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Data assimilation (DA) is a fundamental computational technique that integrates numerical simulation models
and observation data on the basis of Bayesian statistics. Originally developed for meteorology, especially weather
forecasting, DA is now an accepted technique in various scientific fields. One key issue that remains controversial
is the implementation of DA in massive simulation models under the constraints of limited computation time and
resources. In this paper, we propose an adjoint-based DA method for massive autonomous models that produces
optimum estimates and their uncertainties within reasonable computation time and resource constraints. The
uncertainties are given as several diagonal elements of an inverse Hessian matrix, which is the covariance matrix of
a normal distribution that approximates the target posterior probability density function in the neighborhood of the
optimum. Conventional algorithms for deriving the inverse Hessian matrix require O(CN2 + N 3) computations
and O(N 2) memory, where N is the number of degrees of freedom of a given autonomous system and C is
the number of computations needed to simulate time series of suitable length. The proposed method using a
second-order adjoint method allows us to directly evaluate the diagonal elements of the inverse Hessian matrix
without computing all of its elements. This drastically reduces the number of computations to O(C) and the
amount of memory to O(N ) for each diagonal element. The proposed method is validated through numerical tests
using a massive two-dimensional Kobayashi phase-field model. We confirm that the proposed method correctly
reproduces the parameter and initial state assumed in advance, and successfully evaluates the uncertainty of
the parameter. Such information regarding uncertainty is valuable, as it can be used to optimize the design of
experiments.

DOI: 10.1103/PhysRevE.94.043307

I. INTRODUCTION

Determining the model parameters and initial states of sim-
ulation models is an important task in various scientific fields,
as it enables us to predict the temporal evolution of the target
system. However, in many practical cases, this procedure is
somewhat complex, because some of the parameters and initial
states cannot always be directly observed by experiments.
In materials science, for example, phase-field (PF) models
are often used to simulate the evolution of microstructures
during the processes of solidification and phase transformation
[1–7]. PF models phenomenologically describe the dynamics
of phases using field variables that evolve in time depending
on the gradient of the total free energy. Since a PF model
usually requires a huge number of grid points to discretize the
field variables, the computational cost tends to be prohibitive.
Nonetheless, PF models are accepted beyond the field of
materials science, such as in hydrodynamics [8–10], because
they can be employed to model phases and their dynamics
using mathematical expressions that are easy to manipulate.
Since the microstructure of materials such as steel, stainless
and aluminium alloys affects the mechanical properties,
controlling the temporal evolution of the microstructure is a
key issue in obtaining the desired mechanical properties. The
PF simulations help us to understand and predict the dynamics
of the microstructure for the efficient development of real
materials. The problem to be solved is to determine the initial

state and parameters involved in a PF model, which are usually
unobservable directly by experiments. This parameter estima-
tion is practically impossible because of the computational
cost of forward simulations and/or insufficient experimental
data. However, recent developments in supercomputers and
enhancements in experimental equipment have enabled the
parameter estimation process to begin by integrating simula-
tions and observations, which is a longstanding problem in
materials science. This paper focuses on parameter estimation
in the framework of data assimilation (DA), implementing
a new method to quantify the uncertainties of the esti-
mates, and thus providing valuable feedback for experimental
design.

DA is a computational technique that integrates numerical
simulation models and observational data on the basis of
Bayesian statistics. Thus, DA enables the parameters and
initial states of PF models to be estimated by systemati-
cally extracting as much information as possible from the
given observational and experimental data. The process of
DA evaluates a probability density function (PDF) (or the
“posterior PDF,” to be precise) of the unknown parameters
and unobservable states that is conditional on the given
observation data [11]. DA was originally developed in the
fields of meteorology and oceanography [12–14], but is now
applied in areas such as seismology, marketing science, and
industrial science [15–18]. Several sequential Bayesian filters
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and other nonsequential estimation methods have been used
in DA. Common sequential Bayesian filters such as the
ensemble Kalman filter [19–21] and the particle filter [22–24]
estimate the target posterior PDF using Bayes’ theorem. This
approximation is formed using an ensemble of realizations,
meaning that the computational cost is proportional to the
number of realizations. The implementation of one sequential
Bayesian filter on a given simulation model is not especially
complex, and a sufficiently accurate estimate of the posterior
PDF can be achieved when the number of degrees of freedom
N of the simulation model is sufficiently small. However,
Bayesian filters become inefficient when applied to massive
simulation models, as the number of realizations required to
obtain a converged posterior PDF is proportional to eO(N).

Unlike sequential Bayesian filters, adjoint methods [25–27]
directly determine the optimum solution using a gradient
method to maximize the target posterior PDF. Although this
achieves a drastic reduction in the computational cost, the
ordinary adjoint method cannot evaluate the uncertainty in
its estimations, which sequential Bayesian filters obtain in a
straightforward manner. Such uncertainties provide valuable
information related to both the estimations and the optimum
solution. For example, the uncertainties provide feedback for
the experimental design that helps to identify the parameters of
interest with the required accuracy. The quantification of un-
certainty is currently a very important issue in the application
of DA to massive simulation models. The uncertainty is gener-
ally represented by the second-order cumulant of the posterior
PDF, i.e., covariance matrix �, which can be approximated by
the inverse of the second-order derivative of the logarithmic
posterior PDF, i.e., inverse of the Hessian matrix H−1. Since
the calculation of � or H−1 is computationally expensive,
the first-order derivative of the logarithmic posterior PDF,
i.e., sensitivity, has been widely used instead of � or H−1 to
investigate how the PDF changes with respect to the variables
of interest [28,29]. Recent technological developments in
computers have motivated us to directly evaluate � or H−1.
However, previous studies attempting this presupposed the
computation of all elements in the matrix, and thus imposed
some limitations such as the small dimension of observations
[30], the tangent-linear approximation for given simulation
models [31], or an approximate computation of the matrix
using a quasi-Newton method [32–34].

In many cases, not all elements in the matrix are of
interest, and knowing only a few limited elements is adequate
for evaluating uncertainties. This paper proposes a new
adjoint-based DA methodology that evaluates the uncertainties
of estimates by computing limited elements of interest in
H−1. Owing to this, the proposed method can be applied to
simulation models with a huge number of degrees of freedom.
We first construct a method to estimate the parameters and
initial states involved in an autonomous system, and then
validate our approach using a PF model as a testbed. Section II
introduces the formulation of an adjoint-based DA method to
simultaneously obtain an estimation and its uncertainty using
second-order information of the posterior PDF. Section III
describes the formulation of an estimation test using synthetic
data based on Kobayashi PF model [1]. Section IV presents and
discusses the results of estimation tests, and Sec. V concludes
this paper by summarizing the results of this study.

II. METHOD

A. State-space model and cost function

DA based on Bayesian statistics starts by defining a state-
space model consisting of a system model and an observation
model. The system model describes how a state vector evolves
over time in accordance with a given simulation model. The
state vector contains all time-dependent variables used in the
simulation model and sometimes the model parameters.

Suppose an autonomous simulation model is given by
∂ z/∂t = A(z; a), where z(t) ∈ RNz denotes a time-dependent
variable and A : RNz → RNz is a function of z and a
time-invariant parameter vector a ∈ RNa . The system model
describes the time evolution of a state vector consisting of z
and a. Let X(t) = (z�,a�)

� ∈ RN be the state vector, where
•� denotes the transpose of • and N = Nz + Na . Since a
is time-invariant, i.e., ∂a/∂t = 0, the system model can be
represented by

∂ X
∂t

= f (X), (1)

where f : RN → RN is defined as fi = Ai for 1 � i � Nz

and fi = 0 for Nz + 1 � i � N .
The observation model describes how X(t) relates to a

time series of observation data D(t) ∈ RK , where K denotes
the dimension of the observations. Considering that the data
include noise, the observation model can be described as

D = ȟ(X) + �, (2)

where ȟ : RN → RK is an observation operator that outputs
quantities from X comparable with the data and �(t) denotes
observation noise. In this paper, we assume that f and ȟ are
nonlinear functions and � is white noise that follows a normal
distribution with a diagonal covariance matrix. Our purpose
is to obtain the optimum initial state X(0) together with the
uncertainties of the variables of interest.

In consideration of PF models, we also assume that X(0) is
constrained by

XLower
i < Xi(0) < X

Upper
i (i = 1, . . . ,N), (3)

where XLower ∈ RN and XUpper ∈ RN denote the lower and
upper bounds of X(0), respectively.

To simplify our formulation, we normalize X as

θi(t) = Xi(t) − XLower
i

X
Upper
i − XLower

i

(i = 1, . . . ,N). (4)

This leads to the following θ-dependent forms of Eqs. (1)–(3):

∂θ

∂t
= F(θ), (5)

D = h(θ ) + �, (6)

0 < �i < 1 (i = 1, . . . ,N), (7)

where Fi(θ) = fi(X)/(XUpper
i − XLower

i ), h(θ) is an observa-
tion operator after transforming X to θ , and � = θ(0).
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Bayes’ theorem states that a conditional PDF p(�|D),
which is called the posterior PDF, can be described as

p(�|D) = p(�)p(D|�)

p(D)
, (8)

where p(�) and p(D|�) are called the prior PDF and
likelihood, respectively. Note that p(D) is constant, since
D is a definite vector. Thus, Eq. (8) implies that p(�|D) is
proportional to a product of the prior PDF and the likelihood.

The prior PDF contains prior information provided by expe-
rience and intuition. If we suppose that this prior information
is the constraint condition given by Eq. (7) and that �i is
independent for each i, the joint PDF p(�) is given by a
product of prior PDFs of �i ,

p(�) =
N∏

i=1

p(�i), (9)

where

p(�i) =
{

1 (0 < �i < 1),
0 (otherwise). (10)

When observation data are obtained at t = t1,t2, . . . ,

tn, p(D|�) can be written as

p(D|�) =
n∏

s=1

K∏
k=1

p(�k(ts)), (11)

where

p(�k(ts)) = 1√
2πσ 2

k

exp

[
− {Dk(ts) − hk(θ (ts))}2

2σ 2
k

]
, (12)

and σk is the standard deviation of �k (k = 1, . . . ,K). We
consider σk to be a hyper-parameter.

This paper defines the optimum solution �̂ to be the � that
maximizes the posterior PDF p(�|D). For the convenience of
numerical computation, we aim to minimize a cost function

J =
n∑

s=1

K∑
k=1

[
log

(
2πσ 2

k

)
2

+ {Dk(ts) − hk(θ(ts))}2

2σ 2
k

]

subject to 0 < �i < 1, (13)

which comes from a negative logarithmic posterior PDF, i.e.,
p(�|D) ∝ e−J , to find �̂, rather than maximizing p(�|D).
The constraint in Eq. (13) arises from the term −logp(�),
which appears when calculating −logp(�|D).

An optimum solution σ̂k for σk can be determined as
follows. By letting ∂J/∂σk = 0, we obtain

σk =
√√√√1

n

n∑
s=1

{Dk(ts) − hk(θ (ts))}2. (14)

Then, σ̂k is obtained by substituting θ , which is calculated by
Eq. (5) using θ (0) = �̂, into Eq. (14).

B. Optimization via an adjoint method

Typically, J is optimized using a gradient method such as
the steepest gradient descent, the nonlinear conjugate gradient

method, or the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (LBFGS) method [35]. Gradient methods require ∂J/

∂� to update J , but it is difficult to calculate this quantity
because J does not explicitly include �, as seen in Eq. (13).
Generally, J is fully determined by setting � = θ (0) through
Eq. (5), so that J must be written as a function of �, i.e.,
J (�). According to Eq. (13), J is also a function of θ (ts)(s =
1, . . . ,n) that satisfies Eq. (5), not including �. Summarizing
these two expressions for J :

J (�) =
∫ tf

0
dt J (θ ) +

∫ tf

0
dt λ�

(
F − ∂θ

∂t

)
, (15)

where tf is an arbitrary time later than tn, and λ(t) ∈ RN

denotes a vector of the Lagrange multipliers that impose Eq. (5)
as the constraint condition of θ . J is the time-dependent
function

J (θ )=
n∑

s=1

δ(t−ts)
K∑

k=1

[
log

(
2πσ 2

k

)
2

+{Dk(t) − hk(θ (t))}2

2σ 2
k

]
,

(16)

which satisfies J = ∫ tf
0 dt J , where δ(t) denotes the Dirac

delta function. Taking a variation of Eq. (15), we have a time
evolution equation for λ:

∂λ

∂t
+

(
∂ F
∂θ

)�
λ + ∂J

∂θ
= 0, (17)

where

λ(0) = ∂J

∂�
, (18)

λ(tf ) = 0. (19)

Details of the derivation can be found in Refs. [26,36]. Solving
Eq. (17) backwardly in time with the condition in Eq. (19),
we obtain the objective ∂J/∂� as λ(0). Such a procedure
to obtain the gradient of the cost function using the adjoint
equation [Eq. (17)] is called the adjoint method.

When we apply the adjoint method to our problem, a
variable transformation is needed in the process of updating �

based on a gradient method, since � has the constraint shown
in Eq. (7). The variable transformation,

	i = log �i − log (1 − �i) (i = 1, . . . ,N ), (20)

converts the constrained optimization problem of � into an
unconstrained one with respect to �. The update procedure
is as follows. After obtaining ∂J/∂� by the adjoint method
based on Eqs. (17)–(19), we convert � to � using Eq. (20)
and ∂J/∂� to ∂J/∂� as

∂J

∂	i

= �i(1 − �i)
∂J

∂�i

(i = 1, . . . ,N). (21)

Using this formulation to update �, we can obtain an updated
� from the inverse transformation of Eq. (20):

�i = 1

1 + exp (−	i)
(i = 1, . . . ,N). (22)

Although this update procedure does not allow �i to be exactly
0 or 1, owing to the definition of Eq. (22), �i can be sufficiently
close to 0 or 1, which poses no problem in practical cases.
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The adjoint method calculates ∂J/∂� for a fixed σk , so that
an optimization of σk is to be done at the same time as � by
substituting Eq. (14) into Eq. (16) every time � is updated.

The advantages of the adjoint method over sequential
Bayesian filters are that only O(C) computations and O(N )
memory are required to find �̂, where C is the number of
computations needed to run the given simulation model from
t = 0 to t = tf .

C. Evaluation of uncertainty via a second-order adjoint method

The adjoint method described in Sec. II B gives the optimum
solution �̂ that maximizes p(�|D). However, it does not
provide information about the behavior of p(�|D) in the
neighborhood of � = �̂, which reflects the uncertainty in
the estimation of �̂. To extract such information, another
procedure must be implemented on the adjoint method.
Considering that ∂J/∂�|�=�̂ = 0, the Taylor expansion of
J with respect to � − �̂ is

J (�) ∼ J (�̂) + 1

2
(� − �̂)� H(� − �̂), (23)

where terms of order higher than three have been neglected,
and H is a Hessian matrix given by

Hi,j = ∂2J

∂�i∂�j

∣∣∣∣
�=�̂

(i,j = 1, . . . ,N). (24)

We normalize p(�|D) ∝ e−J into which Eq. (23) is substi-
tuted as

p(�|D) ∼ exp
[− 1

2 (� − �̂)� H(� − �̂)
]

(2π )N/2|H−1|1/2
, (25)

where H−1 is the inverse of H and | • | denotes the determinant
of •. Equation (25) indicates that, in the neighborhood of
� = �̂, p(�|D) can be approximated by a multivariate
normal distribution with mean vector �̂ and covariance matrix
H−1. Let �l (1 � l � N ) be a component of interest in
�. Integrating Eq. (25) over all variables except for �l ,
the marginal distribution with respect to �l is the normal
distribution with mean �̂l and variance (H−1)l,l , which is the
lth diagonal element of H−1. This means that the uncertainty
of �l is given by (H−1)l,l . When N � 1, it is unrealistic
to obtain H−1 directly, as this would require O(CN2 + N3)
computations and O(N2) memory. In practical cases, it is not
necessary to evaluate all elements of H−1, since the number
of elements of interest is usually much smaller than N .

We propose a new methodology based on a second-order
adjoint method [37,38] to efficiently obtain such uncertainties
in massive autonomous systems. The following procedure to
obtain the uncertainties requires O(C) computations and O(N )
memory for each uncertainty. When evaluating the uncertainty
of �l , we consider a linear equation of r ∈ RN :

H r = q, (26)

where q ∈ RN is a vector with elements ql = 1 and qi �=l =
0. The solution r̂ obviously includes (H−1)l,l , since r̂l =∑N

j=1(H−1)l,j qj = (H−1)l,l . Note that H is a constant matrix
that requires complex computations because of its large
dimension. We must obtain r̂ from an initial guess r0 via an

iterative technique such as the conjugate gradient method or the
conjugate residual method. The iterative method needs, in the
way of the iteration, to compute many Hessian-vector products
H rk , where rk is the kth update. The second-order adjoint
method enables us to compute such Hessian-vector products.

Let ξ (t) ∈ RN and ζ (t) ∈ RN be perturbations of θ̂ and
λ̂, which correspond to θ and λ, respectively, when � = �̂.
Their time evolutions are given by

∂ξ

∂t
= ∂ F

∂θ

∣∣∣∣
θ=θ̂

ξ , (27)

∂ζ

∂t
+

(
∂ F
∂θ

)�∣∣∣∣
θ=θ̂

ζ +
(

∂2 F

∂θ2 ξ

)�∣∣∣∣
θ=θ̂

λ̂ + ∂2J
∂θ2

∣∣∣∣
θ=θ̂

ξ = 0.

(28)

The combination of Eqs. (27) and (28), which are called
the tangent linear model and second-order adjoint model,
respectively, gives the Hessian-vector product for an arbitrary
vector. Solving Eq. (27) forwardly in time for a given vector
ξ (0) = γ , we obtain the time series of ξ . Then, solving Eq. (28)
backwardly with the given ζ (tf ) = 0 and the time series ξ , we
obtain the objective Hessian-vector product ζ (0) = Hγ . The
detailed derivation is given in Ref. [37].

We now discuss the computational cost of solving Eq. (26)
by some iterative technique, e.g., the conjugate gradient
method or the conjugate residual method, together with the
second-order adjoint method. First, obtaining an objective
Hessian-vector product for a given vector requires O(C) com-
putations when solving Eqs. (27) and (28). Then, updating the
vector in each iteration needs O(N ) computations. Therefore,
the number of all computations in one iteration is O(C) +
O(N ) = O(C), since C � N . Consequently, obtaining the so-
lution requires O(C) computations, considering that the num-
ber of iterations needed for convergence does not depend on N .

III. TWIN EXPERIMENT

A. Kobayashi phase-field model

The accuracy of the proposed method is verified through
numerical simulations termed “twin experiments,” details of
which are given in Sec. III B. We choose a two-dimensional
Kobayashi PF model as the testbed in the twin experiments.
Kobayashi PF model describes the fundamental growth dy-
namics of two phases, such as in solidification or a phase
transformation. The time evolution of one of the phases is
described by

τ
∂φ

∂t
= ε2 	 φ + φ(1 − φ)

(
φ + m − 1

2

)
, −1

2
< m <

1

2
,

(29)

where the PF variable φ(x,t) denotes the existence probability
of the relevant phase, e.g., solid or liquid. The parameters τ

and ε nondimensionalize time and space, respectively, and m

characterizes the velocity of the interface between the two
phases. We assume that these parameters are time-invariant
constants. We know that φ(x,t) should be constrained in
0 � φ(x,t) � 1, as it describes a probability. This condition
is automatically satisfied by setting the initial phase to 0 �
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φ(x,0) � 1, since φ = 0 and φ = 1 are the fixed points of
Eq. (29).

Kobayashi PF model underlies various PF models that
describe physical phenomena such as dendrite growth [1,5],
crack propagation [39,40], and interface-driven pattern forma-
tion [41]. Therefore, Kobayashi PF model is a good choice for
verifying whether the proposed DA method works well and
is a first step towards future applications in more complex PF
models.

B. Synthetic data

Twin experiments are often conducted in the field of DA to
verify a newly developed method on the basis of synthetic
data. The synthetic data are usually generated using the
given simulation model, in which the true parameters and
initial state are predetermined. Verification then proceeds by
checking whether the DA method applied to the synthetic data
reproduces the true parameters and initial state. In our case,
the synthetic dataset is a time series of φ that is numerically
calculated by Kobayashi PF model with a true initial state
and parameter m. The synthetic data are then contaminated
by observation noise that follows a normal distribution with
mean zero and variance σ 2. The twin experiments are intended
to confirm that the proposed method estimates the initial state
and parameter with the associated uncertainty.

Let nx and ny be the numbers of grid points in the x- and
y-directions, respectively, M be the total number of grid points,
i.e., M = nxny , and h be the grid spacing. A periodic boundary
condition is imposed on the boundary of the computational
domain. Letting φi(t) be the phase at the ith grid point, Eq. (29)
can be rewritten as

τ
∂φi

∂t
= ε2 	i φi + φi(1 − φi)

(
φi + m − 1

2

)
, (30)

where 	i denotes a second-order difference operator acting
on the four nearest neighbors of the ith grid point Si ; i.e.,
	iφi = ∑

j∈Si
(φj − φi)/h2.

Figure 1 shows the time evolution of φ in two-dimensional
space, where nx = 300,ny = 200,h = ε, and the time incre-
ment in the Euler method is 0.1τ . The assumed initial state
is shown in Fig. 1(a), and the true value for the parameter
m is assumed to be 0.1. Figures 1(b)–1(f) show snapshots

300

0.0

0.2

0.4

0.6

0.8

1.0

20
0

(a) (b) (c)

(d) (e) (f)

Initial state t = 0.0τ t = 5.0τ t = 10.0τ

t = 20.0τ t = 50.0τ t = 100.0τ

FIG. 1. Time evolution of phase field φ starting from the
initial state shown in (a) for m = 0.1. (b)–(f) φ at t =
5.0τ, 10.0τ, 20.0τ, 50.0τ , and 100.0τ , respectively. The color indi-
cates the magnitude of φ.

indicating that the interface between the phases φ = 0 and
φ = 1 migrates, expanding the area of φ = 1. Motivated by the
fact that such snapshots are sometimes obtained as observation
data in practical experiments, we use snapshots such as in
Figs. 1(b)–1(f) with added observation noise as the synthetic
data for the twin experiments. The synthetic data are given by

φobs
i (t) = φi(t) + ωi(t) (i = 1,...,M), (31)

where ωi(t) is normally distributed observation noise with
mean zero and variance σ 2.

When DA is applied to Kobayashi PF model, the time
evolution equation with respect to m is needed to construct
a system model within the state-space model (Sec. II A). The
time evolution equation can be written as

τ
∂b

∂t
= 0, (32)

where b = m + 1/2, which denotes the normalization of m,
i.e., 0 < b < 1.

C. Cost function

We consider the synthetic observation data to be the
snapshots of φ obtained from t = Tmin to t = Tmax with time
interval �T . Let T be the set of observation times and n be
the number of observations. Combining Eqs. (13) and (31), J

can be rewritten as

J = nM

2
log(2πσ 2) + 1

2σ 2

∑
ts∈T

M∑
i=1

[
φobs

i (ts) − φi(ts)
]2

.

(33)

The values of φi(0) and b(0) that minimize Eq. (33) also
minimize

J ′ =
∫ T

0
dt J ′, (34)

where

J ′ = 1

2

∑
ts∈T

δ(t − ts)
M∑
i=1

[
φobs

i (t) − φi(t)
]2

, (35)

because σ is independent of φi(0) and b(0). When the optimum
φ̂i(0) for φi(0) and b̂(0) for b(0) are obtained by minimizing
J ′, the optimum σ can be obtained as

σ̂ =
√√√√ 1

nM

∑
ts∈T

M∑
i=1

[
φobs

i (ts) − φ̂i(ts)
]2

, (36)

where φ̂i(t) denotes φi(t) simulated using φ̂i(0) and b̂(0).

D. Procedures

Prior to applying the proposed method to the PF model, the
constraint for the initial state 0 � φi(0) � 1 is changed to 0 <

φi(0) < 1 to satisfy the domain of the variable transformation
Eq. (20). The state variables θ (t) ∈ RM+1 and � ∈ RM+1 can
be defined as

θ = (φ1, . . . ,φM,b)�,
(37)

� = (φ1(0), . . . ,φM (0),b(0))�.
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The constraint for � becomes 0 < �i < 1 (i = 1, . . . ,M + 1). The system models of Eqs. (30) and (32) are rewritten in terms
of θ as

τ
∂θi

∂t
=

{
ε2 	i θi + θi(1 − θi)(θi + θM+1 − 1) (i = 1, . . . ,M),

0 (otherwise).
(38)

Substituting the right-hand side of this equation for F in Eq. (17), replacing J [Eq. (17)] with J ′ [Eq. (35)], and replacing J

[Eq. (18)] with J ′ [Eq. (34)], the adjoint method described by Eqs. (17)–(19) is rewritten as

−τ
∂λi

∂t
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε2 	i λi + {−3θ2
i + (4 − 2θM+1)θi + θM+1 − 1}λi + ∂J ′

∂θi

(i = 1, . . . ,M),
M∑

j=1

θj (1 − θj )λj (otherwise),
(39)

λ(0) = ∂J ′

∂�
, (40)

λ(tf ) = 0. (41)

We adopt the LBFGS technique [35] as the gradient method for optimizing �. Starting from an initial guess, the LBFGS
method updates � by satisfying 0 < �i < 1 for all i owing to the variable transformation mentioned in Sec. II B. To tune the
LBFGS method, we set the tolerance to 10−8 and determine the step length by Armijo’s rule [42]. Once the optimum �̂ has been
obtained, the optimum standard deviation σ̂ can be estimated by Eq. (36) and the optimum m̂ for m is given by �̂M+1 − 1/2 or
b̂(0) − 1/2.

One of the most remarkable features of the proposed method is its evaluation of the uncertainties. These uncertainties can
provide important information that is beneficial to updating the experimental design. In accordance with the procedure mentioned
in Sec. II C, we consider a linear equation H ′r = q, where H ′ = ∂2J ′/∂�2|�=�̂ is a Hessian matrix, r ∈ RM+1 is a vector to be
determined, and q ∈ RM+1 is a vector containing the elements qM+1 = 1 and qi �=M+1 = 0. The uncertainty δm̂ can be computed
from the solution r̂ as

δm̂ = σ̂
√

r̂M+1. (42)

The conjugate residual method, in which the tolerance is set to 10−8, is adopted to solve the linear equation. The second-order
adjoint method computes each of the Hessian-vector products H ′γ , where γ indicates an arbitrary vector, that appear in the
optimization process of the conjugate residual method. Substituting the right-hand side of Eq. (38) for F in Eq. (27), the tangent
linear model can be rewritten as

τ
∂ξi

∂t
=

{
ε2 	i ξi + θ̂i(1 − θ̂i)ξM+1 + {−3θ̂2

i + (4 − 2θ̂M+1)θ̂i + θ̂M+1 − 1
}
ξi (i = 1, . . . ,M),

0 (otherwise),
(43)

with the initial condition ξ (0) = γ , where θ̂ denotes the state vector corresponding to �̂. Substituting the right-hand side of
Eq. (38) for F in Eq. (28) and replacing J [Eq. (28)] with J ′ [Eq. (35)], the second-order adjoint model in Eq. (28) becomes

− τ
∂ζi

∂t
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ε2 	i ζi + {−3θ̂2
i + (4 − 2θ̂M+1)θ̂i + θ̂M+1 − 1}ζi

−(6θ̂i + 2θ̂M+1 − 4)λ̂iξi − (2θ̂i − 1)λ̂iξM+1 +
M∑

j=1

∂2J ′

∂θi∂θj

∣∣∣∣
θ=θ̂

ξj (i = 1, . . . ,M),

M∑
j=1

[θ̂j (1 − θ̂j )ζj − (2θ̂j − 1)λ̂j ξj ] (otherwise),

(44)

where λ̂ is the perturbation of θ̂ . Solving Eq. (44) with the
condition ζ (tf ) = 0, we obtain the objective Hessian-vector
product as ζ (0) = H ′γ .

IV. RESULTS AND DISCUSSION

The proposed method is verified through three twin experi-
ments: (I) estimation of the parameter m conditional on the true
initial state φtrue

i (0) (Sec. IV A), (II) simultaneous estimation
of the parameter m and the initial state φi(0) (Sec. IV B), and
(III) estimation of the initial state φi(0) conditional on the true
parameter mtrue (Sec. IV C). Twin experiment I investigates
how the estimation depends on observation data, twin experi-

ment II verifies whether the proposed method outputs correct
estimations, even for massive simulation models, and twin
experiment III validates the unknown phenomena that appear
in the results of experiment II.

A. Twin experiment I: Parameter estimation

Twin experiment I investigates the influences of three
parameters related to the observation data: (i) the length
of the observation time Tmax, (ii) the time interval of the
observations �T , and (iii) the standard deviation of the
observation noise σ . Table I summarizes the parameter values
used in the experiments. The first observation is assumed to
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TABLE I. Length of the observation time Tmax, time interval of
observations �T , and standard deviation of observation noise σ used
in twin experiment I, where τ is the unit of time in the simulation.
Test I-(i), -(ii), and -(iii) investigate how the estimation depends on
Tmax,�T , and σ , respectively.

Tmax �T σ

Test I-(i) 0.2τ–102.4τ 0.1τ 0.01
Test I-(ii) 102.5τ 0.1τ–51.2τ 0.01
Test I-(iii) 102.4τ 0.1τ 10−5–1.0

occur at Tmin = 0.1τ , and the true value of m is assumed to
be mtrue = 0.1. The initial guess used in the LBFGS method
is m = −0.1. In this experiment, the true phase field at t = 0,
i.e., φtrue

i (0) [see Fig. 1(a)] is given as the initial state. The
results reported here are the average values of m̂ and δm̂ over
20 trials with different random seeds.

Figure 2 shows the results of Test I-(i). Figure 2(a) indicates
that the parameter estimation is successful, because the true
parameter is included in the range m̂ − δm̂ < mtrue < m̂ + δm̂.
The estimation of the uncertainty δm̂ fails when Tmax is
at its minimum, i.e., Tmax = 0.2τ , because insufficient data
cause r̂M+1 to become negative. Figure 2(b) indicates that
δm̂ is proportional to T −1.5

max in this range. The reason that
the decrease is more rapid than the law of large numbers
would suggest is related to the nonlinearity of Kobayashi PF
model. A theoretical evaluation actually indicates that δm̂ is
proportional to T −2.5

max when Tmax � τ , and will converge with a
constant value as Tmax increases. This is because no additional
information is included in the observation data after φ(x,t)
becomes almost uniform across the entire computational
domain.

Figure 3 shows the results of Test I-(ii). Figure 3(a) indicates
that the proposed method successfully reproduces the true
parameter, and Fig. 3(b) shows that δm̂ is proportional to
�T 0.5 when �T < τ , which seems to follow the law of large
numbers.

Figure 4 shows the results of Test I-(iii). Figure 4(a)
indicates that the parameter estimation is again successful,
and Fig. 4(b) shows that δm̂ is proportional to σ . In summary,
the results of Test I demonstrate that the proposed method is
capable of estimating the true parameter and the associated
uncertainty.

−6

−3

0

3

6

10−1 100 101 102

Tmax = 0.2τ(a)

m̂
−

m
tr

ue
/
1
0
−

3

Tmax/τ

10−7

10−6

10−5

10−4

10−3

10−2

100 101 102

(b)

δm̂
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−1.5

FIG. 2. Results of twin experiment I-(i). The length of each error
bar for the optimum parameter m̂ in (a) corresponds to the estimated
uncertainty δm̂ in (b). The uncertainty cannot be determined when
Tmax = 0.2τ . The dashed black line in (b) indicates a power function
of order −1.5.
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FIG. 3. Results of twin experiment I-(ii). The length of each error
bar for optimum parameter m̂ in (a) corresponds to the estimated
uncertainty δm̂ in (b). The dashed black line in (b) indicates a power
function of order of 0.5.

B. Twin experiment II: Simultaneous estimation
of parameter and initial state

Twin experiment II investigates the influence of the obser-
vation noise in two cases: (i) when the noise has a small stan-
dard deviation (σ = 10−4) and (ii) when the noise has a large
standard deviation (σ = 0.3). The true parameter is assumed
to be mtrue = 0.1, and the true initial state φtrue

i (0) is assumed to
be the phase field shown in Fig. 1(a). The other observational
conditions are Tmin = 5.0τ, Tmax = 30.0τ,�T = 0.1τ , and
the initial guesses are φi(0) = 0.2 and m = −0.2.

Figure 5 shows the results of Test II. Figure 5(a) indicates
how each iteration of the LBFGS method updates the esti-
mation of m. It is clear that each estimation converges with
mtrue. Figures 5(b) and 5(c) indicate the estimated initial states
φ̂i(0) in Test II-(i) and (ii), respectively. These results appear
to be almost consistent with the true initial states, although a
“spotlike” pattern appears in Fig. 5(c). This spotlike pattern
would be conspicuous if the observation noise was large or
if the time of the first observation Tmin was far from t = 0.
Additionally, the spotlike pattern does not disappear under
lower tolerance levels.

C. Twin experiment III: Estimation of initial state

Twin experiment III confirms whether the estimation of m

affects the generation of the spotlike pattern found in twin
experiment II-(ii). Therefore, twin experiment III is set up to
estimate only the initial state φi(0) with a fixed parameter m =
0.1. The true initial state φtrue

i (0) is assumed to be the phase
field shown in Fig. 1(a). The other observational conditions
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δ m̂

σ

FIG. 4. Results of twin experiment I-(iii). The length of each error
bar for optimum parameter m̂ in (a) corresponds to the estimated
uncertainty δm̂ in (b). The dashed black line in (b) indicates a linear
function.
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FIG. 5. Results of twin experiment II. (a) How the LBFGS
method updates m when the observation data noise has a small (solid
red line) and large (dashed green line) standard deviation. (b) The
optimum initial state of the phase field φi(0) in the case of small
noise, and (c) that in the case of large noise.

are Tmin = 8.0τ, Tmax = 30.0τ,�T = 0.1τ , and σ = 0.3, and
the initial guess is φi(0) = 0.2.

Figures 6(a) and 6(b) show the estimated initial states after
the 31st and after the final iterations, respectively, and Fig. 6(c)
shows how the cost function J ′ varies with the iteration. A
spotlike pattern again appears in the estimated initial state
[Fig. 6(b)] as the number of iterations increases. Note that the
cost function J ′ is almost the same after the 31st step and after
the final step, although Figs. 6(a) and 6(b) are much different.

This is caused by a feature inherent in the two-dimensional
Kobayashi PF model. When a spot of radius R0 evolves with
time based on the PF model, whether it grows or decays
depends on the relation between m and R0.

Figure 7 shows the phase diagram obtained by the two-
dimensional Kobayashi PF model under the assumption of ax-
ial symmetry. The destiny of a given spot depends on whether
the radius is above or below the critical line, which means
the critical radius is approximately inversely proportional to
m [43]. The radius of each spot in Fig. 6(b) is actually smaller
than the critical radius, which is approximately 7.3ε in the case
of m = 0.1.

0.5

1.0

1.5

100 101 102 103 104 105 106

J
/1

06

Iteration steps

(c)
0.0

0.2

0.4

0.6

0.8

1.0
)b()a(

FIG. 6. Results of twin experiment III. Estimated initial states of
the phase field φi(0) (a) after the 31st step and (b) after the final step
in the iteration of the LBFGS method. (c) Improvement in the cost
function J ′.

FIG. 7. Phase diagram for an axisymmetric two-dimensional
Kobayashi PF model. The solid red line indicates the critical radius
as a function of the parameter m. The region above or below the
critical line corresponds to a spot growing or decaying with time,
respectively.

Time evolutions starting from three different initial states
are shown in Fig. 8. These results indicate that the phase
fields at the time of the first observation, i.e., t = 8.0τ , are
completely coincident.

V. CONCLUSIONS

This paper described a new adjoint-based DA methodology
applicable to massive autonomous models that not only
determines the optimum estimates but also evaluates their
uncertainties within a practical computation time and reason-
able resource requirements. The uncertainties can be obtained
as several diagonal elements of the inverse Hessian matrix,
which is the covariance matrix of the normal distribution
that approximates the posterior PDF in the neighborhood
of the optimum estimates. The proposed approach adopts a
second-order adjoint method, together with an appropriate
iterative method, to compute the limited diagonal elements of

(a) (b) (c)t = 0.0τ t = 0.0τ t = 0.0τ

t = 8.0τ

0.0

0.2

0.4

0.6

0.8

1.0

t = 8.0τ t = 8.0τ

FIG. 8. Time evolutions of the phase fields starting from different
initial states φi(0): (a) the estimated initial state obtained after the 31st
step [Fig. 6(a)], (b) that after the final step [Fig. 6(b)], and (c) the true
initial state [Fig. 1(a)].
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interest. Twin experiments using a two-dimensional Kobayashi
PF model demonstrated the validity of the proposed method.

The uncertainties associated with physical quantities of
interest depend on the quality and amount of data. Thus,
conducting twin experiments prior to practical experiments
allows us to determine how many observations are required
to obtain the physical quantities of interest to the desired
accuracy. Such feedback to practical experiments is already
possible in systems with only a few degrees of freedom, but the
proposed method makes this possible for massive simulation
models.

This paper assumed that the true model was known, and the
synthetic data in the twin experiments were generated based on
the true model. This assumption is, of course, not appropriate in
practical cases; a given “imperfect” simulation model usually
generates a bias in its forecast unexplained by observation data.
Such a bias due to the imperfectness of the model is called
“model error.” Evaluating the model error and investigating
how it affects both the estimates and their uncertainties are im-
portant issues in adjoint-based DA, and some previous studies
have proposed methodologies to evaluate model errors [44,45].
However, this issue is too complex to be discussed here, and re-

mains controversial. As mentioned in Sec. I, this paper focuses
on the methodology of quantifying uncertainties using the
adjoint method within practical computational costs, which is
important in many areas. The issue of the model error is beyond
the scope of this paper, and will be considered in future work.

The proposed method is not only applicable to PF models,
but to various models described by autonomous systems,
e.g., shallow water equations, Navier’s equations for elastic
materials, and the Boltzmann equations. The proposed method
is of great utility for evaluating the uncertainties of model
parameters through DA, which is important in various fields
of science, even when using massive models.
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