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Magnetic phase transition in coupled spin-lattice systems: A replica-exchange Wang-Landau study
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Coupled, dynamical spin-lattice models provide a unique test ground for simulations investigating the finite-
temperature magnetic properties of materials under the direct influence of the lattice vibrations. These models are
constructed by combining a coordinate-dependent interatomic potential with a Heisenberg-like spin Hamiltonian,
facilitating the treatment of both the atomic coordinates and the spins as explicit phase variables. Using a model
parameterized for bcc iron, we study the magnetic phase transition in these complex systems via the recently
introduced, massively parallel replica-exchange Wang-Landau Monte Carlo method. Comparison with the results
obtained from rigid lattice (spin-only) simulations shows that the transition temperature as well as the amplitude
of the peak in the specific heat curve is marginally affected by the lattice vibrations. Moreover, the results were
found to be sensitive to the particular choice of interatomic potential.
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I. INTRODUCTION

With the continuing developments in materials science and
engineering, renewed interest has emerged in understanding
the temperature-dependent magnetic properties pertaining to
real materials. This demands sophisticated and improved
magnetic models that are capable of providing a more realistic
depiction of the material than is possible with conventional
spin models. A novel class of such improved models that
continues to gain widespread attention is atomistic models
that treat the dynamics of the translational (atomic) degrees
of freedom on an equal footing with the spin (magnetic)
degrees of freedom [1–4]. We refer to such models as
(coupled, dynamical) spin-lattice models. The motivation for
these hybrid models is the substantial amount of experimental
and theoretical evidence that suggests strong phonon-magnon
coupling in magnetic crystals, particularly in transition metals
and alloys [5,6]. A parameterized spin-lattice model for bcc
iron developed by Ma et al. [1] has been subjected to a
number of subsequent studies targeted towards understanding
the dynamical behavior, including vacancy formation and
migration [7,8] and phonon-magnon interactions [9,10]. More-
over, the model has been recently extended by incorporating
spin-orbit interactions [11], which, in particular, extends its ap-
plicability to accurate modeling of nonequilibrium dynamical
processes.

Previous work on coupled spin-lattice systems was almost
exclusively performed using the combined molecular and spin
dynamics technique [1,10], in which the coupled equations of
motion for all degrees of freedom are simultaneously solved
to obtain phase-space trajectories in real time. A single study
has been reported where the parallel tempering Monte Carlo
(MC) method was applied to relatively small system sizes
to investigate the magnetic phase transition in iron [4]. In
addition to the obvious inflation of the phase space due to
the inclusion of the extra spatial degrees of freedom, the
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coupling between the spin and the lattice subsystems may
also pose a significant challenge for the sampling due to
the emergence of novel excitations such as coupled phonon-
magnon modes [9]. Thus, the study of reasonably large systems
without compromising the accuracy and efficiency requires
state-of-the-art MC methods that effectively utilize modern
computing resources.

Among numerous MC methods introduced in the past
few decades, Wang-Landau sampling [12–14] stands out as
a powerful, yet simple technique with only a few adjustable
parameters. Unlike canonical MC methods, in which the goal
is to generate a sequence of microstates from the canonical
ensemble at a given temperature T , the Wang-Landau method
strives to deliver an estimate of the density of states g(E),
where E is the energy, as the end product. In essence, this
is accomplished by, ideally, performing a random walk in
energy space while iteratively adjusting the density of states.
The estimated density of states can then be used to extract
thermodynamic properties for the entire temperature range of
interest. An inherent advantage of Wang-Landau sampling is
its ability to easily overcome free energy barriers. Thus the
method has been frequently applied for systems with rough
free energy landscapes such as spin glasses, liquid crystals,
polymers, and proteins [15–18].

The recently introduced replica-exchange Wang-Landau
(REWL) framework [19–23] further pushes the limits of
Wang-Landau sampling by directly exploiting the power of
modern parallel computing systems. In this approach, the total
energy range is divided into a set of overlapping windows
that are concurrently sampled by independent random walkers.
Adopting the concept of conformational swapping from par-
allel tempering [24,25], occasional configurational (replica)
exchanges between overlapping windows are allowed, facili-
tating each replica to traverse through the entire energy range.

In this paper, we explore the feasibility and the efficacy
of using the REWL method for coupled spin-lattice systems
that are specifically parameterized for bcc iron. In Sec. II, we
describe the system Hamiltonian and the parametrization that
we adopt and provide a detailed description of the REWL
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method. In Sec. III, we present our results and analysis, with
the emphasis on exploring the impact of the phonons on the
magnetic phase transition, as well as the sensitivity of the
results to different interatomic potentials.

II. MODEL AND METHODS

A. Coupled spin-lattice Hamiltonian for bcc iron

Let us consider a classical system of N magnetic atoms of
mass m, described by their positions {ri} and the orientations
{ei} of the atomic spins. The corresponding Hamiltonian can
be written as

H = U ({ri}) −
∑
i<j

Jij ({rk})ei · ej , (1)

where U ({ri}) represents the spin-independent (nonmagnetic)
scalar interaction between the atoms, and the Heisenberg-like
interaction with the coordinate-dependent exchange parameter
Jij ({rk}) specifies the exchange coupling between spins.

Since the theoretical framework for interaction potentials
that specifically exclude magnetic contributions is not yet
available, we construct U ({ri}) as

U ({ri}) = UEAM({ri}) − Eground
spin , (2)

where UEAM represents a conventional interatomic potential
for bcc iron based on the embedded atom model (EAM), and
E

ground
spin = −∑

i<j Jij ({rk}) is the energy contribution from a
collinear spin state which we subtract to eliminate the magnetic
interaction energy implicitly contained in UEAM. With the
chosen form of U ({ri}), Hamiltonian (1) provides the same
energy as UEAM for the ferromagnetic ground state at 0 K.

For UEAM, we choose two well-established EAM potentials
for bcc iron, namely, the Finnis-Sinclair (FS) potential [26,27]
and the Dudarev-Derlet “magnetic” potential [28,29]. In-
troduced in 1984, the FS model is one of the oldest and
most frequently used many-body potentials for bcc iron.
The theoretical foundation of the FS potential is based
on a second-moment approximation to the tight binding
density of states. Despite its simple empirical form and the
short cutoff distance, the FS potential can reproduce bulk
material properties, such as bulk moduli and elastic constants,
reasonably accurately [30]. Hence, it has long been a popular
choice among materials scientists. However, it is not suitable
for modeling highly disordered systems such as interstitial and
vacancy configurations since the repulsive part of the potential
is too “soft” and, thus, tends to produce nonphysical results
for such systems [31,32].

Among various empirical potentials derived for bcc iron, the
recently introduced Dudarev-Derlet (DD) potential stands out
due to its unique feature of taking the local magnetic structure
into account when determining the interatomic forces. The DD
potential is based upon the Stoner and the Ginzburg-Landau
models and is motivated by the fact that the presence of
magnetism significantly contributes to the stability of the
crystal structure in iron-based materials [33,34]. It was then
parameterized using a wide range of material properties,
including bulk cohesive energy, lattice constants, elastic
constants, and vacancy formation energies corresponding to
both bcc and fcc configurations, as well as magnetic and
nonmagnetic phases [28]. The DD potential does not treat the

orientational dynamics of the atomic moments, and therefore,
the treatment of noncollinear spin configurations at finite
temperatures is outside its domain of applicability. To achieve
this, one needs to incorporate the dynamics of the spin
orientations explicitly [1].

For modeling the exchange interaction Jij ({rk}), we use
a simple pairwise function parameterized by first-principles
calculations [1],

J (rij ) = J0(1 − rij /rc)3�(rc − rij ), (3)

where rij = |ri − rj |, J0 = 0.90490177 eV, rc = 3.75 Å, and
�(x) is the Heaviside step function.

B. Replica-exchange Wang-Landau Monte Carlo sampling

The foundation for the Wang-Landau approach is to
recognize that the canonical partition function for a system
with discrete energy levels can be written as a summation over
all energies in the form

Z =
∑
E

g(E)e−βE, (4)

where g(E) is the density of states. If g(E) is known, the
problem is essentially solved since one can directly estimate
the ensemble average of any thermodynamic function of E as

〈A(E)〉
NV T

=
∑

E A(E)g(E)e−βE∑
E g(E)e−βE

. (5)

The goal of Wang-Landau sampling is to iteratively improve
the estimate of g(E) in a controlled fashion, while performing
a guided walk in energy space that eventually leads to the
accumulation of a uniform energy histogram as the estimate
of g(E) converges to its true value.

1. The original Wang-Landau algorithm

At the beginning of the Wang-Landau simulation, the
desired total energy range E ∈ [Emin,Emax] for which g(E)
should be obtained is determined. For systems with continuous
energy domains, the total energy range is divided into bins of
size δE appropriately chosen according to the desired level of
resolution in g(E). Since g(E) is unknown in the beginning
of the simulation, an initial guess of g(E) = 1 is assigned
for all energies. Then, starting from an arbitrary initial state
of the system, a random walk in the configurational space is
performed by sequentially generating trial states. During each
MC step, a new trial state xn is generated by applying an MC
trial move to the current state xm. The new state is accepted
according to the probability

P (xm → xn) = min

[
1,

g(E(xm))

g(E(xn))

]
. (6)

If the trial state xn is accepted, the density-of-states entry for
E(xn) is updated as g(E(xn)) → g(E(xn)) × f , where f is the
“modification factor,” which we initially set to f0 = e1. If the
trial state is rejected, the entry for the old state is updated as
g(E(xm)) → g(E(xm)) × f .

The random walk is continued until all energy bins have
been visited sufficiently often. Different ways of checking
this condition have been proposed [12,13,35,36]. In the
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conventional version, one could maintain a histogram H (E)
of the visited energies. When all the entries in the histogram
are greater than a certain percentage of the average histogram
value, the histogram is considered to be “flat.” At this point,
the modification factor is reduced, for example, by f → √

f ,
the histogram is reset to 0, and another iteration of the
random walk is initiated. This process is repeated until the
modification factor f reaches a predefined terminal value, say
ffinal = e1×10−8

.

2. Replica exchange framework for massively parallel
Wang-Landau sampling

In REWL sampling, the global energy range [Emin,Emax] is
divided into h smaller windows, each of which overlaps with
its nearest neighbors on both sides with an overlap ratio o (a
schematic is shown in Fig. 1). In each window, m random walk-
ers are employed. Each walker has its own gi(E) and Hi(E),
0 < i � (h × m), which are updated independently. Once all
walkers within an energy window have individually satisfied
the flatness criterion, their estimates for g(E) are averaged
out and distributed among each other before simultaneously
proceeding to the next iteration. The simulation is terminated
when the modification factors for all windows have reached
the terminal value ffinal.

During the simulation, after every n MC steps, replica
exchanges between walkers in adjacent energy windows are
proposed. For every walker i, a “swap partner” j is chosen
randomly from one of the adjacent windows. If x and y
are the current configurations of walkers i and j , the two
configurations are interchanged according to the probability

PRE = min

[
1,

gi(E(x))gj (E(y))

gi(E(y))gj (E(x))

]
, (7)

where gi(E(x)) is the current estimate for the density of states
of walker i with energy E(x).

At the end of the simulation, the parallel Wang-Landau
method provides multiple, overlapping fragments of g(E).
These fragments are joined at points where the slopes of
ln g(E) [i.e., d ln g(E)/dE, the inverse microcanonical tem-
perature] best coincide. This practice reduces the introduction
of artificial kinks in the combined g(E) due to the joining
process and minimizes artificial errors in thermodynamic
quantities [20]. Any residual systematic error is almost always
less than the remaining (small) statistical error.

Emin Emax

7
6

5
4

3
2

1

FIG. 1. Partitioning the global energy range into seven windows
with overlap o = 75%. Arrows indicate the communication pathways
between neighboring windows for replica-exchange attempts.

C. Monte Carlo trial moves for coupled spin-lattice systems

For coupled spin-lattice systems, the configurational space
that one seeks to sample via MC methods consists of 2N phase
variables: {x} = {r1,r2, . . . ,rN,e1,e2, . . . ,eN }. For effectively
sampling this configurational space with respect to both the
atomic coordinates and the spins, we employ the following
two trial moves.

(1) Single-atom-displacement move
Displace the chosen atom i to a random position r′

i within a
sphere centered at its original position ri :
r′
i = ri + R, where |R| < Rmax.

(2) Single-spin-rotation move
Assign a new random direction to the spin of the chosen
atom i.

During each MC step, we randomly choose an atom and
perform one of the above trial moves at random with equal
probability. Completion of 2N such MC steps constitutes a
single “MC sweep.”

III. RESULTS

Our simulations were performed on a cubic cell of size
L = 20 (16 000 atoms; 2 atoms per unit cell) with periodic
boundary conditions. To explore the sensitivity of the results
to the particular choice of EAM potential, we performed
simulations using both Dudarev-Derlet and the Finnis-Sinclair
potentials [26–29]. The corresponding global energy ranges
were chosen to be [−67 200 eV, −63 200 eV] and [−67 200 eV,
−62 080 eV], respectively, for the DD and FS potentials. For
both cases, 189 energy windows with an overlap o = 75% were
used, and a single walker per window (m = 1) was employed.
To discretize the energy space, each window was divided into
2000 energy bins. Replica exchanges between neighboring
windows were proposed every 60 MC sweeps. With these
simulation parameters, we observed acceptance rates for the
replica exchanges in the range of 49%–55%. For checking
the convergence of g(E), an 80% flatness criterion and a
final modification factor of ln ffinal = 1 × 10−8 were used. For
both potentials, the full convergence of g(E) was achieved
in about 1 × 108 MC sweeps, which took less than a week
on a 128-GB-RAM AMD Opteron cluster with InfiniBand
connectivity.

To reduce statistical fluctuations in the estimated ther-
modynamic quantities, we averaged over the results of 15
independent runs for the DD potential and 11 runs for the FS
potential. Figure 2 shows the comparison of the temperature
dependence of the internal energy per atom obtained for the
two potentials. Over the whole temperature range considered,
the internal energy per atom obtained for the FS potential
is approximately 0.03–0.04 eV higher than that for the DD
potential. Figure 3 shows the specific-heat curves for the two
potentials, along with the results obtained from rigid lattice
(spin-only) simulations in which the atoms were held fixed at
perfect bcc lattice positions [23]. Also shown in Fig. 3(a)
are the experimental results for the constant-pressure heat
capacity CP and the corresponding CV values calculated from
the CP data [37] using the relation CV = CP − V T α2/βT ,
where α and βT are the thermal expansion coefficient and the
isothermal compressibility, respectively. Due to the lack of
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FIG. 2. Comparison of the temperature dependence of the internal
energy for coupled spin-lattice systems of size L = 20 using the
Dudarev-Derlet [spin + lattice (DD)] and Finnis-Sinclair [spin +
lattice (FS)] potentials. Error bars are smaller than the symbols.
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FIG. 3. Specific heat as a function of temperature for L = 20 with
[spin + lattice (DD) and spin + lattice (FS)] and without (spin only)
the influence of lattice vibrations: (a) expanded temperature range
[500 K,1200 K] including the experimental results for CP obtained
from Ref. [37] and the corresponding CV values calculated from the
CP data; (b) closeup view in the vicinity of the peak positions. Vertical
arrows in both (a) and (b) mark the Curie temperature T

exp
C ≈ 1043 K

as predicted by the peak position of the experimental CP curve.

thermal expansion coefficient data, CV values above 1000 K
are not given [37]. For a fair comparison with the experimental
results, we have added 3

2kB to the DD and FS results to
include the contribution of the kinetic energy based on the
equipartition theorem. For the rigid lattice results, 3kB was
added to include the contribution of both the kinetic energy and
the lattice potential energy. The vertical arrows in both Fig. 3(a)
and Fig. 3(b) mark the Curie temperature T

exp
C ≈ 1043 K as

predicted by the peak position of the experimental CP curve.
The difference between the results for the two embedded atom
potentials is clearly larger than the respective error bars, but
both sets of results differ markedly from the estimated values
of CV extracted from experiment. The peak in the specific heat
corresponding to the rigid lattice simulations is approximately
30 K higher than the experimental Curie temperature. The in-
troduction of lattice vibrations further pushes the peak position
to higher temperatures by several degrees. Moreover, lattice
vibrations reduce the amplitude of the peak, an effect which is
more pronounced for the case of the DD potential. Specific heat
data for the simple cubic Heisenberg ferromagnet [38] have
shown that the location of the specific heat peak increases
as ∼0.7L−1/0.7. Hence, extrapolation of our data to infinite
size would change the result very little, as also indicated by
exemplary simulations at other system sizes.

IV. SUMMARY

In conclusion, we have performed highly parallel replica-
exchange Wang-Landau simulations to investigate the mag-
netic phase transition in a coupled spin-lattice model param-
eterized for bcc iron. The high level of precision achieved in
our simulations has allowed us to make careful comparisons
between the results obtained for two interatomic potentials
(FS and DD) and simulations performed on rigid lattices.
Such a comprehensive analysis was only possible due to the
significant speedup rendered by the parallel, replica-exchange
scheme, without any loss of accuracy or precision. While the
complete analysis presented in this paper would take of the
order of 100 years using the serial Wang-Landau method
performed on a single-core processor, we obtained all the
results within a few months using the parallel scheme.

Our results indicate that the presence of lattice vibrations
only marginally eaffects the transition temperature and the
amplitude of the peak in the specific heat curve. This
suggests that the classical Heisenberg model already provides
a reasonable depiction of the magnetic phase transition in
bcc iron. We also find that the results are sensitive to the
particular choice of the interatomic potential, particularly at
temperatures farther away from the critical temperature Tc. As
the temperature increases beyond Tc, the specific heat obtained
using the FS potential gradually deviates from that of the rigid
lattice simulations, whereas below Tc, a reasonable agreement
with the rigid lattice results can be observed. In contrast, the
specific heat obtained using the DD potential is higher than that
of the rigid lattice simulations up to about T = 800 K, then
remains lower in comparison to the rigid lattice results until
about T = 1100 K, and thereafter starts to gradually converge
with the rigid lattice results. The differences in the results
for the two EAM potentials can be attributed to the subtle
differences in the ways in which the anharmonic effects are
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captured in these potentials, which, in turn, affect the magnetic
properties of the system via spin-lattice coupling.
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