criterion for the accuracy of the result.

We perform multiple dynamical scaling analyses for ran-
domly sampled data and compute various statistics from
the measured results. Thereby, it is possible to improve the
precision of the estimates and estimate the error. The relaxation
data used in the analysis for Figs. 1 and 2 amount to 1.5 × 105

points for each temperature. These data points can be divided
into various samples. In Sec. III the samples were divided into
100 points for each temperature so as to give equal intervals
of ln t . Here we prepare a sample by randomly choosing 100
points along the ln t axis for each temperature and then perform
dynamical scaling for each sample.
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FIG. 5. Example of random sampling for the relaxation of
magnetization for the XY model in two dimensions. For each
temperature, 100 data points are chosen at random along the X axis.

We use data for 12 temperature values, as shown in Fig. 1.
In Fig. 5 we show an example of the sampled data. Applying
the present dynamical scaling to these data, we obtain the
optimized scaling function in Fig. 6 and estimate TKT and λ for
this sample. Repeating this process 100 times, we can compute
the average values and their statistical errors for parameters
such as the transition temperature and critical exponent. The
resulting values of the bootstrap method are obtained as
TKT = 0.8954(4) and λ = 0.0690(2). The precision is one
digit better than that given by the conventional method,
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1

 10

Y
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λ m
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10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 1

FIG. 6. Scaling plot for the data in Fig. 5.
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TKT = 0.894(4) and λ = 0.068(6). Note that the estimated
errors of the bootstrap method in the present study are not
the confidence intervals usually shown in NER analysis, but
are instead intervals of high reliability that can be estimated
from the prepared data.

V. DISCRIMINATION OF TRANSITION TYPE

We propose another application for the improved dynamical
scaling with automation and faster performance, namely, the
discrimination of phase transition features from the relaxation
of the order parameter. In some theoretical systems, there
have been controversies regarding the discrimination between
second-order and KT transitions, e.g., the five-state clock
model in two dimensions [26,27] and the RP2 model in
two dimensions [28–32]. Numerical simulations are rarely
able to solve such controversies. Here we examine some
methods to discriminate between these transitions using the
improved dynamical scaling. The basic idea is to compare
the fit of the dynamical scaling with the asymptotic forms
of τ between Eq. (2.5) for the KT transition and Eq. (2.6)
for the second-order transition. We propose two methods. To
check their efficiency, we apply them to the Ising model in two
dimensions as a typical second-order transition system and the
XY model in two dimensions as a typical KT transition system.

A. Consistency of estimated transition temperature

For a controversial system, as in previous sections, we can
calculate the relaxation of the order parameter for temperatures
close to the expected transition point. Then, for both transition
types, dynamical scaling is performed under the assumption
that the asymptotic function of τ is given by Eq. (2.5) or
(2.6). The transition temperature and some exponents are
estimated for each type. If the assumption is incorrect, there
will generally be some inconsistency between the relaxation
data close to the transition point. These inconsistencies allow
us to identify the transition type.

As an example, consider the Ising model in two dimensions.
The Hamiltonian is given by

H = −J
∑
〈ij〉

SiSj , (5.1)

where Si takes ±1 and 〈ij 〉 runs over all nearest-neighbor pairs
on a square lattice. We use

m(t) = N−1
∑

i

Si(t) (5.2)

as the dynamical order parameter at time t . The valid transition
is the second-order type. Calculations were carried out on a
1501 × 1500 square lattice with skew boundary conditions up
to an observation time of 105 MCSs. About 1024 independent
samples were taken for statistical averaging at T = 2.268
and 2.270–2.279, where the exact transition temperature is
given by Tc = 2.269 . . .. In Fig. 7 we show relaxation data for
T = 2.268 and 2.270. Note the upward trend for T = 2.268,
indicating T < Tc, and the downward trend for T = 2.270,
indicating T > Tc. In the standard NER analysis for the FM
transition, we would conclude that the transition temperature
was located between these two temperatures. In Fig. 8 we show

 100  1000  10000  100000

m
(t

,T
)

t

T = 2.268
T = 2.270

FIG. 7. Relaxation of magnetization for the Ising model in two
dimensions for T = 2.268 and 2.270 with a double-logarithmic scale.
Note the upward trend for T = 2.268 and the downward trend for
2.270.

relaxation data for T = 2.270–2.279, where the data points
were sampled following Sec. III. Two different dynamical
scalings were performed for these data. For the assumption
of the second-order transition, Eq. (2.6) was used to find
Tc = 2.269 23, which is consistent with the observation in
Fig. 7. For the assumption of the KT transition, Eq. (2.5) was
used to obtain TKT = 2.267 24, which contradicts the behavior
of the data at T = 2.268. This provides the conclusion
that the second-order transition is more suitable. Hence,
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FIG. 8. Relaxation of magnetization for the Ising model in
two dimensions for T = 2.270,2.271,2.272,2.273,2.274,2.275,

2.276,2.277,2.278,2.279 with a double-logarithmic scale.
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FIG. 9. Relaxation of magnetization for the XY model in two
dimensions for T = 0.89 and 0.92 with a double-logarithmic scale.
The trend is weak and hard to observe, but the data indicate a
downward trend for T = 0.92 and an almost straight line for 0.89.

dynamical scaling reveals the correct transition temperature if
the asymptotic function of τ is assumed to be the second-order
transition case, as expected.

Next we examine the XY model in two dimensions, where
the valid transition is the KT type. Using the data in Fig. 1, we
conducted a simulation at T = 0.89, close to the KT transition
temperature. In Fig. 9 we show relaxation data for T = 0.89
and 0.92. One can observe the downward trend for T = 0.92,
indicating T > TKT. Note that, while this trend is very weak,
it can be found by analyzing the data carefully. The power-law
behavior observed for T = 0.89 does not give any bound,
but suggests that T ∼ TKT. In Sec. III we estimated TKT =
0.8955 using dynamical scaling for Fig. 1 under the assumption
of the KT transition, Eq. (2.5). Using the assumption of a
second-order transition, Eq. (2.6) gives Tc = 0.9295, which
contradicts the behavior of the data at T = 0.92 in Fig. 9. This
leads to the conclusion that the KT transition is more suitable.
We show that dynamical scaling reveals a correct transition
temperature if the asymptotic function of τ is assumed to be
the KT transition case, as expected.

We have demonstrated the proposed method for systems
exhibiting KT and second-order transitions. In both cases
we obtained estimates for the transition temperature that are
consistent with the relaxation data close to the transition point
when the correct asymptotic form of τ was used. This provides
a means of discriminating between transition types, although
it is somehow difficult to observe the local trend in relaxation
behavior.

B. Dynamical scaling with no assumption for τ

Let us propose another method for discriminating between
transition types. In the present dynamical scaling scheme, we
fit the relaxation data by introducing the values of τ for all
temperatures as the fitting parameters, rather than using the
asymptotic form of τ . If, for example, the temperatures of the
simulated data are T1,T2, . . . ,TM , the corresponding τ values,
i.e., τ1,τ2, . . . ,τM , are introduced and optimized by a similar
scaling process. This provides the temperature dependence of τ

for the chosen temperatures without any assumption regarding
its asymptotic form. Then we have three different dynamical
scaling results for the function τ (T ): (i) the assumption of
second-order type using Eq. (2.6), (ii) the assumption of KT
type using Eq. (2.5), and (iii) no assumption of the transition
type. We can compare these to determine the most suitable
transition type.

Note that, even if the assumption of one particular transition
type is correct and the assumed asymptotic function is suitable,
the result cannot give a better fit than that without any
assumption. Thus, one can discriminate the transition type by
checking how close the result with some assumption is to that
without the assumption. Such a comparison could take many
forms; we use the residual for the logarithm of τ , defined by

r = 1

M

M∑
m=1

{ln τ (Tm) − ln τm}2, (5.3)

where τ (Tm) is estimated through the assumption (i) or (ii)
using Eq. (2.6) or (2.5), respectively, and τm is estimated
through no assumption, i.e., (iii).

We present examples for both the Ising and XY models in
two dimensions. For the Ising model, we used the relaxation
data in Fig. 8. The τ values obtained by the three types of
dynamical scaling are plotted in Fig. 10. At a glance, the

 0.1

1

 10

 100

 1000

 2.27  2.272  2.274  2.276  2.278  2.28

τ

T

τ
2nd
KT

FIG. 10. Estimated relaxation time τ for the Ising model in two
dimensions. Three different dynamical scaling results are plotted for
the function τ (T ) under the assumption of a second-order transition,
KT transition, and without assumption (closed circles).
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FIG. 11. Estimated relaxation time τ for the XY model in two
dimensions. Three different dynamical scaling results are plotted for
the function τ (T ), under the assumption of a second-order transition,
KT transition, and without assumption (closed circles).

curves of τ for both assumptions are almost consistent with
the values of τ estimated by the scaling without assumptions.
For a more precise comparison, we used the residual defined
in Eq. (5.3). This gave r2nd = 1.3 × 10−4 for the assumption
of the second-order transition and rKT = 9.5 × 10−3 for the
assumption of the KT transition. The residual for the correct
assumption, i.e., the second-order transition, is suitable and
much smaller than that for the KT type.

For the XY model, we used the relaxation data in Fig. 1.
The τ values obtained by the three types of dynamical
scaling are plotted in Fig. 11. With the exception of the
point at the lowest temperature (T = 0.92), the curves of τ

for both assumptions are almost consistent with the values
of τ estimated by the scaling without assumptions. For a
more precise comparison, we used the residual defined in

Eq. (5.3). This gave r2nd = 5.8 × 10−2 for the assumption
of the second-order transition and rKT = 9.0 × 10−3 for the
assumption of the KT transition. The residual for the correct
assumption, i.e., the KT transition, is suitable and several times
smaller than that for the second-order type. Furthermore, as
can be seen in Fig. 11, the curve for the second-order transition
is diverging at temperatures greater than T = 0.92, which is
inconsistent with the observation of the finite value of τ in the
PM phase and supports the identification of the correct KT
transition.

VI. SUMMARY

Using Bayesian statistics and the kernel method, which
are known to be efficient for finite-size scaling analysis with
static data [21], we have described an improved dynamical
scaling analysis scheme for the Kosterlitz-Thouless transition
in the nonequilibrium relaxation method. Data can be fitted
to a scaling function without using any parametric model
function. The results do not depend on the scaling method
and are more reliable and reproducible. This makes the task
of fitting simpler and more efficient and enables a faster,
automated parameter estimation procedure. We presented
two applications for this method. The bootstrap method was
introduced to improve the precision and obtain error bars
for the estimated parameters. The numerical discrimination
of second-order and KT transitions was also described. This
method can be used to solve controversial problems concerning
the discrimination between second-order and KT transitions
such as the five-state clock model in two dimensions [26,27]
and the RP2 model in two dimensions [28–32].
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