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Solution to sign problems in models of interacting fermions and quantum spins
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We show that solutions to fermion sign problems that are found in the formulation where the path integral is
expanded in powers of the interaction in continuous time can be extended to systems involving fermions interacting
with dynamical quantum spins. While these sign problems seem unsolvable in the auxiliary field approach,
solutions emerge in the world-line representation of quantum spins. Combining this idea with meron-cluster
methods, we are able to further extend the class of models that are solvable. We demonstrate these solutions
to sign problems by considering several examples of strongly correlated systems that contain the physics of
semimetals, insulators, superfluidity, and antiferromagnetism.
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I. INTRODUCTION

Simulating quantum many-body systems using path-
integral Monte Carlo methods, even for systems in equilibrium,
remains challenging due to the sign problem, which can
even be NP-hard in some cases [1]. While this means that
finding a general solution applicable to all systems is unlikely,
particular solutions can still be found that are applicable to
specific systems. Solutions found so far fall under three broad
categories: (i) finding the right basis for the Hilbert space such
that sign problems are absent, the most recent example being
the solution to a class of frustrated quantum spin systems [2];
(ii) finding a resummation of the partition function that renders
the resummed weights positive, which includes methods such
as the meron-cluster method [3,4], the subset method [5,6], and
the fermion bag approach [7–9]; and (iii) finding a symmetry
such that every term of the sum can be written as a square of
real number. Solutions to fermion sign problems, especially
for systems in more than one spatial dimension, combine
ideas from (ii) and (iii) [10–14]. While most solutions to sign
problems so far have been obtained in equilibrium systems,
some sign problems in systems experiencing purely dissipative
dynamics in real time have also been solved for strongly
interacting quantum spin systems [15–17]. In addition to
sampling configurations that arise in the path integral, another
promising approach is to directly sample Feynman diagrams
that arise in perturbation theory using a Monte Carlo method.
Here the sign problem has a different origin and progress can
be made within a class of problem [18–20]. Recently, this
approach has been applied to solve a class of sign problems in
real time [21].

In this work we only focus on the path-integral formulation
in imaginary time. Even in such cases many sign problems,
especially in systems containing fermions, remain unsolvable
due to sign problems. Recently, it was discovered that, when
the fermionic path integral can be expanded in powers of
the interaction in continuous time (the CT-INT formalism),
fermion sign problems can be solved in certain cases [22–26].
The fermion bag approach is an extension of this idea to
discrete-time formulations and to strong couplings [27,28].
Recently, we applied the idea to solve the sign problem in
a class of spin-polarized systems by exploiting particle-hole
symmetry [29]. Our solution was later formulated in the

Majorana representation, which makes the pairing mechanism
between particles and holes more explicit and can even
be used to construct an auxiliary field approach to the
problem [30]. Additional guiding principles involving the
concepts of Majorana reflection positivity and time-reversal
symmetry have also been found and help extend the solvable
class of models [31,32].

Quantum Monte Carlo (QMC) techniques in the CT-INT
formalism for fermionic models are currently being devel-
oped [33]. While a naive quantum Monte Carlo method for
the CT-INT formulation scales as β3N3 (where β is the extent
of the imaginary time and N is the number of spatial lattice
sites), recently it was recast in a more efficient form that allows
one to construct Monte Carlo methods that scale like βN3 (the
LCT-INT approach, where the “L” is for both its linear scaling
in β and for its application to lattice models) [34], which is
similar to the auxiliary field approach. Some simulations have
also been performed in order to compute the critical exponents
at the quantum phase transition, using both the CT-INT and
the auxiliary field methods [35,36]. In addition, the CT-INT
formalism is very similar to the fermion bag approaches
developed for lattice field theories [7–9]. It has been recently
shown that one can perform calculations on large lattices
by cleverly storing information necessary to perform quick
updates within large space-time regions [37]. We believe these
ideas could easily be extended to solve all problems that can be
formulated in the CT-INT formulation. Interestingly, bosonic
models can also be formulated in the CT-INT formulation
through the stochastic series expansion and updated efficiently
with either the directed loop algorithms [38,39] or worm
updates [40]. Thus, it is clear that once problems involving
either bosons or fermions can be formulated without a sign
problem in the CT-INT formulation, one can readily construct
QMC methods to solve them numerically.

In this paper we extend the class of models solvable through
the CT-INT formulation to include those that contain inter-
actions between fermions and quantum spins. The essential
idea behind our current work was introduced in lattice field
theory to solve a sign problem in a Yukawa model involving
interacting fermions and bosons [41]. In that work the fermion
bag approach was used to solve the fermion sign problem,
while at the same time the world-line representation was
used to solve the bosonic sign problem that arises in the
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fermion bag approach. This idea to combine the solution of
the sign problem in the fermion sector with an appropriate
solution to the sign problem in the bosonic sector can naturally
be extended to a variety of models involving fermions and
quantum spins interacting with each other. This idea has also
been used in the impurity Monte Carlo developed recently
where the sign problem turns out to be mild [42]. In this
work we also show that the class of solvable models may be
further broadened by allowing frustrating interactions in the
bosonic sector that can only be solved using the meron-cluster
idea. While we show the absence of the sign problem in the
CT-INT representation, the LCT-QMC representation will also
have no sign problem. Hence it should be possible to develop
algorithms that scale as βN3 for these problems. We must
note that systems with interacting fermions and bosons in the
Hamiltonian formulation have been solved before, but these
systems had a noninteracting bosonic bath that allowed one
to integrate out the bath variables [43]. Our work extends this
idea further.

In order to demonstrate the extended class of solutions
we consider several models in this work and show how their
partition functions can be written as a sum of positive terms
such that each term can be calculated in polynomial time.
In Sec. II we introduce our ideas by considering a simple
extension of the spin-polarized t-V model by coupling it to the
transverse field quantum Ising model. In Sec. III we introduce
antiferromagnetism by replacing the Ising model with the
Heisenberg quantum antiferromagnet. In Sec. IV we introduce
a model that requires the use of the meron-cluster idea in the
spin sector to solve the sign problem. Section V shows how the
ideas can be extended to a class of SU(2) symmetric models,
including the classic problem of the half-filled Kondo-lattice
model. Section VI contains a summary.

II. THE CT-INT WITH BOSONIC WORLD LINES

In this section we introduce our ideas by considering a
simple extension of the t-V model that we solved recently [29]
by coupling it to the transverse field quantum spin-half Ising
model. We will also develop the notation that will be helpful
in later sections. The Hamiltonian of the system we consider
is given by

H = −λ
∑
〈ij〉

(c†i cj + c
†
j ci) + V

∑
〈ij〉

(
ni − 1

2

)(
nj − 1

2

)

− J
∑
〈ij〉

Sz
i S

z
j +

∑
i

hi

(
ni − 1

2

)
Sx

i , (1)

where Sa
i are the quantum spin-half operators, c

†
i and ci are,

respectively, the creation and annihilation operators of spinless
fermions on the lattice site i of a bipartite lattice, and 〈ij 〉 refers
to nearest-neighbor sites where we assume that i and j belong
to opposite sublattices. The first term on the right-hand side is
the free fermion term H

f

0 and the third term will be referred
to as the free boson term Hb

0 . The second term, which we
refer to as H

f
int, creates repulsive interactions between nearest-

neighbor fermions that exist on opposite sublattices (i.e., we
assume V � 0). The fourth term, referred to as H

f b
int , couples

fermions with bosons and mimics a fluctuating transverse field

depending on the fermion occupation on that site. We assume
that the remaining couplings λ, J , and hi are real but arbitrary.
Although the focus of this work is not to uncover the physics
of the above model, we believe it has a rich phase diagram on a
honeycomb lattice where two orders compete. In the absence
of quantum spins, the fermions can be in a semimetal or a
Mott insulating phase. It is interesting to ask if these phases
can coexist with or destroy the Ising order of the quantum Ising
model when the two sectors are coupled. A naive reasoning
suggests that in the semimetal phase the H

f b
int term is expected

to be small and the Ising order in the spin sector can survive.
However, in the Mott insulating phase the H

f b
int term is strong

and can destroy the Ising order. The phase diagram should also
have interesting quantum critical points with gapless fermions.

While we cannot rule out a clever auxiliary field approach
to the above problem, at least naively such an approach seems
impossible. The reason for this is that to integrate out the
fermions one would naturally choose a spin basis that diag-
onalizes Sx

i ; however, in that basis, the fermion determinants
are not positive for all background spin configurations. As we
already know from previous work, for a positive determinant
one needs a staggered chemical potential [29]

Hstagg =
∑

i

hiσi

(
ni − 1

2

)
, (2)

where σi is the parity of a site (i.e., +1 for one sublattice and
−1 for the other) and hi � 0 for all i. In the above problem the
fluctuating quantum variable Sx

i would destroy this property.
The associated sign problem in this example is very similar to
the one encountered in [41] and hence the solution is also very
similar. In order to solve it, we first transform the Hamiltonian
with a unitary transformation

HU = U †HU, U =
∏

i

ei(1−σi )S
z
i π/2 (3)

such that all the terms in H remain unchanged except for the
fermion-boson coupling, which is transformed into

H
U,f b
int =

∑
i

hiσi

(
ni − 1

2

)
Sx

i . (4)

In the transformed basis we perform the CT-INT expansion of
the partition function [22–26]

Z =
∑

l

∫ β

0
· · ·

∫ t3

0

∫ t2

0
dt1dt2 · · · dtl(−1)l

× Tr(e−(β−t1)H0Hinte
−(t1−t2)H0Hint · · · ), (5)

where there are l insertions of Hint in the trace at times t1, . . . ,tl
and we take H0 = H

f

0 + Hb
0 and Hint = H

f
int + H

U,f b
int . From

now on we use the symbol [dt] as a shorthand for all
such time-ordered integrals. In the expansion (5), we have
operators in two different spaces: the fermionic space and
the spin space. Since each spin operator commutes with each
fermionic operator we can factorize the trace in each term of
the expansion into a product of two traces: one trace over the
spin states containing only operators in the spin space and
one trace over the fermionic states containing operators only
in the fermionic space. For example, here is one of the terms in
the expansion at order l = 2 with two insertions of interactions,
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one insertion of H
f
int at t1, and another insertion of H

U,f b
int at t2:

(−1)2Tr
(
e−(β−t2)Hb

0 hkS
x
k e−t2H

b
0
)
Tr

(
e−(β−t1)Hf

0 V
(
ni − 1

2

)
× (

nj − 1
2

)
e−(t1−t2)Hf

0 σk

(
nk − 1

2

)
e−t2H

f

0
)
. (6)

Using this factorization, the partition function can be written
as

Z =
∑

l,{k},m,{b}

∫
[dt]Gs[l,{k}]Gf [l,{k},m,{b}], (7)

where

Gs[l,{k}] = (−1)lTr
(
e−(β−t1)Hb

0 hk1S
x
k1

× e−(t1−t2)Hb
0 hk2S

x
k2

· · · hkl
Sx

kl
e−(tl )Hb

0
)

(8)

is the trace over the spin space and depends on insertions of l

insertions of the interaction terms hkS
x
k at the times t1,t2, . . . ,tl .

Similarly,

Gf [l,{k},m,{b}] = (−1)mTr
[ · · · σk1

(
nk1 − 1/2

) · · ·
× · · ·Hf

int(b1) · · · Hf
int(bm) · · ·

× σkl

(
nkl

− 1/2
) · · · ]. (9)

is the trace in the fermionic space and depends on m insertions
of the interaction bonds H

f
int(b ≡ 〈ij 〉) = V (ni − 1

2 )(nj − 1
2 )

and l insertions of σk(nk − 1
2 ) from the fermion-spin inter-

actions. One such configuration of insertions is labeled by
[l,{k},m,{b}]. The presence of the free propagators e−tH

f

0

between these insertions is hidden in the ellipses. Note that
for every insertion of Sx

k at tk in the spin space, we have a
corresponding insertion of σk(nk − 1

2 ) at tk in the fermionic
space. This provides correlations between the two spaces. The
partition function is a sum over all possible configurations
[l,{k},m,{b}].

We already know from [29] that the insertion of
σk(nk − 1

2 ) along with the factor (−1)m ensures that the trace
in the fermionic space Gf [l,{k},m,{b}] � 0. Let us now argue
that the trace in the spin space is also positive. We evaluate the
trace in the Sz basis by inserting the identity I = ∑

sz |sz〉〈sz|
after every insertion of the Sx

k . We get

Gs[l,{k}] =
∑
{sz(t)}

〈sz(t0)|e−(β−t1)Hb
0 Sx

k1
|sz(t1)〉〈sz(t1)|

× e−(t1−t2)Hb
0 Sx

k2
|sz(t2)〉 · · · 〈sz(tl)|e−tlH

b
0 |sz(t0)〉,

(10)

where the sum over {sz(t)} indicates a sum over all space-
time spin configurations that are periodic, i.e., sz(t0) = sz(tl).
Because Hb

0 is diagonal in the chosen basis, propagators e−tHb
0

are just numbers and do not change the spin configuration. On
the other hand, Sx

i = 1
2 (S−

i + S+
i ), so an insertion of Sx

i flips
the spin at the site i. Thus, the spin configurations contain spin
flips at space-times points (k0,t0),(k1,t1), . . . ,(kl,tl). However,
since the configurations need to be periodic at each spatial site
i, the number of insertions of Sx

i must come in pairs, although
they may come at different times. For this reason l is always
even and the spin trace only depends on h2

i . Another way
to view the above scenario is to consider quantum spins as

1 2 3 4 5 6

1 2 3 4 5 6

ti
m

e

FIG. 1. Illustration of a hard-core boson world-line configuration
in one spatial dimension. The spatial sites are numbered 1–6, with odd
sites colored red and even sites colored blue. Among the world lines
a cross indicates the absence of the boson and a solid line indicates
its presence. Insertions of Sx create or annihilate hard-core bosons.
Closed circles indicate a creation event, while open circles indicate
the annihilation event. On each site the Sx operators come in pairs
due to temporal periodicity of the world lines.

hard-core bosons (with spin up representing particles and spin
down representing their absence). Then, for every creation
(annihilation) of a particle caused by the Sx

i operator, we
require a corresponding annihilation (creation) of the same
particle caused by a second Sx

i operator to preserve the trace.
Due to this constraint, the spin trace Gs[l,{k}] � 0. In Fig. 1
we show a pictorial illustration of an allowed hard-core boson
configuration. Since both spin and fermion traces can be
evaluated in polynomial time, we conclude that (1) has no
sign problem in the CT-INT formulation when quantum spins
are formulated in the bosonic world-line representation.

III. ADDING ANTIFERROMAGNETISM

In the model of the previous section, we considered the
spin sector to have the simplest possible self-interaction,
namely, the Ising interaction. Clearly, it would be interesting to
replace this with the full SU(2) symmetric antiferromagnetic
interaction. While the Ising interaction forced the Sx

i to come
in pairs on each site in the partition function, in the presence
of antiferromagnetism this condition is no longer necessary.
Although the Sx

i terms do still come in pairs, they need not be
on the same site. Despite this complication, the sign problem
is solvable for a class of models as we show below. To see this
consider the model where Hb

0 is replaced with the Heisenberg
antiferromagnet. The Hamiltonian is now given by

H = −λ
∑
〈ij〉

(c†i cj + c
†
j ci) + V

∑
〈ij〉

(
ni − 1

2

)(
nj − 1

2

)

+ J
∑
〈ij〉

�Si · �Sj +
∑

i

hi

(
ni − 1

2

)
Sx

i . (11)

For antiferromagnetism, we now require J � 0. We then need
to set hi � 0 for all i (or equivalently hi � 0 for all i) for
the solution to the sign problem. To proceed we first perform
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the unitary transformation (3) as before. The Heisenberg term
transforms to Hb

0 + H
U,b
int , where

Hb
0 = J

∑
〈ij〉

Sz
i S

z
j ,

H
U,b
int = −J

2

∑
〈ij〉

(S+
i S−

j + S−
i S+

j ). (12)

In addition, the fermion-spin interaction is transformed as
before to H

U,f b
int . Now the interaction consists of three

terms Hint = H
f
int + H

U,b
int + H

U,f b
int . Expanding the partition

function as in the previous section, we obtain an expression
similar to (7),

Z =
∑
m,{b}

∑
n,{h}

∑
l,{k}

∫
[dt]Gs[n,{d},l,{k}]

×Gf [l,{k},m,{b}], (13)

where the spin trace is given by

Gs[n,{d},l,{k}] = (−1)l+nTr
( · · · hk1S

x
k1

· · ·
× · · · HU,b

int (d1) · · · hk2S
x
k2

· · · HU,b
int (dn) · · ·

×hkl
Sx

kl
· · · ). (14)

Now the trace depends on n insertions of nearest-neighbor
spin hops H

U,b
int (d ≡ 〈ij 〉) = −(J/2)(S+

i S−
j + S−

i S+
j ) and as

before l insertions of hkS
x
k with the free propagator e−tHb

0

in between are represented as ellipses. This configuration is
labeled with [n,{d},l,{k}]. The fermionic trace is the same as
before and is given by (9), where each configuration is labeled
by [l,{k},m,{b}]. As in the previous example, it is positive.
The bosonic trace is also positive since l turns out to be even
and the (−1)n factor is canceled by the negative signs that
appear in front of H

U,b
int (d). The trace in the spin space is

evaluated by inserting a complete set of states in the Sz basis
as before. Each insertion of Sx

i flips a single spin on the site
i, while the insertion of H

U,b
int (d) flips both spins on the bond

denoted by d. In the language of hard-core bosons, Sx
i acts as

either a creation or an annihilation event, while H
U,b
int (d) acts

as an event where the boson hops. Since every creation event
needs to be accompanied by an annihilation event, l must be
even as previously stated, but not necessarily on the same site.
An illustration of the hard-core boson configuration is shown
in Fig. 2. Thus, again there is no sign problem in the CT-
INT expansion when spins are represented in the world-line
representation. While we have focused on a model containing
antiferromagnetism in this section, it is easy to extend our
results to models containing superfluidity.

IV. EXTENSIONS WITH MERON CLUSTERS

The two models that we considered above had the property
that with an appropriate unitary transformation, the CT-INT
approach combined with a world-line formulation for spins
naturally led to positive weights. However, many interesting
models do not fall in this class and the weights of the
configurations in the CT-INT approach continue to be negative.
It would be interesting to find methods to solve such remnant

1 2 3 4 5 6

1 2 3 4 5 6

ti
m

e

FIG. 2. World-line diagram for Heisenberg model. Again, the
spatial sites are numbered 1–6 with red dots for odd sites and blue
dots for even sites.

sign problems. We would like to argue that in a subset of these
models, the solution to the sign problem can be obtained via a
resummation over the spin configurations. Thus, the remnant
sign problem in these models is hidden in the spin sector
and not in the fermion sector. We illustrate this through an
example, where the required resummation is performed using
the meron-cluster idea.

Consider the model we studied in the previous section,
but with a slightly modified fermion-spin coupling H

f b
int . The

Hamiltonian is given by

H = −λ
∑
〈i,j〉

(c†i cj + c
†
j ci) + V

∑
〈i,j〉

(
ni − 1

2

)(
nj − 1

2

)

+ J
∑
〈i,j〉

�Si · �Sj − h
∑

i

σi

(
Sx

i + 1
2

)(
ni − 1

2

)
. (15)

Unlike in Eq. (11), there is already a σi factor in the H
f b
int

term and instead of Sx
i there is Sx

i + 1
2 . Further, we use −h

instead of the general hi and assume that h is positive. Due
to the presence of σi , it is better not to perform the unitary
transformation since the fermionic trace needs that factor for
positivity. Then proceeding as before, it is tempting to split the
fermion-spin coupling into two interaction terms

σi

(
Sx

i + 1
2

)(
ni − 1

2

) = σiS
x
i

(
ni − 1

2

) + σi

2

(
ni − 1

2

)
(16)

and treat them as separate interactions in the CT-INT expan-
sion. However, such a treatment leads to sign problems. To
see this let us proceed as in the previous example except that
we treat the second term on the right-hand side of (16) as an
interaction that appears in the fermionic sector. Since in the
CT-INT expansion the interaction terms of this form are similar
to other interactions that already appear within the fermionic
trace, Gf continues to be positive, as expected. On the other
hand, the spin trace is given by the same equation as (14)
but with H

U,b
int (d) insertions replaced by −H

U,b
int (d) insertions

(since we did not perform the unitary transformation) and all
the hk factors replaced with −h factors. Hence, the factor (−1)n

in the front no longer cancels with the negative sign in front
of H

U,b
int as in the previous example. Performing the unitary

transformation would only push the problem into the fermionic
sector by removing the necessary σi factors from the fermionic

043311-4



SOLUTION TO SIGN PROBLEMS IN MODELS OF . . . PHYSICAL REVIEW E 94, 043311 (2016)

interactions. Also notice that the sign of a configuration
depends on n and not the details of the spin configuration.
Thus, any resummation over the spin configurations would
not help.

The solution is to treat the left-hand side of (16) as one piece
and perform the full trace over the spin space. As we will argue
below, this can indeed be accomplished in polynomial time. To
see this, let us first modify the Heisenberg antiferromagnetic
term by adding an irrelevant constant to it and treating the
whole term as an interaction

Hb
int = −J

∑
〈i,j〉

(
1
4 − �Si · �Sj

)
. (17)

Since in this approach every term containing the quantum
spin variable is treated as an interaction, we set Hb

0 = 0. The
partition function is identical to (13), where the fermionic
trace is the same as before and is given by (9), which is clearly
positive. On the other hand, the spin trace is different and is
given by

Gs[n,{d},l,{k}] = (−1)l+nTr
{ · · · [ − h

(
1
2 + Sx

k1

)] · · ·
× · · ·Hb

int(d1) · · · Hb
int(dn) · · ·

× [ − h
(

1
2 + Sx

kl

)] · · · }. (18)

The trace depends on the n insertions of nearest-neighbor spin
interaction Hb

int(d ≡ 〈ij 〉) = −J ( 1
4 − �Si · �Sj ) and l insertions

of −h( 1
2 + Sx

k ) with no free propagators between these
insertions. The configuration is labeled with [n,{d},l,{k}].
Clearly, the (−1)n+l in the front on the right-hand side of
Eq. (18) cancels the negative factors in the interaction terms.

In order to compute the spin trace we introduce a complete
set of eigenstates of the Sz operator at each site between the
interactions to obtain

Gs[n,{d},l,{k}] = (−1)n+l
∑
{sz(t)}

〈sz(t0)| · · · [ − h
(

1
2 + Sx

k1

)]

× ∣∣sz
(
tk1

)〉〈
sz

(
tk1

)∣∣ · · ·Hb
int(d1)

∣∣sz
(
td1

)〉
× 〈

sz
(
td1

)∣∣ · · · Hb
int(dn)

∣∣sz
(
tdn

)〉〈
sz

(
tdn

)∣∣ · · ·
× [ − h

(
1
2 + Sx

kl

)]∣∣sz
(
tdl

)〉〈
sz

(
tdl

)∣∣ · · ·
× |sz(t0)〉. (19)

In the Sz basis we know that the interaction ( 1
2 + Sx

k ) is a 2 × 2
matrix on the single site k and ( 1

4 − �Si · �Sj ) is a 4 × 4 matrix
on the bond d = 〈ij 〉. The matrix elements of these interaction
matrices can be viewed as providing correlations among the
spin degrees of freedom that are involved in the interaction
and given a diagrammatic representation. For example, in the
Sz basis s = (↑,↓) we find

〈s1|h
(

1

2
+ Sx

)
|s2〉 = h

2
, (20)

i.e., all four matrix elements are equal to h/2. In Fig. 3
these matrix elements are shown as diagrams that contain two
disconnected circles representing the spins s1 and s2. The fact
that there is no line connecting the two spins refers to the fact
that the two spin degrees of freedom s1 and s2 are completely
uncorrelated and independent of each other. Also since each
configuration has the same weight h/2 each spin can be flipped

s s

s s

1 2

3 4
s s
3 4

s s
3 4

s s
3 4

s s
1 2

s s
1 2

s s
1 2

s
1

s
1

s
1

s
1

s
2

s
2

s
2

s
2

J/2 J/2-J/2 -J/2

h/2 h/2 h/2 h/2

FIG. 3. The top row shows four nonzero matrix elements that
result from an insertion of 1

2 + Sx on a site. All four have the
same weight h/2. The closed circle represents spin up and the open
circle represents spin down. The bottom row shows four nonzero
matrix elements that result from an insertion of 1

4 − �Si · �Sj on a bond
connecting neighboring sites. All four have weights with the same
magnitude J/2. The off-diagonal terms have negative signs.

without affecting the weight of the configuration. Similarly, the
nonzero matrix elements of

〈s3s4|J
(

1

4
− �Si · �Sj

)
|s1s2〉 = J

2
(τ2)s4s3 (τ2)s1s2 , (21)

where τ2 is the second Pauli matrix, are also shown in Fig. 3.
These figures show two sets of anticorrelated spins s1s2 and
s3s4. We represent the anticorrelations with a horizontal bond.
This means that if s1 = ↑, then s2 = ↓ and vice versa. As long
as these anticorrelations are maintained, the nonzero matrix
elements have the same magnitude. However, in this case
when the spin pair flips (or spins exchange), the weight of the
diagram (or the matrix element) is negative. In other words,
if s1 = s3 and s2 = s4, i.e., the spins do not flip, the matrix
element is positive, but when s1 = s4 and s2 = s3, i.e., the spin
flips, the matrix element is negative.

In the calculation of Gs[n,{d},l,{k}] we multiply the inter-
action matrices in a time-ordered pattern. Diagrammatically,
we can arrange them at appropriate space-time locations
and multiply them such that the second spin label of the
previous matrix matches the first spin label on the later matrix
on the same lattice site. Thus, Gs[n,{d},l,{k}] is nothing
but a tensor network, which can be pictorially viewed as a
network of vertical straight lines connecting identical spins on
different matrices that are arranged in a time-ordered pattern.
Combining this picture with the information in Fig. 3, that the
interaction matrix elements themselves provide correlations
among spins, every configuration [n,{d},l,{k}] can be mapped
uniquely to a collection of open lines and closed loops in
space-time. Each open line or a closed loop is referred to as
a cluster. An illustration of this cluster configuration is shown
in Fig. 4.

Each spin configuration can still be negative. However,
the sum over all spin configurations (i.e., the spin trace
Gs[n,{d},l,{k}]) turns out to be either positive or zero.
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FIG. 4. Illustration of a cluster configuration that emerges
uniquely from a given configuration [n,{d},l,{k}] of operator inser-
tions. Open lines that end on two different sublattices turn out to be a
meron cluster, shown as dashed lines in the figure. The spin trace Gs

vanishes if the cluster configuration contains a meron.

When performing a trace, if two spins are correlated (or
anticorrelated) they must be counted as a single spin. Thus,
every cluster should be treated as a correlated object and
visualized as a single spin degree of freedom that can exist
in two different states. Therefore, if there are NC clusters in
the configuration [n,{d},l,{k}], the computation of the trace
requires one to a sum over 2Nc spin configurations. Can we
find a way to compute this sum over an exponentially large
number of terms quickly?

Interestingly, this sum was already performed in an earlier
study using the meron-cluster approach [44]. While the earlier
work used a discrete-time method to formulate the trace, it
is possible to work directly in continuous time as well [45].
The idea is to first note that a flip of the spins within a cluster
can only potentially change the sign of the configuration but
not its magnitude, because as long as correlations of the spins
are maintained, the magnitude of the matrix elements does
not change. Further, negative signs arise only from clusters
that contain spin hops. If a cluster is an open line whose
end points lie on different sublattices, then the line has an
odd number of hops. Hence its flip will change the total
number of spin exchanges from odd (even) to even (odd)
and change the sign of a configuration. Such open lines are
referred to as meron clusters. This property of the cluster does
not depend on the state of spins of other clusters. Hence, the
bosonic trace vanishes in the presence of a meron cluster.
Only cluster configurations without any meron clusters make
nonzero contributions to the trace. Interestingly, we can always
flip all clusters such that one sublattice contains up spins and
the opposite sublattice contains down spins. This is referred
to as a reference configuration and it always has a positive
weight. Hence, in a cluster configuration with no merons, all
cluster flips come with positive sign and add up. Defining Nm

as the number of meron clusters and Nc as the total number of

clusters, the meron-cluster approach shows that

Gs[n,{d},l,{k}] = (J/2)n(h/2)l2NcδNm,0, (22)

which is positive and easily computable.
The quantum Hamiltonian presented in this section illus-

trates that meron-cluster methods for spin systems may be
combined with the CT-INT approach to extend the class of
solvable sign problems in combined Bose-Fermi systems.

V. THE SU(2) SYMMETRIC MODELS

In the three examples we considered so far, we neglected the
fermion spin. In this section we illustrate an example of how
we can also include spin and continue to work in the CT-INT
formulation in a class of SU(2) symmetric models interacting
with quantum spins. In the model we consider, quantum
spins interact with fermions through an SU(2) symmetric
interaction. The Hamiltonian is given by

H = −λ
∑
〈ij〉,σ

(c†i,σ cj,σ + c
†
j,σ ci,σ ) + h

∑
i

�Si · c
†
i �τci

+ J
∑
〈ij〉

�Si · �Sj , (23)

where now the fermion creation and annihilation operators
also carry the spin index σ = ↑,↓, �τ are Pauli matrices in this
space, and in the second term on the right-hand side we have
used the spinor notation c

†
i ≡ (c†i,↑ c

†
i,↓). We can rewrite the

interaction term between spins and fermions as

h
∑

i

S+
i c

†
i,↓ci,↑ + h

∑
i

S−
i c

†
i,↑ci,↓ + h

∑
i

Sz
i (ni,↑ − ni,↓).

(24)

Using the transformations ci,↓ → σic
†
i,↓ and c

†
i,↓ → σici,↓ and

Eq. (3), we obtain the following transformed Hamiltonian (up
to an overall constant):

H = −λ
∑
〈ij〉,σ

(c†i,σ cj,σ + c
†
j,σ ci,σ ) + h

∑
i,σ

Sz
i ni,σ

+h
∑

i

S+
i ci,↓ci,↑ + h

∑
i

S−
i c

†
i,↑c

†
i,↓

− J
∑
〈ij〉

(
1
4 − Sz

i S
z
j

) − J

2

∑
〈ij〉

(S+
i S−

j + S−
i S+

j ). (25)

We treat all terms on the right-hand side of the above equation
in the first line as the free fermionic Hamiltonian H

f

0 . The two
terms in the second line are treated as two different fermion-
spin couplings H

f s,a
int , a = 1,2. The terms in the last line are

treated as Hb
int as in the previous section. Performing the usual

CT-INT expansion, we obtain

Z =
∑

l1,l2,m

∫
[dt](−1)l

(1)+l(2)+mTr
[ · · ·Hb

int(d1) · · ·Hf s,1
int

(
k1

1

)

× · · ·Hf s,2
int

(
k2

1

) · · · Hb
int(dm) · · · Hf s,2

int

(
k2
l2

) · · · ], (26)

where the ellipses stand for the free fermion propagators. In
the trace we have l(1) insertions of H

f s,1
0 (k) = hS+

k ck,↓ck,↑,
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l(2) insertions of H
f s,2
0 (k) = hS−

i c
†
k,↑c

†
k,↓, and m inser-

tions of the bond operator Hb
int(d = 〈ij 〉) = −J ( 1

4 − Sz
i S

z
j ) −

(J/2)(S+
i S−

j + S−
i S+

j ). Due to spin and fermion number
conservation, it is clear we must have l(1) = l(2). Further, the
(−1)m cancels the negative signs that comes from m insertions
of Hb

int(d). Unfortunately, now the trace cannot be factored
into a product of a trace over the fermion space and a trace
over the spin space. However, if we evaluate the spin trace
in the Sz basis then, as we have explained in the previous
section, insertions of Hb

int can be mapped uniquely into a cluster
configuration of correlated spins. If there are Nc clusters in the
configuration, the full spin trace for a fixed insertions of Hb

int
is a sum over 2Nc spin flips. Although this sum cannot be
performed explicitly as in the previous example, the weight of
each of the 2Nc spin configurations can be computed and the
partition function can be written as

Z =
∑

l1,l2,m

∫
[dt](J/2)m(h)l

(1)+l(2)
∑
[si (t)]

Trf (· · · ck1
1 ,↓ck1

1 ,↑

× · · · c†
k2

1 ,↑c
†
k2

1 ,↓ · · · c†
k2
l(2) ,↑

c
†
k2
l(2) ,↓

· · · ck1
l(1) ,↑ck1

l(1) ,↓ · · · ),

(27)

where the spin trace appears as a sum over 2Nc spin configura-
tions represented as [si(t)] and the fermion trace still appears
in the expression. Unlike previous examples, it depends on
the background spin configuration [si(t)] through the free
propagators that appear in the ellipses. Since the fermion spins
do not mix with each other and appear symmetrically, the
fermion trace factors into two identical terms: One is a trace
over the spin up space and the other over the spin down space.
Each of these can be expressed as a determinant of a matrix
M[si(t)] that depends on the spin configuration. The exact
expression for M[si(t)] can be obtained using the usual Wick
theorem [46]. Thus, we finally obtain the expression

Z =
∑

l1,l2,m

∑
[si (t)]

∫
[dt](J/2)m(h)l

(1)+l(2)
(det{M[si(t)]})2. (28)

Thus, there is no sign problem in the CT-INT expansion. A
simple reduction of the above model gives the well known
Kondo-lattice model at half filling, whose Hamiltonian is given
by

H = −λ
∑
〈ij〉,σ

(c†i,σ cj,σ + c
†
j,σ ci,σ ) + h

∑
i∈L

�Si · c
†
i �τci . (29)

In this model, fermions interact with a lattice of spin impurities
located at the sites i ∈ L. It can be obtained from Eq. (23) by
setting J = 0 and assuming that spins are located only at a
subset of lattice sites. While the Kondo-lattice problem at half

filling is also solvable with the usual auxiliary field Monte
Carlo method [47], we believe that an alternative approach
such as the one presented here is useful, since it helps to
view the problem in different light. Of course a solution to the
more difficult sign problem away from half filling, where the
Kondo-lattice model is considered as the microscopic model
for heavy fermion systems [48], would be truly exciting.

VI. CONCLUSION

In this work we have shown that for a class of systems
consisting of fermions interacting with quantum spins (or hard-
core bosons), the CT-INT approach leads to representations
of the partition function that do not suffer from the sign
problem. In addition to fermions interacting with spins, both
fermions and spins can in principle interact with themselves,
thus allowing one to solve a rich variety of systems with Monte
Carlo calculations. While we considered only four specific
examples in this article in order to explain our ideas concretely,
a careful reader will recognize that our methods extend to many
more problems, especially ones that include disorder. We have
also argued that the solvable class may be expanded further by
combining our ideas with the meron-cluster technique in the
bosonic sector. The fact that cluster algorithms and techniques
for quantum spin models can be married naturally with the
CT-INT approach is exciting.

It would be interesting to understand if the class of problems
we are able to solve with our ideas naturally falls within
some framework like Majorana reflection positivity, proposed
in [31]. It is likely that such a framework exists if one can
view quantum spins in analogy with fermions. We have not
focused on Monte Carlo methods or the efficiency of the
CT-INT expansion for these problems. More work is perhaps
needed to ensure efficient calculations.
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