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Stabilizing the thermal lattice Boltzmann method by spatial filtering
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We propose to stabilize the thermal lattice Boltzmann method by filtering the second- and third-order moments
of the collision operator. By means of the Chapman-Enskog expansion, we show that the additional numerical
diffusivity diminishes in the low-wavnumber limit. To demonstrate the enhanced stability, we consider a three-
dimensional thermal lattice Boltzmann system involving 33 discrete velocities. Filtering extends the linear stability
of this thermal lattice Boltzmann method to 10-fold smaller transport coefficients. We further demonstrate that the
filtering does not compromise the accuracy of the hydrodynamics by comparing simulation results to reference
solutions for a number of standardized test cases, including natural convection in two dimensions.
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I. INTRODUCTION

Lattice Boltzmann (LB) is a computational fluid dynamics
(CFD) approach that discretizes the distribution function f of
the single-particle position and velocity c. This distribution
function evolves according to the continuous Boltzmann
equation [1–5],

∂f

∂t
+ ∇ · (cf ) = �. (1)

In Eq. (1) the left-hand side represents the molecular stream-
ing, i.e., molecules moving in straight lines, and the right-hand
side accounts for intermolecular collisions. Conventional CFD
methods solve moments of f , whose evolution equations are
the corresponding moments of Eq. (1).

LB numerically approximates Eq. (1) by discretiz-
ing the time, the D-dimensional position space, and the
D-dimensional velocity space. In standard LB, time and
position space are discretized uniformly, with a time step �t

and a mesh size �x. The velocity space is discretized into
Q velocities, which are denoted cα , where the index α runs
between 1 and Q. In the remainder of this paper all variables
are scaled with the mesh size �x, the time step �t , and the
gas constant R = kB/m, where kB is the Boltzmann constant
and m is the molecular mass. The distribution function at time
t , position x, and velocity cα is denoted fα(x,t). In order for
LB to provide a correct description of the hydrodynamics, the
velocity set cα must be sufficiently extensive, such that fα can
correctly represent the moments of f up to third order for
isothermal flow and up to fourth order for thermal flow. The
LB equation is the discretized version of Eq. (1) and reads:

fα(x + cα,t + 1) − fα(x,t) = �α(x,t). (2)

The left-hand side of Eq. (2) is the explicit Euler forward
discretization of the molecular streaming. Since in the previ-
ously mentioned LB unit system the cα are integer vectors, the
particles move exactly between two neighboring grid nodes
during one time step. This property of “exact advection” in
combination with the local nature of the collision operator �α

makes LB accurate and computationally efficient. Apart from
these advantages, the method is also facing some problems.

*jurriaangillissen@gmail.com

In this paper we address the stability problem that arises
when the temperature T is allowed to dynamically vary
in LB [6,7]. This so-called thermal LB method is stable
only for relatively large transport coefficients; i.e., viscosity
and thermal conductivity. From a practical perspective, this
problem can be circumvented by computing the temperature
field using an alternative method, while fixing the temperature
in LB, which is used to compute the mass and momentum
fields only [8–13]. In this work we will not consider this
“two population” method. Instead we treat the temperature
as an intrinsic and dynamical part of the distribution function.
One way to stabilize thermal LB is by diminishing the time
step [14–18]. This so-called fractional step method requires
interpolations to advance the streaming operator in time and
compromises the exact advection property of the LB method.
On the other hand, methods that stabilize thermal LB by
modifying the collision operator are referred to as modified
equation methods. An example of a modified equation method
is increasing the number of discrete velocities beyond the
requirement for correct hydrodynamics, which increases the
computational expenses [6,19–24]. Thermal LB has also been
stabilized by reducing the velocity set below this requirement
[14,25]. The resulting inconsistencies in the hydrodynamics
can be remedied by subtracting the finite difference discretiza-
tions of the corresponding error terms [25]. Some authors
attribute the source for the instability in thermal LB to the
lack of a global H-theorem; see, e.g., Ref. [26]. Accordingly,
progress has been made to construct an H-theorem satisfying
collision operators, referred to as “entropic LB” [27–29]. It
is further noted that isothermal LB has also been stabilized
through a reformulation of the collision operator based on
velocity centered moments [30].

In this paper we follow the modified equation method and
stabilize thermal LB by spatial filtering. It is obvious, however,
that filtering fα directly would introduce numerical diffusion,
effectively enhancing the transport coefficients beyond the
desired values. To remedy this situation we propose to only
filter the second- and third-order moments of the collision
operator. This means that only fluxes of momentum and
stresses are filtered while the conserved moments are not
directly affected by the procedure. Indirectly, however, the
conserved moments are affected by filtering momentum and
stress fluxes. By means of the Chapman-Enskog expansion,
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we show that this indirect affect is equivalent of adding
a higher-order Laplacian to the governing equations of the
macroscopic variables, which demonstrates the recovery of
correct hydrodynamics in the low-wave-number limit. It is
noted that the concept of adding a higher-order Laplacian,
also known as hyperviscosity, has previously been used to
stabilize simulations of turbulent flow; see, e.g., Ref. [31].
However, to the best of our knowledge, it has not yet been
applied to LB simulations. One advancement of our approach
is the implementation of this hyperviscosity. We apply a
second-order filter to a fraction of the components (second-
and third-order moments), which is computationally more
efficient than applying a fourth-order filter to all components
of the distribution function. It is further noted that the errors
introduced by the interpolations in the fractional step method,
described above, could in principle be analyzed and remedied
in similar fashions, i.e., by the Chapman-Enskog expansion
and by a fine-tuning of the interpolation operator, respectively.
The present filtering method, however, offers two distinct
advantages over the fractional step method. First, it uses a
unit time step, which ensures the “exact advection” property
of LB, which is the fundamental advantage of LB over other
explicit advection schemes. Second, while the fractional step
method involves spatial mixing of all LB components through
interpolations, the present method only mixes the momentum
flux and the stress flux moments though the filter operator,
which is computationally less expensive.

The remainder of the paper is organized as follows.
Section II presents the details of a specific thermal LB scheme
that we use to demonstrate the effectiveness of the proposed
filtering method. Section III studies the linear stability of this
method, using the stability theory of Lallemand and Luo
[32]. Section IV details the filter operator and shows that
this operator enhances the linear stability of the thermal LB
method. It also proves that the filtering does not compromise
the macroscopic equations in the long-wave-number limit.
Section V demonstrates correct hydrodynamics of the filtered
thermal LB method for a number of test cases. Appendix
A presents details of the specific thermal LB scheme that
we use to demonstrate the effectiveness of the proposed
filtering method. Appendix B reproduces the linear stability
theory of Lallemand and Luo [32]. Appendix C outlines the
Chapman-Enskog analysis on the effect of the filter on the
macroscopic equations. Appendices D and E outline reference
solutions to test cases.

II. THE THERMAL LATTICE BOLTZMANN METHOD

The purpose of this work is to present a concept for
stabilizing thermal LB methods, which is spatial filtering the
second- and third-order collision moments. The main result
is a theoretical proof that this filtering procedure does not
compromise the hydrodynamic equations in the long-wave-
number limit. To demonstrate the concept we apply it to
a specific three-dimensional (3D) thermal lattice Boltzmann
scheme, with Q = 33 discrete velocities, referred to as D3Q33.
The D3Q33 model incorporates discrete velocities with speeds
cα = |cα| = 0,1,

√
2,

√
3, and 2, corresponding to 1, 6, 12, 8,

and 6 discrete velocities for each speed. It must be noted
that the D3Q33 model lacks isotropy of lattice tensors of

rank six and higher, resulting in anisotropic viscosity and heat
conductivity [33–35]. However, these anisotropies diminish in
the low-wave-number limit as k2 (see, e.g., Ref. [36] and Fig. 2
below), which is similar as the effect of the filtering (see Fig. 4
below). Therefore, the use of D3Q33 does not compromise
the accuracy of the method further than the filtering itself. It is
further noted that the filtering operator can equally be applied
to LB methods with larger velocity sets, without introducing
any additional computational intensity or complexity. This is
because the number (15) of filtered nonconserved second- and
third-order collision moments does not change on increasing
the velocity set.

To demonstrate the effectiveness of the proposed filtering
method, we use the so-called multiple relaxation time (MRT)
collision model, which replaces �α in Eq. (2) by a relaxation
process that drives the moments of the distribution function
to their equilibrium values using a set of separately tunable
relaxation times τα [37]. There are Q-independent moments
f̃α . Five of these moments are conserved during collision,
which are the mass density ρ, the three components of the
momentum density ρu, and the energy density. All other
moments are nonconserved. The moments are defined as
weighted averaged polynomials φαβ of the velocity,

f̃α = φαβfβ. (3)

The first index of φαβ indicates the polynomial and the second
index indicates the velocity. Throughout this paper summation
over repeated indices is assumed, unless stated otherwise.
Furthermore, we use the tilde˜to indicate that a certain variable
is represented in the moment space, as opposed to the velocity
space. The polynomials for the current D3Q33 model are
constructed using the standard Gram Schmidt procedure [38]
and are reported in Appendix A. Since the polynomials form a
complete orthogonal basis, the φαβ matrix is orthogonal with
an inverse φ−1

αβ , which transforms the moment space into the
velocity space,

fα = φ−1
αβ f̃β . (4)

With the above-mentioned definitions the MRT collision
operator is written as follows:

�α = φ−1
αβ 
̃βγ

[
f̃ (eq)

γ − φγδfδ

]
. (5)

Here f̃
(eq)
α are the equilibrium moments and 
̃αβ is the

collision matrix, evaluated in the moment space, which has
the inverse relaxation times τ−1

α for the various moments on
its diagonal. Perfect gas thermohydrodynamics requires that
the equilibrium moments f̃

(eq)
α up to fourth order are identical

to those of the Maxwell-Boltzmann distribution, which for
the current D3Q33 model are listed in Appendix A. Since the
higher-order moments have no effect on (long-wavelength)
hydrodynamics, we relax these to zero [f̃ (eq)

α = 0] using
τα = 1. By applying the Chapman-Enskog expansion to the
thermal LB model, the thermohydrodynamic equations for a
perfect gas are recovered, with a dynamic viscosity of μ =
ρT (τμ − 1

2 ), a thermal conductivity of κ = ρT cp(τκ − 1
2 ), a

specific heat capacity at constant volume of cv = D
2 , a specific

heat capacity at constant pressure of cp = cv + 1 = D+2
2 , a

specific heat capacity ratio of γ = cp

cv
= D+2

D
, a sound speed
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of cs = √
γ T =

√
D+2
D

T , a kinematic viscosity of ν = μ

ρ
=

T (τμ − 1
2 ), a thermal diffusivity of α = κ

ρcp
= T (τκ − 1

2 ), and

a Prandtl number of Pr = ν
α

= τμ− 1
2

τκ− 1
2

, where τμ and τκ are

the relaxation times for the second- and third-order moments,
respectively; see, e.g., Ref. [6]. It is interesting that the 1

2
in the expressions for the transport coefficients stems from
second-order discretization errors of the LB scheme [Eq. (2)],
which fortunately can be absorbed in the nonequilibrium
(diffusive) momentum and heat fluxes; see, e.g., Ref. [6]. Chen
et al. pointed out, that the energy equation derived from the
thermal LB method with a diagonal collision matrix 
̃αβ (in
the moment space) contains a spurious, non-Galilean invariant
term, when τμ �= τk , i.e., when the Prandtl number is other than
one [39]. They cured this problem by designing a nondiagonal

̃αβ matrix. For simplicity, however, we do not adopt this
approach, but we assume τμ = τκ = τ instead, i.e., a Prandtl
number of 1. Finally, we note that the relaxation time for the
fourth-order moment has no effect on hydrodynamics, and this
value is set to 1 in the present study.

III. INSTABILITY OF THE THERMAL LATTICE
BOLTZMANN MODEL

In this section we study the stability of the current thermal
LB model using the linear stability theory that was introduced
in Ref. [32]. The theory is also used to demonstrate the
low-wave-number isotropy of the stress flux moments in the
D3Q33 LB model, guaranteeing correct thermohydrodynamic
behavior. For completeness, the derivation of this theory is
reproduced in Appendix B. The theory provides the following
evolution equation for the Fourier transformed distribution
function f̂α(k,t):

f̂α(k,t + 1) = Lαβ(k)f̂β(k,t), (6)

where k is the wave vector and Lαβ is the linearized evolution
operator,

Lαβ = Fαγ (δγβ + 
γδ[Eδβ − δδβ]). (7)

Here δαβ is the unit matrix, Fαβ contains exp (−ik · cα) on its

diagonal, and Eαβ = δf
(eq)
α

δfβ
|f =f (0) , where f (0)

α is the uniform and
steady background, which in the stability theory is perturbed by
f̂α(k,t) exp (ik · cα). The eigenvalues zα of Lαβ correspond to
growth rates and oscillation frequencies of the various modes
in the system. Stability requires |zα| � 1 for all modes, or,
equivalently, να > 0, where the mode viscosity να is related to
the real part Re of zα by

να = −Re log zα

k2
. (8)

In 3D there are only five modes prone to instability (at each k),
while the remaining modes always have positive viscosities.
In the low-wave-number limit these five modes are linear
combinations of the conserved moments. Therefore we refer
to these modes as the “conserved modes”.

To study the linear stability of the current D3Q33 thermal
LB model we compute the eigenvalues of Lαβ using MATHE-
MATICA software. In the stability analysis we restrict ourselves
to a background temperature of T0 = 2

5 . We consider two cases,
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FIG. 1. Viscosity of conserved modes να as a function of absolute
wave vector k along k = kδx (a, d), k = k 1√

2
(δx + δy) (b, e), and

k = k 1√
3
(δx + δy + δz) (c, f). Data are shown for the unfiltered model

(solid gray lines) and the filtered model (dashed black lines). In all
cases the background temperature equals T0 = 2

5 . In (a)–(c) u0 = 0
and τ − 1

2 = 0.01. In (d)–(f) u0 = cs k
4k

and τ − 1
2 = 0.02.

where the background velocity is either zero, u0 = 0, or a

quarter sound speed cs =
√

2
3 ≈ 0.82 along the direction of

the wave vector k, i.e., u0 = cs k
4k

, where k is the absolute value
of k. In the latter case we choose to align u0 with k, since
it is known that this renders the model most unstable, see,
e.g., Ref. [32]. We find that without flow the model is unstable
when τ − 1

2 � 0.05 and a quarter sound speed extends the
instability region to τ − 1

2 � 0.1. The gray lines in Fig. 1
show the viscosity of the conserved modes of the current
(unfiltered) model. The mode viscosities are displayed as a
function of the absolute value k of k, which is varied along
three directions. Figures 1(a)–1(c) correspond to u0 = 0 and
τ − 1

2 = 0.01, while Figs. 1(d)–1(f) correspond to u0 = cs k
4k

and τ − 1
2 = 0.02. Instability (να < 0) is seen not only in the

upper region of the wave-number space but also in regions of
intermediate k.

Second, we use the stability theory to study the isotropy
of the D3Q33 LB model. For this purpose we use a
background temperature of T0 = 2

5 , a background velocity
of u0 = 0, and a relaxation time of τ − 1

2 = 0.02. We
start by fixing the absolute wave vector k = 0.04 and vary
the orientation of k between the x and the y directions
as k = k[cos(θ )δx + sin(θ )δy], where the angle θ is varied
between 0 and π/2. Figure 2(a) shows the relative viscosity
variation (να − 〈να〉θ )/〈να〉θ of the third-order, stress flux
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FIG. 2. (a) Relative viscosity variation (να − 〈να〉θ )/〈να〉θ of the
stress flux modes as a function of the orientation angle θ of the wave
vector k = k[cos(θ )δx + sin(θ )δy] at a fixed absolute value k = 0.04
of the wave vector. Here 〈·〉θ is the average of · over θ . (b) Root-mean-

square of the orientational viscosity variation
√

〈ν2
α〉θ − 〈να〉2

θ /〈να〉θ

of the stress flux modes as a function of the absolute value k of the
wave vector k = k[cos(θ )δx + sin(θ )δy]. The orientational variations
diminish as k2.

modes, where α = 11 · · · 20. Here 〈·〉θ is the average of ·
over θ . The orientational variation is defined as the relative
root-mean-square

√
〈ν2

α〉θ − 〈να〉2
θ /〈να〉θ , which for the case

in Fig. 2(a) is of the order of 10−3. Figure 2(b) shows that

the orientational variations
√

〈ν2
α〉θ − 〈να〉2

θ /〈να〉θ diminish as

k2, demonstrating isotropy of the D3Q33 model in the low-
wave-number limit, which confirms the theoretical prediction
in Ref. [36].

IV. STABILIZING THE THERMAL LATTICE BOLTZMANN
MODEL BY SPATIAL FILTERING

We enhance the stability of the thermal lattice Boltzmann
method by spatial filtering the second- and third-order mo-
ments of the collision operator. The filtered LB scheme is
written as follows:

fα(x + cα,t + 1)

= fα(x,t) + φ−1
αβ

∑
y

[δβγ δ( y) + νF Ñβγ ψ( y)]

× 
̃γ δ

[
f̃

(eq)
δ (x + y,t) − φδεfε(x + y,t)

]
. (9)

Here
∑

y (δαβδ( y) + νF Ñαβψ( y)) is the filter operator, νF is
the filter viscosity, and the function δ( y) is referred to as
the “discrete delta function.” It is one when y = 0 and it is
zero elsewhere. The matrix Ñαβ has unit diagonal elements
for the nonconserved second- and third-order moments and
is zero elsewhere. The nonconserved second- and third-order
collision moments are convoluted with δ( y) + νF ψ( y), while
other collision moments are left alone by the filter operator,
i.e., they are convoluted with δ( y).

We use a filter function ψ( y) that involves a minimum
number of neighbors, which is seven in 3D; i.e., one at
distance y = 0 and six at distance y = 1. This filter does
not compromise the local nature of the LB method as these
neighbors were already involved in the streaming operator.
Furthermore, the filter contributes marginally to overall com-
putational expenses, which are in fact mainly due to the
transformations between the moment space and the velocity
space. To substantiate this claim we note that the number of

0 2 4
−1

−0.5

0

0.5

1

k

1 + νF ψ̂

FIG. 3. Discrete Fourier transformed filter 1 + νF ψ̂ as a function
of absolute wavenumber k using νF = 1

15 for k = kδx (dashed line),
k = k 1√

2
(δx + δy) (dotted line), and k = k 1√

3
(δx + δy + δz) (solid

line).

multiplications that are required by the filtering routine per
lattice node and per time step equals 7 (number of nodes
in filter stencil) times 15 (number of nonconserved second-
and third-order moments) equals 90, while for the the present
D3Q33 the transformations between moment and velocity
space requires 2 (transform back and forth) times 332 (number
of matrix elements) equals 2178 multiplications.

Symmetry and conservation require that the 3D filter
function has the following form:

ψ( y) =
{−6 if y = 0,

1 if y = 1.
(10)

In Appendix C we employ the Chapman-Enskog expansion
to demonstrate that the filtering replaces τ by τ (1 − νF ∇2) in
the overall equations of fluid motion. This means that in the
filtered model the kinematic viscosity (and thermal diffusivity)
becomes wavelength dependent,

ν = ν0

(
1 + τνF k2

τ − 1
2

)
, (11)

where ν0 = T (τ − 1
2 ) is the kinematic viscosity at k = 0.

This result indicates that the diffusion induced by the filter
diminishes in the low-wave-number limit, ensuring correct
hydrodynamics.

The Chapman-Enskog expansion is valid only for small
wave numbers. To study the effect of filtering on the whole
wave number range, we apply linear stability theory to Eq. (9),
which results in the following linearized evolution operator:

Lαβ = Fαγ {δγβ + [δγ δ + νF Nγδψ̂(k)]
δε[Eεβ − δεβ]},
(12)

where the convolution theorem is used to replace the Fourier
transformed convolution of ψ(x) and f (x) by the product of
their Fourier transforms ψ̂(k) and f̂ (k). The discrete Fourier
transformed filter function 1 + νF ψ̂(k) is displayed in Fig. 3
for νF = 1

15 along three directions in the k space.
As in Sec. II we now analyze the stability of the filtered

model using a background temperature of T0 = 2
5 , and we

consider two cases, where the background velocity is either
zero, u0 = 0, or a quarter sound speed along the direction of
the wave vector, i.e., u0 = cs k

4k
. The filter viscosity is chosen

as νF = 1
15 . In both cases we find that the filtered model has

a larger stability region than the unfiltered model. For u0 = 0,
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FIG. 4. The relative difference between the conserved mode
viscosity να and the viscosity ν0 at zero wave number: |να − ν0|/ν0

as a function of the absolute wave vector k along k = kδx (a, d),
k = k 1√

2
(δx + δy) (b, e), and k = k 1√

3
(δx + δy + δz) (c, f). Data are

shown for the unfiltered model (solid gray lines) and the filtered model
(dashed black lines). In all cases the background temperature equals
T0 = 2

5 . In (a)–(c) u0 = 0 and τ − 1
2 = 0.01. In (d)–(f) u0 = cs k

4k
and

τ − 1
2 = 0.02.

the stability region is extended from τ − 1
2 � 0.05 for the

unfiltered model to τ − 1
2 � 0.005 for the filtered model. For

u0 = cs k
4k

it is extended from τ − 1
2 � 0.1 to τ − 1

2 � 0.015.
In both cases filtering results in a roughly 10-fold decrease in
permissible transport coefficients.

The dashed black lines in Fig. 1 show the viscosity of the
conserved modes of the filtered, linearized evolution operator.
Again, the data are presented along three directions in the k
space. Figures 1(a)–1(c) correspond to u0 = 0 and τ − 1

2 =
0.01, while Figs. 1(d)–1(f) correspond to u0 = cs k

4k
and τ −

1
2 = 0.02. In contrast to the unfiltered model, all modes are
stable (να > 0) in the filtered model for the cases considered
in Fig. 1.

In Fig. 4 we verify the predicted diminishing impact of
the filtering on the low-wave-number behavior [Eq. (11)]. The
figure shows the relative difference between the conserved
mode viscosity να and the zero-wave-number viscosity: ν0 =
T (τ − 1

2 ). Data are displayed along different directions in k
space for both the unfiltered and filtered model and for both
u0 = 0 and u0 = cs k

4k
. In agreement with Eq. (11), the να

for both the unfiltered as well as the filtered model follow
k2. The prefactor, however, differs from Eq. (11). This is
due to spurious higher-order terms in the Chapman-Enskog
expansion, which also produce k2-dependent mode viscosities;
see, e.g., Ref. [36] and Fig. 2(b) above. It is seen from Figs. 2(b)
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1.15

1.2
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−200 −100 0 100 200
0.4

0.42

0.44

0.46
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T

FIG. 5. Density ρ and temperature T as functions of the distance
x to the center of Sod’s shock tube at time t = 200 after removing
the diaphragm, computed with the filtered thermal lattice Boltzmann
model (markers) and reference solution (lines) presented in Ref. [40].

and Fig. 4 that in the current D3Q33 model the contribution
from the spurious higher-order terms are of similar magnitude
as that of the filtering.

V. VALIDATING THE STABILIZED THERMAL LATTICE
BOLTZMANN MODEL

Finally, we validate that the proposed filtering does not
compromise the long-wavelength hydrodynamics of the ther-
mal lattice Boltzmann model. For this purpose we apply
the filtered D3Q33 thermal LB model with νF = 1

15 to four
test cases. The test cases are computed using a FORTRAN

implementation of the LB method [Eq. (9)]. The first test case
is Sod’s one-dimensional shock tube [40]. In this case a gas
at equilibrium with relaxation time 0.525 is contained within
a closed tube between x = −220 and x = 220. A diaphragm
at x = 0 separates the gas on the left which has a density of
1.2 and a temperature of 0.48 from the gas on the right which
has a density of 1 and a temperature of 0.4. At t = 0, the
diaphragm is removed and an intricate shock pattern develops,
with a well-known analytical solution [40]. Figure 5 shows the
density and the temperature distributions at t = 200. Besides
the usual wiggles, observed at x = cst ≈ 163, the simulation
agrees well with the corresponding analytical solution.

Second, we consider a thermal Poiseuille flow, where a gas
with a relaxation time of 0.525 and an average mass density
of 1 is driven in the x direction between two walls that are
located at y = −8 and y = 8 and that are kept at a constant
temperature of 0.4. The flow is driven by an external pressure
gradient −∇P = − dP

dx
δx , where − dP

dx
= 10−4. The pressure

gradient is implemented by adding a source term: −φ−1
αβ

dP
dx

δβ2

to Eq. (9). The no-slip boundary condition is enforced by
the halfway bounce-back method. The constant temperature
boundary condition is satisfied by adjusting the temperature
Tz= 1

2
at each node next to a wall, such that the temperature

Tz=0, extrapolated from Tz= 1
2

and Tz= 3
2
, equals the desired

value at the wall,

Tz= 1
2

= 1
3Tz= 3

2
+ 2

3Tz=0. (13)

Due to viscous dissipation, a temperature distribution sets in
between the walls. The simulated fully developed velocity
and temperature distributions are presented in Fig. 6, which
agree well with the reference solution, which is outlined in
Appendix D.
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FIG. 6. Fully developed velocity ux and temperature T as
functions of the distance y from the center line in thermal Poiseuille
flow, computed with the filtered thermal lattice Boltzmann model
(markers) and reference solution (lines) presented in Appendix D.

The third test case pertains to the one-dimensional Rayleigh
Bénard setup, which does not involve convection. Here a
gas with a relaxation time of 1 and an average density of 1
resides between a hot wall at x = 0 with a temperature of
0.42 and a cold wall at x = 12 with a temperature of 0.38.
The gravitational acceleration of 6.67 × 10−3 points towards
the hot wall in the negative x direction. The simulated, fully
developed density and temperature distributions in Fig. 7
agree well with the corresponding reference solution, which is
outlined in Appendix E.

The fourth and final test case is that of two-dimensional
Rayleigh Bénard convection [42]. The flow is driven by a hot
bottom plate with temperature Th = T0 + �T/2 and a cold
top plate with temperature Tc = T0 − �T/2 and gravity g,
which points in the negative y direction. The heat flux �

nondimensionalized by the conductive heat transfer κ�T
L

is
referred to as the Nusselt number Nu = �L

κ�T
. The driving force

in the system is measured by the nondimensional Rayleigh
number Ra = βg�T L3

να
. Here β is the thermal expansion

coefficient, which for an ideal gas (with unit gas constant)
equals β = 1

T0
. Below a critical Rayleigh number of around

1708 the heat transfer is purely conductive, which corresponds
to Nu = 1 [8]. Above the critical Rayleigh number, so-called
Rayleigh-Bénard convection sets in, which enhances the heat
transfer between the hot and cold walls, and Nu becomes an
increasing function of Ra. We simulate the system above the
critical Rayleigh number, again using an average background
temperature of T0 = 0.4. Periodic boundary conditions are
applied in the horizontal x direction. In order to facilitate
a comparison to reference data [8,41], we need to satisfy

0 6 12
0.9

1

1.1

x

ρ

0 6 12
0.37

0.4

0.43

x

T

FIG. 7. Fully developed density ρ and temperature T as functions
of the distance x from the hot wall in the stationary Rayleigh Bénard
setup, computed with the filtered thermal lattice Boltzmann model
(markers) and reference solution (lines) presented in Appendix E.

TABLE I. Parameters for the 2D Rayleigh Bénard convection
simulations.

Ra Lx Ly g τ

5000 256 128 3.125 × 10−5 0.5286
10 000 512 256 1.563 × 10−5 0.5405
20 000 768 384 1.042 × 10−5 0.5429

(nearly) incompressible conditions, and therefore we use a
small temperature difference �T/T0 = 10−2 and a small
gravitational acceleration g = 10−2T0/L. Three cases are
simulated using different values for the Rayleigh number, i.e.,
Ra = 5000, 10 000, and 20 000, respectively. In Table I the
values for the numerical parameters are given. After starting
from a linear temperature profile and a slightly perturbed
velocity profile, the simulation undergoes a transient period.
As the velocity magnitude is kept small, to satisfy above
conditions, the simulation takes ∼106 time steps in order to
reach the steady state. Figure 8 shows contour plots of the
steady-state temperature distribution, correctly showing that,
with increasing Ra, there is an increased convective mixing
and an increased temperature gradient near the wall.

FIG. 8. Temperature distribution in Rayleigh Bénard convection
for three Rayleigh numbers of Ra = 5000 (top), Ra = 10 000
(middle), and Ra = 20 000 (bottom), visualized using 10 temperature
contours that are equally spaced between the bottom temperature of
0.402 and the top temperature of 0.398. The domain dimensions and
other parameters are reported in Table I.
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10 3 10 4 10 5

Ra

1

2

3

4

Nu

FIG. 9. The Nusselt number Nu as a function of the Rayleigh
number Ra in Rayleigh Bénard convection, obtained from the present
simulations (crosses), reference values [41] (circles), and an empirical
formula Nu = 1.56(Ra/Rac)0.296, where the critical Rayleigh number
Rac = 1708 [8].

The heat transfer is numerically computed using:

� = κ

2
(Th − 〈T 〉1 + 〈T 〉Ly

− Tc), (14)

where 〈T 〉1 and 〈T 〉Ly
are the temperatures averaged over

x on the nearest grid line next to the lower and upper
walls, respectively, i.e., 〈T 〉j = L−1

y

∑Lx

i=1 Ti,j . The resulting,
simulated Nusselt number is presented as a function of the
Rayleigh number in Fig. 9. The results are in very good
agreement with the reference solutions [8,41].

VI. CONCLUSIONS

We show that thermal LB can be stabilized by filtering
the second- and third-order collision moments, effectively
diffusing the nonequilibrium momentum and heat fluxes, and
thereby introducing additional k2-dependent diffusion terms
to the hydrodynamic equations. The k2-dependent diffusion
terms are of the same order of magnitude as the spurious
higher-order terms in the Chapman-Enskog expansion of the
current D3Q33 LB method. Therefore the filtering does not
compromise the accuracy of this method.

The limitation of the proposed filter [Eq. (10)] is related to
its wave-number dependence ψ̂(k), displayed in Fig. 3. Below
a critical τ − 1

2 , the amount of νF ψ̂(k) needed to stabilize
intermediate k corresponds to destabilizing νF ψ̂(k) values at
large k. Although, beyond the scope of the present work, the
stabilization range of the method can be improved by extending
the filter stencil, thereby tailoring the shape of ψ̂(k).

APPENDIX A: BASIS FUNCTIONS AND EQUILIBRIUM
MOMENTS FOR THE D3Q33 MODEL

The basis functions of the D3Q33 model are as follows:

φ1α = 1,

φ2α = cαx,

φ3α = cαy,

φ4α = cαz,

φ5α = −26 + 11cα
2,

φ6α = −cα
2 + 3cαx

2,

φ7α = cαy
2 − cαz

2,

φ8α = cαxcαy,

φ9α = cαxcαz,

φ10α = cαycαz,

φ11α = −37cαx + 13cα
2cαx,

φ12α = −37cαy + 13cα
2cαy,

φ13α = −37cαz + 13cα
2cαz,

φ14α = cαxcαy
2 − cαxcαz

2,

φ15α = −cαx
2cαy + cαycαz

2,

φ16α = cαx
2cαz − cαy

2cαz,

φ17α = 55cαx − 45cα
2cαx + 38cαx

3, (A1)

φ18α = 55cαy − 45cα
2cαy + 38cαy

3,

φ19α = 55cαz − 45cα
2cαz + 38cαz

3,

φ20α = cαxcαycαz,

φ21α = 304 − 325cα
2 + 69cα

4,

φ22α = 69cα
2 − 19cα

4 − 207cαx
2 + 57cα

2cαx
2,

φ23α = −69cαy
2 + 19cα

2cαy
2 + 69cαz

2 − 19cα
2cαz

2,

φ24α = −8cαxcαy + 3cα
2cαxcαy,

φ25α = −8cαxcαz + 3cα
2cαxcαz,

φ26α = −8cαycαz + 3cα
2cαycαz,

φ27α = 140cαx − 117cα
2cαx + 27cα

4cαx − 26cαx
3,

φ28α = 140cαy − 117cα
2cαy + 27cα

4cαy − 26cαy
3,

φ29α = 140cαz − 117cα
2cαz + 27cα

4cαz − 26cαz
3,

φ30α = −368 + 900cα
2 − 505cα

4 + 77cα
6,

φ31α = −802cα
2 + 747cα

4 − 137cα
6 + 2406cαx

2

− 2241cα
2cαx

2 + 411cα
4cαx

2,

φ32α = 802cαy
2 − 747cα

2cαy
2 + 137cα

4cαy
2 − 802cαz

2

+ 747cα
2cαz

2 − 137cα
4cαz

2,

φ33α = 144 − 1002cα
2 + 1147cα

4 − 438cα
6 + 53cα

8,

and the equilibrium moments are as follows:

f̃
(eq)
1 = ρ,

f̃
(eq)
2 = ρux,

f̃
(eq)
3 = ρuy,

f̃
(eq)
4 = ρuz,

f̃
(eq)
5 = ρ(11u2 + 33T − 26),

f̃
(eq)
6 = −ρ

(−2u2
x + u2

y + u2
z

)
,

f̃
(eq)
7 = ρ

(
u2

y − u2
z

)
,

f̃
(eq)
8 = ρuxuy,

f̃
(eq)
9 = ρuxuz,
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f̃
(eq)
10 = ρuyuz,

f̃
(eq)
11 = ρux(13u2 + 65T − 37),

f̃
(eq)
12 = ρuy(13u2 + 65T − 37),

f̃
(eq)
13 = ρuz(13u2 + 65T − 37),

f̃
(eq)
14 = ρux

(
u2

y − u2
z

)
,

f̃
(eq)
15 = −ρuy

(
u2

x − u2
z

)
,

f̃
(eq)
16 = ρuz

(
u2

x − u2
y

)
,

f̃
(eq)
17 = −ρux

(
7u2

x + 45u2
y + 45u2

z + 111T − 55
)
, (A2)

f̃
(eq)
18 = −ρuy

(
45u2

x + 7u2
y + 45u2

z + 111T − 55
)
,

f̃
(eq)
19 = −ρuz

(
45u2

x + 45u2
y + 7u2

z + 111T − 55
)
,

f̃
(eq)
20 = ρuxuyuz,

f̃
(eq)
21 = ρ(1035T 2 + 690T u2

− 975T + 69u4 − 325u2 + 304),

f̃
(eq)
22 = −ρ

(−2u2
x + u2

y + u2
z

)
(19u2 + 133T − 69),

f̃
(eq)
23 = ρ

(
u2

y − u2
z

)
(19u2 + 133T − 69),

f̃
(eq)
24 = ρuxuy(3u2 + 21T − 8),

f̃
(eq)
25 = ρuxuz(3u2 + 21T − 8),

f̃
(eq)
26 = ρuyuz(3u2 + 21T − 8),

f̃
(eq)
27 = 0,

f̃
(eq)
28 = 0,

f̃
(eq)
29 = 0,

f̃
(eq)
30 = 0,

f̃
(eq)
31 = 0,

f̃
(eq)
32 = 0,

f̃
(eq)
33 = 0.

APPENDIX B: LINEAR STABILITY THEORY OF THE
LATTICE BOLTZMANN MODEL

Here we briefly reproduce the linear stability theory,
introduced by Lallelamand and Luo. For a more extensive
treatment of the stability theory, the reader is referred to
the original reference [32]. The starting point is assuming
that fα equals a uniform and steady background f (0)

α with a
superimposed nonuniform perturbation f (1)

α . The equilibrium
background corresponds to a mass density ρ0 = 1, a fluid
velocity u0, and a temperature T0. Inserting fα = f (0)

α + f (1)
α

into Eq. (2) and using Eq. (5) for the collision matrix gives the
following equation for the behavior of f (1)

α :

f (1)
α (x + cα,t + 1) − f (1)

α (x,t)

= φ−1
αβ 
̃βγ

([
f̃ (0)

γ + f̃ (1)
γ

](eq) − f̃ (0)
γ − f̃ (1)

γ

)
(x,t), (B1)

where it is used that f (0)
α is uniform and steady.

The next step is to linearize the equilibrium term,[
f̃ (0)

α + f̃ (1)
α

](eq) = f̃ (0)
α + Ẽαβ f̃

(1)
β , (B2)

where it is used that f (0)
α is at equilibrium. The matrix Ẽαβ =

δf̃
(eq)
α

δf̃β
|f̃ =f̃ (0) in Eq. (B2) is readily evaluated by rewriting the

equilibrium moments f̃
(eq)
α from expressions in ρ, u, and T (see

Appendix A) into expressions in terms of the five conserved
moments f̃1,f̃2,f̃3,f̃4 and f̃5. Combining Eqs. (B1) and (B2)
gives:

f (1)
α (x + cα,t + 1) = [δαγ +
αβ(Eβγ − δβγ )]f (1)

γ (x,t), (B3)

where δαβ is the unit matrix. It is noted that in Eq. (B3) the
matrices are evaluated in velocity space.

The final step in the linear stability theory is to decompose
f (1)

α into its Fourier components f̂ (1)
α ,

f (1)
α (x,t) = f̂α(k,t) exp(ik · x). (B4)

Inserting Eq. (B4) into Eq. (B3) leads to the following
evolution equation for the wave amplitude:

f̂α(k,t + 1) = Lαβ(k)f̂β(k,t), (B5)

where Lαβ is the linearized evolution operator:

Lαβ = Fαγ (δγβ + 
γδ[Eδβ − δδβ]), (B6)

and Fαβ contains exp (−ik · cα) on its diagonal.

APPENDIX C: THE EFFECT OF FILTERING ON THE
HYDRODYNAMICS

Here we outline the so-called Chapman-Enskog expansion
to derive the equations of motion for mass, momentum,
and energy and demonstrate that filtering the second- and
third-order collision moments in the LB equation acts as
diffusing the nonequilibrium momentum and heat fluxes. For
an extensive treatment of the Chapman-Enskog expansion in
the LB method, the reader is referred to Ref. [4]. Unlike the
rest of this paper, we do not assume summation over repeated
indices in this Appendix. Instead, we write summation
symbols explicitly.

The Chapman-Enskog expansion is based on expanding the
distribution function around the equilibrium as a function of
the small parameter Knudsen number ε:

fα = f (eq)
α + εf (1)

α + ε2f (2)
α , (C1)

applying a multiscale expansion for time and spatial scales:

∂t = ε∂t0 + ε2∂t1 , ∇ = ε∇, (C2)

Taylor expanding the streaming operator:

fα(x + cα,t + 1) − fα(x,t)

= [
∂t + cα · ∇ + 1

2 (∂t + cα · ∇)2
]
fα(x,t) (C3)

and Taylor expanding the filtered collision operator:∑
y,β,γ

[δαβδ( y) + νF Nαβψ( y)]
βγ

× [
f (eq)

γ (x + y,t) − fγ (x + y,t)
]

=
∑

β

Mαβ

[
f

(eq)
β (x,t) − fβ(x,t)

]
. (C4)
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Here the effective collision operator is given by:

Mαγ =
∑

β

(δαβ + NαβνF ∇2)
βγ , (C5)

where we have used that Eq. (10) is the second-order discrete
representation of the Laplacian,∑

y

ψ( y)f (x + y) = ∇2f (x). (C6)

In the moment space Ñαβ has unit diagonal elements for
nonconserved second- and third-order moments and it is
zero elsewhere. Therefore in the moment space M̃αβ has
1
τ

(1 + νF ∇2) on the diagonal elements for the nonconserved
second- and third-order moments, it has one on the diagonal
elements for fourth- and higher-order moments, and it is zero
elsewhere.

Using Eqs. (C1)–(C5) in Eq. (9) and collecting terms of
order ε gives us the first-order approximation to the filtered
LB equation,(

∂t0 + cα · ∇)
f (eq)

α = −
∑

β

Mαβf
(1)
β . (C7)

The first-order equations for the density of mass, momentum,
and energy are obtained by multiplying Eq. (C7) with 1, cα ,
or c2

α , respectively, and summing the result over α, which is
equivalent to computing the conserved moments of Eq. (C7).
In this procedure, we use Maxwell-Boltzmann equilibrium
moments and zero conserved moments of the effective colli-
sion operator, which is equivalent to zero conserved moments
of f (1)

α and f (2)
α .

The second-order approximation to the filtered LB equation
reads:

∂t1f
(eq)
α + 1

2

(
∂t0 + cα · ∇)2

f (eq)
α + (

∂t0 + cα · ∇)
f (1)

α

= −
∑

β

Mαβf
(2)
β . (C8)

On taking conserved moments of this equation, the
f (1)

α term generates the following nonzero, nonequilibrium
moments:∑

α

cαcαf (1)
α = −τ (1 − νF ∇2)

∑
α

cαcα

(
∂t0 + cα · ∇)

f (eq)
α ,

∑
α

cαc2
αf (1)

α = −τ (1 − νF ∇2)
∑

α

cαc2
α

(
∂t0 + cα · ∇)

f (eq)
α .

(C9)

These expressions are derived from Eq. (C7) in combination
with the following eigenvalue relations of the effective colli-
sion operator:∑

α

cαcαMαβ = 1

τ
(1 + νF ∇2)cβ cβ,

∑
α

cαc2
αMαβ = 1

τ
(1 + νF ∇2)cβc2

β, (C10)

and the following expression for the inverse of the filter
function:

(1 + νF ∇2)−1 = (1 − νF ∇2), (C11)

which is valid for small νF . By combining Eqs. (C7), (C8),
and (C9), we arrive at the following second-order equations
that describe the changes due to nonequilibrium momentum
and heat fluxes:

∂t1

∑
α

cαf (eq)
α = ∇ ·

{[
τ (1 − νF ∇2) − 1

2

]

×
∑

α

cαcα

(
∂t0 + cα · ∇)

f (eq)
α

}
,

∂t1

∑
α

c2
αf (eq)

α = ∇ ·
{[

τ (1 − νF ∇2) − 1

2

]

×
∑

α

cαc2
α

(
∂t0 + cα · ∇)

f (eq)
α

}
. (C12)

It is therefore concluded that, up to second order, the filtering
replaces τ by τ (1 − νF ∇2) in the overall equations of fluid
motion,

∂ρ

∂t
= −∇ · (ρu), (C13a)

∂ρu
∂t

= −∇ · (ρuu + ρT δ + �), (C13b)

∂ρ
(

1
2u2 + D

2 T
)

∂t

= −∇ ·
[
ρu

(
1

2
u2 + D + 2

2
T

)

− κ(1 − νF ∇2)∇T + u · �

]
, (C13c)

� = −μ(1 − νF ∇2)

(
∇u + (∇u)T − 2

D
δ∇ · u

)
, (C13d)

with a dynamic viscosity of μ = ρT (τ − 1
2 ), a thermal

conductivity of κ = ρT cp(τ − 1
2 ), a specific heat capacity at

constant volume of cv = D
2 , a specific heat capacity at constant

pressure of cp = cv + 1 = D+2
2 , a specific heat capacity ratio

of γ = cp

cv
= D+2

D
, a sound speed of cs = √

γ T =
√

D+2
D

T ,

a kinematic viscosity of ν = μ

ρ
= T (τ − 1

2 ), a thermal dif-

fusivity of α = κ
ρcp

= T (τ − 1
2 ), and a Prandtl number of

Pr = ν
α

= 1.

APPENDIX D: REFERENCE SOLUTION TO THERMAL
POISEUILLE FLOW

A gas with relaxation time τ and average density ρ0 is
driven in the x direction by an external pressure gradient
−∂xP between two walls that are located at y = −H/2
and y = H/2 and that are kept at a constant temperature
Tw. Viscous dissipation results in a temperature distribution
between the walls. The fully developed system is described by
the thermal Navier-Stokes equations [Eq. (C13)] supplemented
with −∂xP . Under the present conditions these equations
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reduce to:

0 = −∂xP + (
τ − 1

2

)
∂y(ρT ∂yux), (D1a)

0 = −∂y(ρT ), (D1b)

0 = ∂y

[
ρT

(
5
2∂yT + ux∂yux

)]
, (D1c)

under the constraints that:

ux(−H/2) = ux(H/2) = 0, (D1d)

T (−H/2) = T (H/2) = Tw, (D1e)

H−1
∫ H/2

−H/2
ρ(y)dy = ρ0. (D1f)

The solution to Eqs. (D1a)–(D1f) reads:

ux = u0(1 − η2), (D1g)

T = Tw + u2
0

5
(−1 + 2η2 − η4), (D1h)

ρ = p

T
, (D1i)

where η = 2y/H and u0 = −H 2∂xP/[8p(τ − 1/2)]. The
pressure p, which is constant over y, is obtained by imposing

Eq. (D1f), which is solved numerically using built-in routines
of the MATHEMATICA software.

APPENDIX E: REFERENCE SOLUTION FOR THE
STATIONARY RAYLEIGH-BÉNARD SETUP

A gas with relaxation time τ and average density ρ0 resides
between a hot wall at x = 0 with temperature Th and a cold
wall at x = H with temperature Tc. Gravitational acceleration
g points towards the hot wall in the negative x direction.

The fully developed system is described by the thermal
Navier-Stokes equations [Eq. (C13)] supplemented with the
gravitational force −ρg. Under the present conditions, these
equations reduce to:

0 = −∂x(ρT ) − ρg, (E1a)

0 = −∂x(ρT ∂xT ), (E1b)

under the constraints that

T (0) = Th, (E1c)

T (H ) = Tc, (E1d)

H−1
∫ H

0
ρ(y)dy = ρ0. (E1e)

The solution to this system has been obtained numerically
using built-in routines of the MATHEMATICA software.
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