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The main objective of this work is to perform a detailed comparison of the lattice Boltzmann equation (LBE)
and the recently developed discrete unified gas-kinetic scheme (DUGKS) methods for direct numerical simulation
(DNS) of the decaying homogeneous isotropic turbulence and the Kida vortex flow in a periodic box. The flow
fields and key statistical quantities computed by both methods are compared with those from the pseudospectral
method at both low and moderate Reynolds numbers. The results show that the LBE is more accurate and efficient
than the DUGKS, but the latter has a superior numerical stability, particularly for high Reynolds number flows.
In addition, we conclude that the DUGKS can adequately resolve the flow when the minimum spatial resolution
parameter k.1 > 3, where k. is the maximum resolved wave number and 7 is the flow Kolmogorov length.
This resolution requirement can be contrasted with the requirements of k,,xn > 1 for the pseudospectral method
and k1 > 2 for the LBE. It should be emphasized that although more validations should be conducted before
the DUGKS can be called a viable tool for DNS of turbulent flows, the present work contributes to the overall
assessment of the DUGKS, and it provides a basis for further applications of DUGKS in studying the physics of

turbulent flows.
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I. INTRODUCTION

In the study of turbulent flows, the ultimate objective is to
obtain accurate coarse-grained quantitative theories or models.
However, more than a century’s experience has shown this to be
notoriously difficult [1]. Fortunately, the ever-increasing power
of computers makes it possible to calculate relevant properties
of turbulent flows by direct numerical simulation (DNS).
Significant insight into turbulence physics has been gained
from the DNS of some idealized flows that cannot be easily ob-
tained in the laboratory [2—4]. The conventional DNS is based
on the Navier-Stokes equations (NSEs), which are a set of
second-order nonlinear partial-differential equations (PDEs).
However, it is usually involute and computationally expensive
to deal with the nonlinear and nonlocal convection term
and pressure-gradient term in the NSEs [1]. Therefore, it is
desirable to find an alternative numerical method for DNS that
not only can accurately capture all the scales of turbulence, but
is simpler and more efficient. Recently, Boltzmann-equation-
based kinetic schemes have received particular attention as
alternative solutions to the NSEs due to some distinctive
features. Different from the NSEs, the Boltzmann equation
is a first-order linear PDE, and the nonlinearity resides locally
in its collision term; both make such schemes easy to realize
and parallelize to have a high computational efficiency. It has
been argued that the kinetic equation with local nonlinearity is
more feasible to handle the discontinuities or unresolved flow
regions [5]. Furthermore, the Boltzmann equation provides
a theoretical foundation for the hydrodynamic description
from the underlying microscopic physics, and it describes
the phenomenon of fluid flows in the statistical mechanics
framework. This physical mechanism is inherently consistent
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with the physical process of turbulent flows, which are
characterized by their statistical behavior [6]. Therefore, the
kinetic schemes based on the Boltzmann equation have a great
potential for DNS of turbulent flows [7].

In recent years, some kinetic schemes have been utilized
to simulate turbulent flows, such as the lattice Boltzmann
equation (LBE) methods [8-22] and the gas-kinetic schemes
[23-27]. In particular, the LBE methods have been success-
fully applied to complex and multiscale flows due to their sim-
plicity in formulation and versatility [28—31]. The potential of
the LBE methods for DNS of turbulent flows was demonstrated
shortly after their emergence by comparing with pseudospec-
tral (PS) simulations of decaying homogeneous isotropic
turbulence (DHIT) [8,9] and turbulence shear flows [10,11].
An appealing feature of the LBE methods in turbulence
simulations, as a scheme of second-order spatial accuracy,
is that it has very low numerical dissipation compared to
the second-order conventional computational fluids dynamics
(CFD) methods [32]. It has been demonstrated that the larger
numerical dissipation in second-order accurate conventional
CFD translates into greater resolution requirements [3].

Recently, starting from the Boltzmann equation, a discrete
unified gas-kinetic scheme (DUGKS) was proposed for flows
in all Knudsen regimes [33,34]. Although they share acommon
kinetic origin, there are some distinctive differences between
the DUGKS and LBE methods. In the standard LBE, the
phase space and time step are coupled due to the particle
motion from one node to another within a time step [31],
but the DUGKS has no such restriction, and the time step
is determined independently by the Courant-Friedrichs-Lewy
(CFL) condition [33]. In addition, the streaming process in the
LBE makes it difficult to extend to nonuniform mesh, while the
DUGKS can use arbitrary meshes [35]. Although some efforts
have been made to release the close coupling between the mesh
and discrete velocities [36—42], the decoupling also destroys

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.94.043304

PENG WANG, LIAN-PING WANG, AND ZHAOLI GUO

the nice features of the standard LBE. For example, many of
the existing finite volume (FV) LBE methods suffer from large
numerical dissipation and poor numerical stability [40,41].
More importantly, there are modeling differences in the LBE
and DUGKS in the treatment of particle evolution. In the
LBE, the particle streaming and collision processes are split.
However, these two processes are fully coupled in DUGKS.
It has been demonstrated that such a strategy ensures a low
numerical dissipation feature [43,44]. It should be noted that
although in some cases a finite-volume scheme can be identical
to a finite-difference scheme, the DUGKS does not reduce
to the standard LBE method generally, because the shift
(streaming) operation in the LBE cannot be realized for some
discrete populations in the FV framework (e.g., the diagonal
populations in the D2Q9 model). Furthermore, in DUGKS the
flux is evaluated by solving the evolution equation rather than
interpolation. Therefore, the DUGKS would not be identical to
the LBE. Consequently, these dynamic differences between the
LBE and DUGKS methods determine the quality of solution in
flow simulations. A comparative study of the LBE and DUGKS
methods for laminar flows in the nearly incompressible limit
was performed recently [45]. It demonstrated that the DUGKS
has the same accuracy as the LBE, but it exhibits a superior
numerical stability. The superiority of the DUGKS compared
to the LBE methods for laminar flows motivates us to perform
an additional comparative study of DUGKS and LBE methods
for turbulent flows.

Our long-term goal concentrates on providing some insights
into the physics of complex turbulent flows by using DUGKS
as a DNS tool. At a first step, the validation of the DUGKS
for simulating simple turbulent flows must be undertaken. The
DHIT is one such basic flow in turbulence study, and also
a canonical case to validate a numerical scheme for DNS
of turbulent flows. The objective of this work is to make a
detailed comparison of the LBE and DUGKS methods by
simulating the decaying turbulent flows in a periodic box. To
date, the PS method is well-established as the most accurate
numerical tool for DNS of the DHIT. Therefore, the DUGKS
numerical results will be validated against those from the
PS method. In addition, we use the LBE with the multiple
relaxation time (MRT-LBE) collision model in this work due to
its superiority over the single relaxation collision model [45].
The comparative study covers the following aspects of the
simulated flows: (i) the instantaneous velocity and vorticity
fields; (ii) the evolutions of kinetic energy, dissipation rate, and
enstrophy; (iii) the energy and the dissipation rate spectra; (iv)
the evolutions of the Kolmogorov length scale and the Taylor
microscale length; and (v) the evolutions of the averaged
velocity-derivative skewness and flatness. Furthermore, DNS
of the Kida flow is also performed by the LBE and DUGKS
methods, and some comparisons are performed in terms of the
vorticity, evolutions of the total kinetic energy, dissipation rate,
enstrophy and Kolmogorov length scale, the longitudinal and
transverse correlations, and the pressure-velocity correlations.
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The remainder of this paper is organized as follows: in
Sec. II, we provide a brief introduction of the DUGKS and
MRT-LBE methods; Sec. III introduces the DHIT and Kida
vortex flow, and the quantities to be computed; Sec. IV
presents the numerical results followed by a summary of
conclusions.

II. NUMERICAL METHODS

In this section, the essentials of DUGKS and the LBE with
multiple-relaxation time collision model (MRT-LBE) will be
introduced briefly first. A more detailed description can be
found in Refs. [13,33].

A. The DUGKS method

The DUGKS is based on the BGK collision model [46],
which begins with the model Boltzmann equation,

9 eq _
Wievp=a=1""1 (1)
at T

where f = f(x,&,1) is the particle distribution function with
particle velocity & at position x and time 7, and f°! is the

Maxwellian equilibrium distribution function,
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where R is the gas constant, D is the spatial dimension, p is
the density, u is the fluid velocity, and T is the temperature.
It should be noted that the dimensions of f and f°¢! are
both kg /[mP”(m/s)P]. For incompressible flow (i.e., when the
Mach number Ma is small), the Maxwellian distribution can
be approximated by its Taylor expansion around zero particle
velocity. As a result, the expanded equilibrium distribution
function becomes

2
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To obtain the correct NSEs in the limit of low Mach number,
the discrete velocity set should be chosen so that the following
quadratures of the expanded equilibrium distribution function
hold exactly:

f&"f@qu =D wEffUE). 0<k<3 4

where w; and &; are the weights and points of the numer-
ical quadrature rule. Based on the formulation of Eq. (3),
it is natural to choose a Gaussian quadrature with w; =
W;(2w RT)P/ 2exp(%), in which W; is the weight coefficient
corresponding to the particle velocity &;.

In the present study, we use the 19 velocities in three
dimensions, i.e., the D3Q19 model, for both the DUGKS and
LBE, where
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where ¢ = +/3RT, and the corresponding weight coefficients
are Wo=1/3, Wi.. 6:1/18,andW7 ,,,,, 1321/36.

Once the quadrature rule is chosen, we can define a discrete
distribution function, f;(x,t) = w; f(x,&;,t), which satisfies
the following equation:

daf; A f
i‘f‘gi'vxfi:gzifu, (6)
dt T
where fieq = w; f°9(&;) is the discrete expanded equilibrium
distribution function that can be written as

ed _ w. &i-u (&i'u)z _ |u|2 ):|
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where the density has been expressed as p = §p + pp, in
which 8p is the density fluctuation, and pq is the constant
mean density of the fluid, which is usually set to be 1. It
should be emphasized that with the discrete velocity set,
the dimensions of f; and fl.ecl are both kg/mP. Then, the
fluid density and velocity can be obtained from the discrete
distribution function,

P = po+dp, 8p=Zfi, pou=ZEifi- ®)

The DUGKS is a finite-volume scheme in which the
computational domain is divided into a set of control volumes.
Then integrating Eq. (6) over a control volume V; centered at
x; from #, to ,,41 (the time step At = t,,41 — 1, is assumed to
be a constant in the present work), and using the midpoint rule
for the integration of the flux term at the cell boundary and
trapezoidal rule for the collision term inside each cell [33], we
can get the evolution equation of DUGKS,

At FAn-H/Z

Fn+1 At
L — L) = — R 9
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where
F2 = / & - 1) fi(x tug1/2)dS (10)
av;
is the flux across the cell interface, and
o At a1 At
ﬁZﬁ‘—?Qi, fi =fi+79i- (11)

Based on the compatibility condition and the relationship
between f; and f;, the density p and velocity u can be
computed by

p=po+dp, So=1) fi. pu=) &f.  (12)

L

The key ingredient in updating £; is to evaluate the interface
flux Fi"H/ ?, which is solely determined by the distribution
function f;(x,t,41,2) there. In DUGKS, after integrating
Eq. (6) along a particle path within a half time step (h = At/2),
the evaluation of the distribution function f;(x,#,11,2) at the
cell interface can be traced back to the interior of neighboring

cells,

fixp,ty +h) = fF(xp.1,) — hE; - 0, (13)
where
- h - h
fi:fi_Ein f,'+=fi+59iv (14)
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F: (xp,1,) and the gradient o, = V f; " (x},2,) can be ap-
proximated by linear interpolation. For example, in the one-
dimensional case, the reconstructions become

F Gt = Fi (gt + 0y 00012 — x), (15)

where
ﬁ+(xj+l:tn) - f;+(xj9tn)
Xj+1 = Xj '

Note that the particle collision effect from 7, to #,.;
is included in the above reconstruction of the interface
distribution function. This is the key for the success of the
DUGKS. Due to the coupled treatment of the particle collision
and transport process in the reconstruction of the distribution
function at cell interfaces, DUGKS is a self-adaptive scheme
for different flow regimes. It has been shown in Ref. [33]
that the reconstructed distribution function reduces to the
Chapman-Enskog approximation at the Navier-Stokes level in
the continuum limit, and to the free-transport approximation
in the free-molecular limit.

Based on the compatibility condition and the relationship
between f; and f;, the density p and velocity u at the cell
interface can be obtained,

p = po+dp, 3,0=Zfi, /Oou=2'§ifi

Ojt12 = (16)

a7)

from which the equilibrium distribution function
fieq(xb,t” + h) at the cell interface can be obtained.
Therefore, based on Eq. (14) and the obtained equilibrium
state, the real distribution function at the cell interface can be
determined from f; as

2t

fi(xp,t, +h
2'L'+hf(xb Tt )

fi(xp,ty +h) =

'eq 7tn h ’
S nli Feln TR

from which the interface flux term can be evaluated. 3

In computation, we only need to follow the evolution of f; in
Eq. (9). The required variables for its evolution are determined
by [33]

+

(18)

[ Sy S (19)
! 2t + At 2t 4+ AT

- 4 _

= gfﬁ - 37 (20)

B. The MRT-LBE method

In this work, we use the LBE with multiple-relaxation time
collision model (MRT-LBE) and the D3Q19 discrete velocity
sets. The evolution equation of the MRT-LBE is

f(x + & At,t, + A1) = f(x,1,) — M7 !S[m(x,r) — m*(x,1)],
21

where M is an orthogonal transformation matrix converting
the distribution function f from discrete velocity space to
the moment space m, in which the collision relaxation is
performed.

The basic idea of MRT-LBE is that the streaming substep
is handled in the microscopic lattice-velocity space, but the
collision substep is performed in the moment space. The
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transformation between the microscopic velocity space and
the moment space is carried out by matrix operations as
m=M-f, f=M"!.m. The diagonal relaxation matrix S
specifies the relaxation rates for the nonconserved moments.

J

p=po+d0, po=1; Sp=D fi, pou=C(iyi) =) &ifi-
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The macroscopic hydrodynamic variables, including the
density o and momentum, are obtained from the moments
of the mesoscopic distribution function f. In the nearly
incompressible formulation [47],

(22)

For the D3Q19 velocity model, the corresponding 19 orthogonal moments

. . . T
m = (‘spagas’]x7‘Ixa./y’51y’,]zaq1a3pxx737Txx7pwwa7fww7pxy’pyz’szvmxvmyvmz)
are defined through the element of the transformation matrix (each subscript runs from 0 to 18) as
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with the following relaxation parameters:

S = diag(0,s1,52,0,54,0,54,0,54,59,510,59,

510,513,513,513,51655165516)-

The kinematic viscosity v and bulk viscosity ¢ are related to
the relaxation rates s9 and sy, respectively, where

1/1 1
v=—| — — = |cAx, (23)
3 S9 2
5-9¢2 /1 1
= 2 — — = JcAx, 24
e =200 - g )enn 4)

where ¢2 = RT is the speed of sound.

It is noted that some of the relaxation parameters do not
affect the simulated flow, but they may affect the numerical sta-
bility of the code. Specifically, s; determines the bulk viscosity,
which could absorb low-amplitude acoustic oscillations.

III. DECAYING TURBULENT FLOWS

A. Decaying homogeneous isotropic turbulence

The DHIT in a three-dimensional box with periodic
boundary conditions in all three directions is a standard
test case to validate the numerical scheme for DNS. At
the initial time, a random flow field is introduced with the

TABLE 1. Parameters used in the LBE, DUGKS, and PS
simulations.

Method L N K, u v

PS128 27 128 0.9241 0.7849 1.4933 x 1072
LBE128 128 128 1.5383 x 107 0.0320 1.2395 x 1072
DUGKSI128 128 128 1.5383 x 107> 0.0320 1.2395 x 1072
PS256 27 256 0.9241 0.7849 1.4933 x 1072
LBE256 256 256 1.5383 x 107> 0.0320 2.4790 x 1072
DUGKS256 256 256 1.5383 x 107> 0.0320 2.4790 x 1072
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FIG. 1. Contours of normalized velocity magnitude ||z||/u; (left
column) and normalized vorticity magnitude ||@|| L /u; (right column)
onthe xy planeatz = L/2 attimet = 0, 1.21, 6.08, and 12.16 (from
top to bottom) with N3 = 1283. The solid red, green, and blue lines
denote results of the PS, LBE, and DUGKS, respectively.

kinetic energy contained only in the large eddies (i.e., at
low wave numbers). This initial flow is unstable, and large

PHYSICAL REVIEW E 94, 043304 (2016)
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FIG. 2. Contours of normalized velocity magnitude ||u||/u (left
column) and normalized vorticity magnitude ||@|| L /u; (right column)
onthe xy planeatz = L/2 attimet = 0, 1.21, 6.08, and 12.16 (from
top to bottom) with N3 = 2563. The solid red, green, and blue lines
denote results of the PS, LBE, and DUGKS, respectively.

eddies will break up, transferring their energy successively to
smaller and smaller eddies with high wave numbers until the
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FIG. 3. The energy spectra E(k,t) with different mesh resolutions of (a) N3 = 128 and (b) N3256° at Re; = 26.06.

eddy scale is sufficiently small, in which the eddy motions
are stable and the viscosity is effective in dissipating the
kinetic energy. After some time, a realistic DHIT will develop
with some larger eddies supplying kinetic energy for smaller
eddies, and the viscous action controls the size of the small
eddies.

In the present work, the incompressible initial velocity
field uy (V - up = 0) is specified by a Gaussian field with
a prescribed kinetic energy spectrum [17]:

Eo(k) := E(k,t = 0) = Ak*e™ """ k € [knpin:Kkmax]: (25)

where k is the wave number, and the magnitude A and the range
of the initial energy spectrum [kpin,kmax] determine the total
initial kinetic energy K in the simulation. The kinetic energy

10 T T I
L T =
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. \
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=0 t'=0 (PS) \ B
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K, enstrophy, and dissipation rate € are given, respectively, by

K(t):fE(k,t)dk, Q(t):/sz(k,t)dk,

e(t) = 2vQ(1), (26)
where v is the kinematic viscosity, and
E(k,t) = Ya(k,)a*(k,t), (27)

where @ and @* are the velocity and its complex conjugate in
the spectral space. The DHIT is typically characterized by the
Taylor microscale Reynolds number,

u'\
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FIG. 4. The dissipation rate spectra D(k,t) with different mesh resolutions of (a) N> = 128% and (b) N3 = 2567 at Re, = 26.06.
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FIG. 5. The energy spectra difference A E(k,t') with different mesh resolutions of (a) N3 = 128? and (b) N* = 256> at Re;, = 26.06.

where ' is the root-mean-squared (rms) value of the turbulent

fluctuating velocity u in a given spatial direction and is defined

by

' ! ( )
u =—/{u-u),
V3
where (-) designates the volume average, and X is the transverse
Taylor microscale length,

[15v ,
A=,/ —u.
€

(29)

(30)
The other statistical quantities of interest are as follows:
n=+/v3/e, (31a)
D(k,t) = 2vk*E(k,1), (31b)
100 T I
10° —

-~
=10"
Q
<
*157 1
10 " —e—LBE t'=6.08
——LBE t'=12.16
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.| %—DUGKS t'=12.16
20 | el
10 1
10 10
k
(a)

{@:u)*) + (3y)°) + ((B.w)*)
3[((@xu)?)32 + ((3yv)?)%2 + (. w)*)3/2]
((@)*) +{(@Byv)") + (@.w))
3@xu)?)? + ((@yv)2)? + (9 w)*)?]

S(t) = (3lc)

F(t) = (31d)

where 7 is the Kolmogorov length and D(k,t) is the energy
dissipation rate spectrum; S(¢#) and F(¢) are the velocity-
derivative skewness and flatness averaged over three direc-
tions, respectively.

B. Kida vortex flow

The Kida vortex flow is another decaying turbulent flow that
has been well studied using various LBE methods [20-22,48].
The flow evolves from a simple deterministic and symmetric
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10 ’ | | | I I ; P Ll
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FIG. 6. The dissipation rate spectra difference A D(k,t) with different mesh resolutions of (a) N3 = 1283 and (b) N* = 256> atRe; = 26.06.
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FIG. 7. Evolutions of the normalized total kinetic energy K (¢)/ K and the normalized dissipation rate €(¢) /€, with different mesh resolutions

of (a) N* = 128 and (b) N* = 256° at Re; = 26.06.

initial condition to a state that resembles a fully developed
turbulent flow. The initial conditions for the flow field are
given by

u(x,y,z) = Upsinx(cos3ycosz — cosycos3z), (32a)
v(x,y,z) = Upsiny(cos3zcosx — coszcos3x),  (32b)
w(x,y,z) = Upsinz(cos3xcosy — cosxcos3y), (32c)

where x,y,z € [0,27], Uy is the initial velocity, and
the periodic boundary conditions are imposed in all
directions.

In addition to one-point statistics, we will also compare
some two-point statistics for the Kida vortex flow, including
the longitudinal correlation function [20,21]

(u(x,y,2)u(x +r.y,2))

= , 33
o) (u(x,y,2Du(x,y,z)) 49
transverse correlation functions
(wx,y,2)v(x +r,y,2))
= 4
P2 = ey oy ) G4
pia(r) = (w(x,y,2)w(x + r,y,z))’ (34b)

(wx,y,2)w(x,y,z))

and the pressure-velocity correlation functions [49]

PU(r) = <|p(x7yvz)u(xsysz) - p(-x +rsy1Z)’/¢(X +”»}%Z)|>,

(35a)
PV(r) = (lp(x,y,2)v(x,y,2) — p(x +r,y,2)v(x +r,y,2)|),

(35b)
PW(r) = (lpx,y.20)wx,y,z) = p(x + r,y, 2 w(x +r,y,2)[).

(35¢)

IV. NUMERICAL RESULTS

A. Decaying homogeneous isotropic turbulence
1. Initial conditions

We perform the simulations of DHIT in a periodic box with
the domain size L3 using the LBE, DUGKS, and PS methods.
The focus is on the comparison of LBE and DUGKS results
with those from the PS method, which is used as a benchmark
due to its superior spatial accuracy. The PS method is the same
as in Ref. [17]. The units of LBE and DUGKS are converted
back to the spectral units to allow for a direct comparison.
The conversion requires a velocity scale V; that is the ratio of
the fluid velocity magnitude in LBE or DUGKS units to the
velocity magnitude in spectral units.

In the PS simulation, the domain size is set to be L3 =
(27)?; for the initial energy spectrum Eg(k) given by Eq. (25),
we set A = 1.7414 x 1072, kpin = 3, and kpax = 8 such that
the initial kinetic energy is Ko = 0.9241 and the rms velocity
is uy = 0.7849.

In the LBE and DUGKS simulations, we set the domain
size L = N3, where N is the number of the cells or lattices
in each spatial direction. In addition, we must ensure that the
local Mach number (Ma) is small enough so that the flow is
nearly incompressible, which can be met by choosing a suitable
V. In the simulations, we chose a velocity scale V; = 0.0408
that leads to the initial kinetic energy Ko = 1.5383 x 1073,
the corresponding initial rms velocity u; = 0.0320, and the

TABLE II. The maximum errors of K(¢)/K, and €(t)/¢€, relative
to PS results.

Case LBE128 LBE256 DUGKS128 DUGKS256
R, (K) 0.42% 0.34% 0.84% 0.49%
R,.(¢) 0.83% 0.31% 3.90% 0.49%
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FIG. 8. Evolutions of the enstrophy 2 with different mesh resolutions of (a) N3 = 128% and (b) N* = 256° at Re;, = 26.06.

maximum velocity magnitude ||#g|/max = 0.1660 so that the
maximum Mach number Ma = |[#g]||max/cs = 0.2875, here
¢s = ~/RT,RT = 1/3. The initial velocity field and param-
eters used in the LBE and DUGKS simulations are identical
except the time step size At. In the LBE method, the time step
size At = Ax = 1 in LBE units, while in DUGKS it is solely
determined by the CFL condition, i.e., Af = ¥ AXpin/ \/Ec,
where y is the CFL number, Axy;, is the minimum grid
spacing, and +/2¢ is the maximum discrete particle speed
in D3Q19. In the DUGKS simulations, we set y = 0.7071
such that the time step Af = 0.5 for convenient comparison.
Moreover, for the MRT-LBE, the specific parameters are
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set to be w, = wyx =0, wyj = —475/63, 52 =510 =14,
so = 513 = At/(Bv + 0.5A1), s; = 1.19, 54 = 1.2, and 516 =
1.98 [13].

Table I summarizes the parameters used in the simulations
with these three methods. Two mesh resolutions are considered
in the simulations. To fix the initial Taylor microscale Reynolds
number Re; = 26.06, in the PS simulation we set the kinematic
viscosity v = 1.4933 x 1072 for both resolutions, while in
the LBE and DUGKS simulations we set the viscosity v =
1.2395 x 1072 and 2.4790 x 10~ for the mesh resolutions of
1283 and 2563, respectively. It should be noted that the flow
is overresolved in the PS simulations as the minimum spatial
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FIG. 9. Evolutions of the Kolmogorov length  with different mesh resolutions of (a) N* = 128 and (b) N* = 2563 at Re; = 26.06.
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FIG. 10. Evolutions of the Taylor microscale length A with different mesh resolutions of (a) N* = 128 and (b) N* = 256> at Re; = 26.06.

resolution parameter k.« is larger than 2.07 at 1283 and 4.15
at 2563, respectively, where kp,x is the maximum resolved
wave number [50]. This implies that the results from the PS
simulations at the two grid resolutions would be identical. The
nondimensional time step size, normalized by the turbulence
eddy turnover time ty = Ko /¢€g, is At’ = Atey/ K.

With the initial velocity field u, the initial pressure pg is
obtained by solving the Poisson equation in the spectral space
for the PS method. As for the LBE and DUGKS methods,
besides the pressure py, herein related to the density fluctuation
by an equation of state, a consistent initial distribution function
including the nonequilibrium part should be specified, which
is achieved by using the iterative procedure described in [51].

2. Instantaneous velocity and vorticity fields

We compare the instantaneous velocity and vorticity mag-
nitude obtained by LBE and DUGKS methods with those from
PS simulation on the xy plane at z = L /2. The vorticity fields
for all three methods are first computed in the spectral space,
® =ik x @1, and then ® is transferred back to the physical
space using inverse fast Fourier translation (FFT).

Figure 1 shows the contours of normalized velocity mag-
nitude ||| /u; and vorticity magnitude ||w||L/uy at different
nondimensional times ¢’ = 0, 1.21, 6.08, and 12.16 on a mesh
of N¥ =1283. As shown in Figs. 1(a) and 1(b), these three
methods have the identical initial fields with many large eddies;
then small scale eddies are produced by vortex stretching as
shown in Figs. 1(c) and 1(d); in the end, as shown in Figs. 1(g)
and 1(h), the small scale eddies are dissipated by viscous

TABLE III. The maximum errors of X and 7 relative to PS results.

Case LBEI128 LBE256 DUGKS128 DUGKS256
R, (X) 0.21% 0.08% 1.00% 0.12%
R,,(n) 0.44% 0.12% 1.84% 0.27%

actions. As shown in these figures, although the fields predicted
by the LBE and DUGKS methods are similar to each other, and
very close to those from the PS simulation in terms of vortex
shapes and locations, the discrepancy between both kinetic
methods and the PS method is still visible and increases over
time.

We also conduct the simulations on a finer mesh of 2563 at
Re; = 26.06. As shown in Fig. 2, again the velocity magnitude
(left column) and vorticity magnitude (right column) obtained
from the LBE and DUGKS methods are in good agreement
with those from the PS method. It can be seen that both kinetic
methods with their fine resolution give much better predictions
than those with a coarse resolution.

3. Statistical quantities

In this subsection, we compare some key statistical
quantities, including both the low- and high-order statistical
quantities, obtained by the LBE and DUGKS methods with
those from the PS method. The simulations of these three
methods are performed on both N3 = 1283 and 256° mesh
resolutions.

We first compare the energy spectra [ E(k)] and dissipation
spectra[D(k)] att’ = 0,6.08, and 12.16. As shown in Figs. 3(a)
and 4(a), the results computed by the LBE and DUGKS
agree well with those from the PS counterparts. It should
be noted that although there are a few deviations in the
high-wave-number region for the results of DUGKS on the
mesh of 1283, the values of both spectra have decreased to
the 107! magnitude of the maximum initial value, which will
not cause significant deviations in the integral quantities, such
as the normalized kinetic energy K /K, and dissipation rate
€/¢€o shown in Fig. 7(a). This discrepancy may be caused by
the numerical dissipation, which is proportional to the mesh
size. Therefore, we can refine the mesh resolution to reduce
the numerical dissipation. As expected, as shown in Figs. 3(b)
and 4(b), with a mesh resolution of 256, the results of DUGKS
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FIG. 11. Evolutions of velocity-derivative skewness S with different mesh resolutions of (a) N> = 1283 and (b) N = 256> at Re; = 26.06.

show no visible difference with those from the LBE and PS
simulations. We also compute the difference of the spectra
between both kinetic methods and the PS method, which is
defined by

AS(k,t") = |S(k,t") — S, (k, 1), (36)
where S denotes the results of energy spectra or dissipation rate
spectra, and S, represents the results from the PS simulations.
Figures 5 and 6, respectively, show the differences of energy
spectra AE(k,t") and dissipation rate spectra AD(k,t’) on
both meshes. We observe that with a mesh of 1283, the
results obtained by LBE are slightly better than those from the
DUGKS when compared with the PS results, but there is no
visible difference when both methods use a fine mesh of 256°.
These results indicate that the dissipation of the DUGKS is

—PS
LBE

3.8

3.6

k3.4

3.2

2.8 | |
0 5 10 15
te(0)/K(0)

(a)

slightly larger than that of the LBE method, although both the
LBE and DUGKS methods have low numerical dissipation.

Secondly, we compare the evolutions of normalized kinetic
energy K(t)/Ko and dissipation rate €(z)/€p. As shown in
Fig. 7, both K(t)/K and €(t)/€o calculated by the LBE and
DUGKS methods are in excellent agreement with those from
PS simulation on both meshes. Quantitatively, we compare
the maximum errors of K (¢) and €(¢) relative to the PS results,
which is defined by

§—=35p

, (37)

max

Ry(s) = H

Sp

where s = K () or €(¢), and s, is the corresponding quantity
from the PS method. Here we assume that the flow is regarded
as adequately resolved when the relative error of the dissipation

3.8
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~34
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2.8 ‘ ‘
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te(0)/K(0)

(b)

FIG. 12. Evolutions of velocity-derivative flatness F with different mesh resolutions of (a) N3 = 128% and (b) N = 256° at Re; = 26.06.
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FIG. 13. Evolutions of smoothed velocity-derivative skewness S with different mesh resolutions of (a) N* = 1283 and (b) N = 256> at

Re; = 26.06.

rate R(€) is less than 4%. As shown in Table II, the maximum
relative errors are less than 1% except that of €(¢) from the
DUGKS with N3 = 1283, which reaches 3.9% around the
peak value, and it decreases to 0.49% in the 2563 simulation.
Although these discrepancy can be seen more clearly from the
evolution of the enstrophy shown in Fig. 8(a), the maximum
relative difference is less than 4%, which means that the given
flow is adequately resolved by the DUGKS with the minimum
spatial resolution parameter kp,x = 3.12. Moreover, these
difference can be reduced by using the finer mesh with the
minimum kp,x) = 6.24 as shown in Fig. 8(b), which indicates

3.8
3.6
3.4

3.2

2.8 | |
0 5 10 15

te(0)/K(0)
(a)

that the DUGKS is more dissipative than the LBE method. We
also observe that the normalized energy dissipation rate attains
a peak value at ¢’ = 0.23 due to the energy cascade, before
decreasing with increasing time due to the viscous dissipation.
Thirdly, we compare the evolutions of the Kolmogorov
length A and the Taylor microscale length 5. The Kolmogorov
length is the smallest scale in turbulence flow, at which the
viscous effect dominates and the turbulence kinetic energy is
converted irreversibly into heat. The Taylor microscale is the
intermediate scale between the largest and the smallest scales
at which fluid viscosity significantly affects the dynamics
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FIG. 14. Evolutions of smoothed velocity-derivative flatness F with different mesh resolutions of (a) N3 = 128% and (b) N3 = 256° at

Re; = 26.06.
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TABLE IV. The maximum errors of S and F relative to PS results.

Case LBE128 LBE256 DUGKS128 DUGKS256
R, (S) 3.35% 4.52% 11.97% 4.98%
R, (F) 1.30% 0.35% 3.97% 1.11%

of turbulent eddies in the flow. Figures 9 and 10 show the
evolutions of the Kolmogorov length scale and the Taylor
microscale length. It is found that results of both scales from
the DUGKS and the LBE methods agree well with those from
the PS method. We also note that there are slight differences
around the minimum of A obtained by the DUGKS with
the mesh resolution of 1283, but as shown in Table III, the
maximum relative errors of A and n are all less than 2%, and
they reduce to 0.27% as the resolution increases to 256°.

The time evolutions of the averaged velocity-derivative
skewness and flatness predicted by these three methods are
shown in Figs. 11 and 12, respectively. It can be seen
that the results of the LBE with a mesh of 128 are in
good agreement with the PS solutions, while those of the
DUGKS show some high-frequency oscillations, although the
tendency agrees reasonably well with the results from the PS
simulation. The oscillations can be attributed to the acoustic
waves in the system. The remarkable discrepancy between
the LBE and DUGKS results may be due to the following
reasons: First, in the MRT-LBE model, the bulk viscosity
can be adjusted by tuning the relaxation time s; to absorb
the acoustic waves, whereas the BGK-based DUGKS does
not have such a dissipation mechanism due to the single
relaxation time in the BGK equation. Actually, the results of the
MRT-LBE with small bulk viscosity also have high-frequency
oscillations shown in Ref. [17], where the bulk viscosity
¢ = 0.0273 compared to ¢ = 0.1134 in the present simulation.
Second, since the velocity-derivative skewness and flatness
are the third- and four-order moments of Vu, respectively,
it is a significant challenge for a second-order method to
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compute such high-order quantities that are governed by small
scales. As demonstrated, both the LBE and DUGKS methods
have small numerical dissipation so that both methods can
accurately compute the low-order statistic quantities that are
governed by large scales. However, the numerical dissipation
of DUGKS is slightly larger than the LBE method, and yet
the absent acoustic-wave dissipation mechanism enlarges the
discrepancy as the velocity field decays and consequently
results in errors in high-order quantities. The high-order errors,
however, seem to have little impact on the kinetic energy and
dissipation rate.

As previously noted, increasing the mesh resolution can
reduce the numerical dissipation, thus better results should
be obtained in 256° simulations. As expected, as shown in
Figs. 11(b) and 12(b), the results of DUGKS with N3 = 256
are better than those with the coarse mesh, and the magnitudes
of the oscillations are also reduced.

For convenient comparison, the results of the DUGKS can
be filtered out by simply smoothing through averaging (using
the smooth function in MATLAB), as suggested in Ref. [17]. The
smoothed skewness and flatness results are shown in Figs. 13
and 14, respectively. It is found that both LBE and DUGKS
results indeed agree well with the PS results. Quantitatively, as
given in Table IV, the maximum relative error of S predicted
by the DUGKS with a mesh of 1283 is 11.97%, while for the
LBE this value is 3.35%. As the resolution increases to 256°,
the maximum relative error of S computed by the DUGKS
reduces to 4.98%.

4. Effects of the Reynolds number

In the above subsections, we have made some detailed
comparisons between the LBE and DUGKS methods with
the initial Re, = 26.06, at which the initial flow fields can
be well-resolved by both methods. To further compare the
performance of the LBE and DUGKS methods at higher
Re;, we conduct the DNS of the DHIT at Re, = 52.12
and 104.24 with a fixed mesh of 1283. Accordingly, in the
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FIG. 15. The energy spectra E(k,t) at (a) Re;, = 52.12 and (b) Re;, = 104.24.
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FIG. 16. The dissipation rate spectra D(k,t) at (a) Re, = 52.12 and (b) Re; = 104.24.

PS simulation, the minimum spatial resolution parameters
kmaxn are 1.33 for Re; = 52.12 and 0.83 for Re, = 104.24,
suggesting that the PS method can adequately resolve the
flow field at Re; = 52.12 [50]. In addition, values of the
minimum k7 for LBE and DUGKS with a mesh of 1283 are
2 for Re; = 52.12 and 1.26 for Re; = 104.24, respectively,
indicating that the flow at Re;, = 52.12 can be adequately
resolved by the LBE method [17]. However, it is not clear
whether this resolution is sufficient for the DUGKS method at
these Re; . Herein, we compare some key statistical quantities
obtained by both kinetic approaches at these Re; with those
from the PS simulations.

Figures 15 and 16 show the energy spectra E(k,t) and the
dissipation rate spectra D(k,t) at different times. It is observed
that E(k,t) and D(k,t) obtained by the LBE method are still
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in good agreement with those from the PS method, while the
results from the DUGKS clearly deviate from the PS results in
the high-wave-number region, and the discrepancies increase
with Re; . The differences of the spectra between both kinetic
methods and the PS method, as defined by Eq. (36), are shown
in Figs. 17 and 18. It can be clearly seen that the LBE method
yields better predictions than the DUGKS.

We also compare the evolutions of the normalized kinetic
energy and the dissipation rate. As shown in Fig. 19, K(¢)/Ky
obtained by the LBE and DUGKS methods are in good
agreement with the PS results. However, the differences are
visible around the peak values of €(t)/ey computed by both
methods, and it can be clearly seen that the LBE method
gives a better prediction than the DUGKS. For example, at
Re; = 52.12, for the LBE the maximum relative error of € is
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FIG. 17. The energy spectra difference AE(k,t’) at (a) Re; = 52.12 and (b) Re; = 104.24.
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FIG. 18. The dissipation rate spectra difference

1.85%, while for the DUGKS it is 11.6%. This indicates that
with the minimum k., = 2.0, the given flow field is well
resolved by the LBE method, but not the DUGKS. Similar
phenomena can also be observed from the evolution of the
enstrophy shown in Fig. 20 for the given Reynolds numbers,
especially the discrepancy around the peak values, as shown in
the insets. Similar results are also obtained from the evolutions
of the Kolmogorov length 1 and the Taylor microscale length A,
which are shown in Figs. 21 and 22, respectively. We observe
that the maximum deviation appears around the minima of
n or A, where the adequate spatial resolution in the DUGKS
and LBE is most likely not met. It can be clearly found that
the LBE is more accurate than the DUGKS in capturing both
scales due to the lower numerical dissipation in the LBE.
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AD(k,t) at (a) Re; = 52.12 and (b) Re; = 104.24.

Finally, in order to figure out the effects of the Reynolds
number on the flow fields for the DUGKS, we also compare
the vorticity fields predicted by both methods. Figures 23
and 24 show the snapshots of the vorticity at Re; = 52.12 and
104.24, respectively. It can be clearly seen that the DUGKS
results deviate from the LBE results at later times, and the
difference is larger for larger Re. It should be noted that
although in DUGKS the pressure fluctuation will increase with
the Reynolds number under the given mesh resolution, these
fluctuations do not deteriorate the flow fields, which are still
smooth at high Re,, as shown in Figs. 23 and 24.

Based on the above observations, we can conclude that the
LBE gives more accurate results than the DUGKS at both Re;,
with underresolved meshes. Specifically, with the minimum
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FIG. 19. Evolutions of the normalized total kinetic energy K (¢)/K, and the normalized dissipation rate €(¢)/¢, at (a) Re; = 52.12 and

(b) Re; = 104.24.
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FIG. 20. Evolutions of the enstrophy 2 at (a) Re; = 52.12 and (b) Re; = 104.24.

spatial resolution parameter 2 < k7 < 3, the flow fields
can be adequately resolved by the LBE method, but they are
not adequately resolved by the DUGKS, particularly in the
high-wave-number region, which represents the small-scale
turbulent eddies. This means that the DUGKS has relatively
larger numerical dissipation than the LBE.

It is interesting to figure out the reasoning behind the more
dissipative nature of the DUGKS than the LBE. One of the
major reasons is that as a finite volume scheme, additional
numerical dissipation is introduced in the DUGKS in the
initial data reconstruction. It should be noted that although
the DUGKS is more dissipative than the LBE method, we
argue that the coupled collision and transport mechanism in
the flux reconstruction can ensure that the DUGKS still has
relatively low numerical dissipation when compared with the

1007 T \HHH‘

r—PS
- LBE
[ ---DUGKS

\\\HH‘ [
1

10 10" 10° 10
te(0)/K(0)

(a)

direct unwinding reconstruction of the original distribution
function without considering the collision effects [43,44]. It
should be noted that the CFL number y in DUGKS we adopt
is 0.7071, which is relatively large for such a kinetic scheme.
Actually, since the physical model, rather than interpolation, is
directly applied to reconstruct the flux across the cell interface,
the dissipation will decrease with reducing CFL number or
increasing the nonuniformities of the mesh according to the
local accuracy requirement, which has been demonstrated in
the previous work [45,52].

5. Computational efficiency and numerical stability

Finally, we compare the computational efficiency of the
LBE and DUGKS methods on a fixed mesh of 128°. For each

0
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FIG. 21. Evolutions of the Kolmogorov length n at (a) Re; = 52.12 and (b) Re; = 104.24.
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FIG. 22. Evolutions of the Taylor microscale length X at (a) Re; = 52.12 and (b) Re;, = 104.24.

iteration, the CPU time costs of the LBE and DUGKS are
0.666 and 0.911 s, respectively, where both codes run on 16
cores based on the message passing interface (MPI) using
two-dimensional domain decomposition. Therefore, the LBE
method is about 36.8% faster than the DUGKS per time step.
But, due to the different time steps used in the two methods, in
our simulations two DUGKS time steps are equivalent to one
LBE time step.

In terms of the numerical stability, we compute the
maximum stable Taylor microscale Reynolds number of both
LBE and DUGKS codes on a mesh of 128, In the simulations,
we set the CFL number to be 0.9 in the DUGKS in order
to make a fair comparison with the LBE in which the CFL
number equals 1.0. Without considering the accuracy, the LBE
code blows up when the Taylor microscale Reynolds number
reaches Re;, = 26 060, while the DUGKS is still stable at such
Re;. Therefore, the DUGKS is more stable than the LBE
methods, which is consistent with the previous study [45].

B. Kida vortex flow

The above results indicate that the flow can be adequately
resolved by the DUGKS with the minimum spatial resolution
parameter kp,xn larger than 3. To further validate this con-
clusion as well as the accuracy of the DUGKS for DNS of
decaying turbulent, in this subsection the Kida vortex flow is
simulated by the DUGKS and compared with the well-resolved
LBE results.

1. Initial condition

The Reynolds number for the Kida vortex flow is defined by
Re = LUy/v, where L is the domain size and v is the kinematic
viscosity. The initial pressure field as well as a consistent initial
distribution are obtained by an iterative procedure with the
given initial velocity field [Eq. (32)] [51].

In the simulation, we set the domain size L = N, where
N is the grid size in each direction. The velocity and time

presented in the results are normalized by Uy and L/Uj,
respectively. It should be noted that the previous results have
clearly demonstrated that the accuracy of the standard LBE
method is comparable to the PS method, and the LBE can give
the well-resolved result when the minimum spatial resolution
parameter kp,x 1 is larger than 2.0 [17], thus for the Kida vortex
flow simulation, the LBE results are adopted as benchmark
data to validate the accuracy of the DUGKS.

The simulation is performed for a relatively low Reynolds
number Re = 2000, which is sufficient for comparison. We
set the computational domain size L3 = 256 with a mesh of
N3 =256, and the corresponding minimum ka7 is 3.29,
which guarantees that the results obtained by the LBE are
adequately resolved. The velocity Uy is set to be 0.05 such
that the flow is nearly incompressible, and the CFL number is
again set to be y = 0.7071 so that the time step Af in DUGKS
is equal to 0.5.

2. Instantaneous vorticity fields

Figure 25 shows the normalized vorticity ||w|| L/ Uy on the
xy plane of z = L/2 at different normalized times ¢ = 0,
0.9765, 1.9531, and 2.9297. As shown in Fig. 25(a), both
the LBE and DUGKS methods have identical initial fields
containing only large eddies. These large eddies are unstable,
and they produce small eddies by vortex stretching as shown
in Figs. 25(b) and 25(c). In the end, as shown in Fig. 25(d), the
small eddies are dissipated by the viscous actions. In addition,
it is found that although vorticity snapshots predicted by the
LBE and DUGKS methods are very similar to each other in
terms of the vortex shapes and locations at the initial stage,
the discrepancy between the two methods is still visible and
increases over time. All these results are similar to those of the
DNS of DHIT.

3. Statistical quantities

We study first the one-point statistics of the Kida vortex
flow. Figure 26(a) shows the evolution of the normalized
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FIG. 23. Contours of normalized vorticity magnitude ||@]||L/u;, on the xy plane at z = L/2 at time (a) ' = 0, (b) ' = 0.12, (c) ¢’ = 0.6,
and (d) ' = 3 for Re; = 52.12. The solid red and blue lines denote results of the LBE and DUGKS, respectively.

kinetic energy K and dissipation rate € obtained from the
LBE and DUGKS methods. As shown, the results of K and
€ calculated by the DUGKS agree well with the LBE results.
In particular, the maximum relative error of dissipation rate
compared with the LBE results is less than 4%, which shows
that the flow is adequately resolved by DUGKS with the
minimum spatial resolution parameter kp,n = 3.29. Similar
results are also obtained from the evolution of the enstrophy,
as shown in Fig. 26(b), where the maximum relative error of
the enstrophy is also less than 4%.

To further measure the capability of DUGKS in capturing
the small scale, the evolution of the Kolmogorov length scale is
sketched in Fig. 27(a), and the results obtained by the LBE with
a mesh of 256° are also included for comparison. As shown,
the turbulent scale, from the large scale in the beginning to the
smallest scale at about ¢+ = 0.3, can be described accurately,
and the maximum relative error in the LBE results, as shown
in Fig. 27(b), is less than 1.5%. This indicates that the flow

is adequately resolved by the DUGKS with the minimum
kmaxn = 3.29. It is also found from Fig. 27(a) that due to the
viscous action, the small eddies are dissipated, and the scale
of the eddies becomes larger as time evolves.

Figure 28(a) shows the longitudinal and transverse correla-
tion functions obtained from the LBE and DUGKS methods at
t = 1.95. It can be seen that for both correlation functions, the
LBE and DUGKS results agree well with each other, and the
two transverse correlation functions, p,, and ps3, are identical
due to the isotropic property of the Kida vortex flow.

Figure 28(b) shows the pressure-velocity correlations pre-
dicted by the LBE and DUGKS methods at ¢+ = 1.95. Since
the Kida vortex flow considered here is incompressible,
theoretically the pressure-velocity correlations defined by
Eq. (35) are equal to 0. As shown in Fig. 28(b), although
the values predicted by DUGKS are larger than those from
the LBE method, the magnitude of the pressure velocity
correlations given by both methods is on the order of 107°,
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which indicates that the DUGKS can accurately reproduce the
incompressibility behavior.

V. DISCUSSIONS AND CONCLUSIONS

In this work, we present a comparative study of two kinetic
approaches, the LBE and DUGKS methods, for direct numer-
ical simulation of the decaying turbulent flows, including the
decaying homogeneous isotropic turbulence (DHIT) and the
Kida vortex flow. Although the DNS of DHIT and the Kida
vortex flow are easily achievable, it is the first and essential step
to validate the DUGKS method before it is used to simulate
more complex turbulent flows.

In our study, we first perform the DNS of DHIT using
the LBE, DUGKS, and PS methods at two mesh resolutions
(1283 and 256°) at Re;, = 26.06, where the minimum spatial
resolution parameters k.71 are about 3.12 for the LBE and
DUGKS methods and 2.07 for the PS method. In terms of

accuracy, we first compare the instantaneous flow fields. It
is found that the instantaneous velocity and vorticity fields
predicted by both the LBE and DUGKS methods are very
similar to each other and agree reasonably well with the PS
results. In addition, we compare some key statistic quantities,
and we find that both methods perform an accurate prediction
on all the quantities of interest due to their low numerical
dissipation. We also note that the DUGKS with a coarse
mesh of 128 underestimates the energy and dissipation
rate spectra in the high-wave-number region, and yet these
discrepancies vanish with a fine mesh of 256°. This indicates
that the DUGKS has a relatively large numerical dissipation
compared with the LBE method, which can be attributed to
the finite-volume formulation of the DUGKS and the central
difference employed in DUGKS to approximate the gradient at
the cell interface. Furthermore, since the numerical viscosity
(0.5¢,>At) in the LBE method has been explicitly subtracted,
it is not surprising that the LBE method has relatively small
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FIG. 25. Contours of the normalized vorticity magnitude ||@||L/u;, on the xy plane at z = L/2 at time (a) t' = 0, (b) t' = 0.9765, (c)
t' = 1.9531, and (d) ¢’ = 2.9297 for Re = 2000 with the mesh of 256°. The solid blue and red lines denote results of the LBE and DUGKS,

respectively.

numerical dissipation. However, as the numerical results
showed, this feature has little impact on the low-order statistic
quantities, and the flow can be adequately resolved by the
DUGKS method with the minimum k,.xn > 3. Moreover, we
observe that the results of skewness and flatness obtained
by the DUGKS have high-frequency oscillations due to the
acoustic waves in the system.

The performance of the two methods at higher Reynolds
numbers is also compared. Some key statistical quantities
obtained by the LBE and DUGKS methods are compared
with those from the PS method. The results show that good
agreement is achieved between the LBE and the PS methods
at both Re;,, but there are noticeable discrepancies between the
results of the DUGKS and PS methods due to the insufficient
mesh resolution, which also indicates that the DUGKS is more
dissipative than the LBE method.

To further evaluate the accuracy of the DUGKS, the direct
numerical simulation of the Kida vortex flow is also performed
with a relatively low Reynolds number, and the results are
validated by those from the LBE method. The simulations are
conducted with the minimum kn.x1 = 3.29, which guarantees
that the results from the LBE method are adequately resolved.
The results show that although DUGKS is slightly more
dissipative than the LBE method, it can accurately predict
the low-order statistics, such as the total energy and its
dissipation rate, the enstrophy, and the longitudinal and
transversal velocity correlations, and it can capture the smallest
Kolmogorov length scale in turbulent flow. The results of the
pressure-velocity correlation also show that the DUGKS can
well reproduce the incompressibility behavior of the flow.

In terms of computational efficiency, the LBE method is
about 36.8% faster than the DUGKS per time step. It should
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FIG. 26. Evolutions of (a) the normalized total kinetic energy K, dissipation rate €, and (b) enstrophy 2.

be noted that although the DUGKS is less efficient than the
LBE method on the same uniform mesh, as a finite-volume
method, the DUGKS can use nonuniform meshes without
additional efforts for wall-bounded turbulence flows, such as
a channel flow and pipe flow. For such flows, the mesh can be
clustered near the walls where large flow gradients exist, and
the computational efficiency can be largely improved, which
will be presented in our subsequent work. We also assess
the numerical stability of the LBE and DUGKS methods by
computing the maximum stable Taylor microscale Reynolds
number on a fixed mesh without considering the accuracy. The
results show that the DUGKS has a better numerical stability
than the LBE method, which is consistent with the previous
results of laminar flows [45].

In conclusion, the LBE is less dissipative and thus more
accurate than the DUGKS, but they have similar accuracy for

0.1 I I I
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DUGKS
0.08 — —
< 0.06 — —
0.04 — , —
\\\/
0.02 | | | | |
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t

DNS of the decaying turbulent flows when the mesh resolution
is sufficient to resolve the flow field; in addition, the DUGKS
is less efficient than the LBE method with the same regular
uniform mesh, but it is superior to the LBE method in terms
of the numerical stability; furthermore, it is found that the
DUGKS can adequately resolve the flow when the minimum
spatial resolution parameter k.7 is about 3, which is a more
strict requirement when compared to kyaxn > 2 for LBE [17]
and kpaxn > 1 for the pseudospectral method [50]. It must be
emphasized that this work is the first step toward validating
the DUGKS for DNS of turbulent flows, and further tests
are needed before regarding it as a viable kinetic method for
DNS of turbulent flows. The main advantage of the DUGKS
compared with the LBE method is that it can be implemented
on nonuniform meshes easily, which we shall demonstrate in
the subsequent study of wall-bounded turbulent flows.
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FIG. 27. Evolutions of (a) Kolmogorov length scale 1 and (b) the relative difference R(#n) between the results of DUGKS and LBE on the

mesh of 1283.
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