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Effective classical dynamics provide a potentially powerful avenue for modeling large-scale dynamical
quantum systems. We have examined the accuracy of a Hamiltonian-based approach that employs effective
momentum-dependent potentials (MDPs) within a molecular-dynamics framework through studies of atomic
ground states, excited states, ionization energies, and scattering properties of continuum states. Working
exclusively with the Kirschbaum-Wilets (KW) formulation with empirical MDPs [C. L. Kirschbaum and L.
Wilets, Phys. Rev. A 21, 834 (1980)], optimization leads to very accurate ground-state energies for several
elements (e.g., N, F, Ne, Al, S, Ar, and Ca) relative to Hartree-Fock values. The KW MDP parameters obtained
are found to be correlated, thereby revealing some degree of transferability in the empirically determined
parameters. We have studied excited-state orbits of electron-ion pair to analyze the consequences of the MDP
on the classical Coulomb catastrophe. From the optimized ground-state energies, we find that the experimental
first- and second-ionization energies are fairly well predicted. Finally, electron-ion scattering was examined by
comparing the predicted momentum transfer cross section to a semiclassical phase-shift calculation; optimizing
the MDP parameters for the scattering process yielded rather poor results, suggesting a limitation of the use of
the KW MDPs for plasmas.
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I. INTRODUCTION

Large-scale simulations are needed to model nonequilib-
rium electronic dynamics in a wide variety of scenarios,
including stopping power experiments in dense plasmas [1,2],
multispecies mixing under extreme conditions [3,4], nonequi-
librium x-ray Thomson scattering (XRTS) [5,6], laser-matter
experiments (e.g., core ionization in x-ray free electron
laser experiments [7,8]), and ultracold neutral plasmas [9].
The need for such modeling stems from the emergence
of recent large-scale experimental facilities, such as the Z
machine [10,11], National Ignition Facility [12,13], Linac
Coherent Light Source [14,15], and Deutsches Elektronen-
Synchrotron (DESY) [16,17], to name a few. Further, diag-
nostic capabilities such as imaging XRTS [18,19] will provide
unprecedented information about the dynamical evolution of
electronic states in these experiments. Coupled with recent
advances in computational power that allows molecular dy-
namics simulations to span unprecedented length (multitrillion
particles) and time scales (pico- to microseconds) [20–25], a
detailed knowledge of the nonequilibrium dynamics of such
systems is, in principle, obtainable; however, it is currently not
possible to perform such large-scale simulations for electronic
dynamics because of the computational overhead in modeling
quantum systems.

Most computational approaches to electronic structure fall
into three broad categories. Historically the Car-Parinello
(CP) [26] method provided an avenue for coupling an
electronic structure calculation to ion dynamics, albeit with
a fictitious electron dynamics. Similarly, Born-Oppenheimer
Molecular Dynamics (BOMD) [27,28], a limiting case of
the CP method for massless electrons, forces the electronic

evolution to track the (potentially nonequilibrium) ion dy-
namical scales. BOMD can also be approximately extended to
some electronic dynamical quantities, such as the AC electrical
conductivity in the Kubo-Greenwood formulation [29,30],
through the use of the Kohn-Sham orbitals and energy
eigenvalues. In all three cases, the true electronic dynamics
is not modeled.

Conversely, more direct approaches to dynamical evolu-
tion employ Time-Dependent Hartree-Fock (TDHF) [31,32]
or Time-Dependent Density Functional Theory (TDDFT)
[33,34]. TDDFT has been employed for calculating excitation
spectra of atoms and molecules [35,36] and the dynamic
structure factor of warm dense matter [37]. Conventionally,
for an N particle system, TDDFT has an unfavorable O(N3)
scaling that results in a few seconds per propagation step on a
multicore implementation (∼8000 cores) for a system of a few
thousand atoms [38]; thus, TDDFT is currently quite limited to
small-scale systems over short times. Moreover, incorporating
finite temperature states in TDDFT remains a challenge despite
recent progress in this area [39,40].

The complete dynamics of the nonequilibrium electrons is
described by a 6N -dimensional partial differential equation
(PDE) [the complex, time-dependent Schrödinger equation
(TDSE) in three spatial dimensions]. Simpler alternative
approaches that balance physics fidelity with lower compu-
tational cost have also been proposed. The general idea is
based on mapping the quantum problem onto a framework
computable in terms of a classical approach. Mapping to
classical-like dynamics offers the advantage of using classical
MD techniques with O(N ) or O(N logN ) scaling [41] that
enable large-scale simulations of interest [42,43]. There are
several avenues for constructing a classical framework [44]

2470-0045/2016/94(4)/043205(14) 043205-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevA.21.834
https://doi.org/10.1103/PhysRevE.94.043205


DHARUMAN, VERBONCOEUR, CHRISTLIEB, AND MURILLO PHYSICAL REVIEW E 94, 043205 (2016)

for solving the time-dependent quantum problem. For
example, Remacle and Levine [45] construct a classical-like
framework based on ordinary differential equations for the
occupancies and phases. Similarly, the Gaussian-based time-
dependent variational principle [46,47] yields classical-like
equations of motion. Alternatively, Schiff and Poirier [48]
build an effective Lagrangian method that contains higher-
order derivatives, which in turn yields classical-looking
equations with extra degrees of freedom [49]. Quantum
Statistical Potentials (QSPs) [50–52] and empirical potentials
for molecular systems [53] are purely classical in their form,
with effective potentials; many of these methods have been
reviewed elsewhere [54]. However, the WPMD method has
several undesirable properties [47], whereas the QSP method
suffers from a reliance on statistical properties (e.g., tem-
perature [52]) not well suited for describing nonequilibrium
phenomena.

Here we wish to replace the original TDSE with a
smaller computational problem using 6N ordinary differential
equations. We will employ a Hamiltonian formulation that
retains the classical phase space variables, but introduces
a momentum-dependent potential (MDP) that contains a
nonseparable term to account for quantum commutator and
Pauli properties. The MDP method represents the full problem
in terms of a well-chosen model and empirical parameters. A
“well-chosen” model is one that satisfies as many constraints
as possible; here the Hamiltonian formulation was specifically
chosen because of its natural classical limit and its conservation
properties (as discussed in Sec, II). The empirical parameters
to this model must be used to train the model to match a
finite (and usually small) set of known properties, preferably
from accurate experimental data. For these properties, the
MDP model can be considered to be exact. Unfortunately,
very few exact dynamical properties for quantum systems
are known, and limited training of the MDP parameters is
possible. Given that set of parameters, the most important
issue is then transferability: do the parameters chosen to
match some “exactly known” property also describe those
properties for which we have no prior knowledge? In fact, this
strategy is similar to other approaches, such as the wave-packet
approach of Ref. [55] and the machine learning approach
of Ref. [56].

MDPs have been quite successful in atomic [57–60], molec-
ular [61], and nuclear physics [62–65]; however, little work has
been done for bulk (plasma-like) systems [66]. In such finite-
temperature electronic systems electrons undergo excitation,
deexcitation, ionization, and recombination. Therefore, the
MDP approach for plasma-like systems needs to be established
because the identity of an electron in a nonequilibrium system
varies from (1) being in the ground state, (2) being in an excited
state, (3) ionizing into the continuum, and (4) performing
free-free scattering important to transport processes. Our goal
here is to establish the efficacy of the MDP approach for
modeling large-scale plasma-like system through a careful
examination of these four properties. For simplicity, we
utilize the best known MDP, the Kirshbaum-Wilets (KW)
MDP [57,58,66–76], which has proven very successful for
bound states.

This paper is organized as follows. A general formulation
of the Hamiltonian approach is presented for arbitrary pair

MDPs in Sec. II to establish a precise definition of an MDP
model and its basic properties. We then examine four basic
MDP properties, moving from ground-state energies to excited
state properties to ionization energies and, finally, free electron
scattering properties. Optimization of ground-state energies is
discussed in Sec. III, and transferrability of the parameters to
atomic systems not in the training set is tested. Next, we turn
to the examination of excited state properties in Sec. IV. The
transferability of parameters among the properties is examined
by using optimized ground-state properties to predict first and
second ionization energies; this is discussed in Sec. V. Free-
electron properties are then examined in terms of electron-ion
scattering in Sec. VI.

II. EFFECTIVE MANY-BODY HAMILTONIAN
FORMULATION

In this section we present the Hamiltonian formulation for
a nonseparable MDP of the form V (r,p) that is otherwise
arbitrary, including a discussion of the implied constants of
motion that serve as constraints. We assume that the equations
of motion derived from this Hamiltonian retain their familiar
classical form.

Consider an effective Hamiltonian for a system of Ne

electrons and Ni ions of the form

H = HC + HQ, (1)

where HC is the purely classical contribution, given by

HC =
N∑

i=1

p2
i

2mi

+
N∑

i<j

ZiZje
2

|ri − rj | , (2)

and HQ incorporates quantum corrections through interactions
of the form

HQ =
N∑

i<j

[
V H

ij (ri − rj ,pi − pj )

+ δsi sj
V P

ij (ri − rj ,pi − pj )
]
, (3)

where N = Ne + Ni is the total number of particles, and i

and j are particle indices referring to particles of electron (e)
or ion (I ) subsystems. Ze = −1 for electron, and ZI is the
nuclear charge. V H is a general Heisenberg MDP between all
particles, and V P is a general Pauli MDP between identical
particles [selected by δsi sj

in Eq. (3) where si and sj are spins
of particles i and j , respectively]. V P prevents two identical
particles from occupying the same regions of phase space.
It is important to note that the V H and V P terms do not
correspond to purely kinetic or potential energies, consistent
with the usual commutator properties of quantum operators.
The form for HQ is not arbitrary, but should be chosen for
stability reasons (mitigating the Coulomb catastrophe) and
to have empirical flexibility that allows its parameters to be
tuned to experimental values. All forms in use have these two
properties.
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The Hamilton equations for particle i are given by

dri

dt
= ∂H

∂pi

= pi

mi

+
N∑

j �=i

∂
[
V H

ij (ri − rj ,pi − pj ) + δsi sj
V P

ij (ri − rj ,pi − pj )
]

∂pi

, (4)

dpi

dt
= −∂H

∂ri

= −
N∑

j �=i

∂

∂ri

[
ZiZje

2

|ri − rj |
]

−
N∑

j �=i

∂
[
V H

ij (ri − rj ,pi − pj ) + δsi sj
V P

ij (ri − rj ,pi − pj )
]

∂ri

. (5)

We would like to point out that ṙi �= pi ; that is, the velocity
is not proportional to the canonical momentum because of the
addition of the nonseparable MDP.

An important note is that this framework naturally captures
finite temperature aspects through the initial conditions for the
phase space coordinates; therefore, this formulation does not
suffer from the same issues as TDDFT [39], which neglects
natural thermal fluctuations [37].

Constants of motion

Due to the nonseparable terms in the Hamilton equations
[Eqs. (4) and (5)] as a result of the MDPs, it becomes
necessary to check if the fundamental constants of motion like
total energy and total angular momentum are conserved. The
equation of motion of any function of phase space coordinates
A(r1,p1,r2,p2, . . . ,rN,pN ) for a N particle system is given by

dA

dt
= {A,H } + ∂A

∂t
, (6)

where H is the Hamiltonian of the system as given by Eq. (3)
and {A,B} denotes the Poisson bracket defined as

{A,B} =
N∑

i=1

(
∂A

∂ri

∂B

∂pi

− ∂A

∂pi

∂B

∂ri

)
. (7)

When the function A is the Hamiltonian itself, then the
equation of motion is given by dH

dt
= ∂H

∂t
, since {H,H } = 0.

If the Hamiltonian is time-independent, ∂H
∂t

= 0, resulting in
dH
dt

= 0, that is, a time-independent Hamiltonian even with
MDPs is a constant of motion. Therefore, the Hamiltonian with
MDPs acts as a conserved energy, making it a useful theoretical
concept and an important tool in numerical implementations.

Now, let us consider function A to be the total angular
momentum of the system given by

LT =
N∑

i=1

Li =
N∑

i=1

∑
ν

Liν ν̂, (8)

where Liν is the νth component of particle i’s angular
momentum Li = ri × pi with ν = (x,y,z). Since the total
angular momentum is a time-independent quantity, its equation
of motion is given by

dLT

dt
= {LT ,H } =

∑
ν

{
N∑

i=1

Liν,H

}
ν̂. (9)

If the potential is spherically symmetric in position and
momentum space, expanding the Poisson bracket of the x

component of the total angular momentum and Hamiltonian
gives

{
N∑

i=1

Lix,H

}
=

N∑
i=1

{Lix,H },

=
N∑

i=1

(
pyipzi

pi

∂H

∂pi

+ ziyi

ri

∂H

∂ri

− ziyi

ri

∂H

∂ri

− pyipzi

pi

∂H

∂pi

)

+
N∑

i=1

∑
j �=i

[
pzi(pyi − pyj )

pij

∂H

∂pij

+ zi(yi − yj )

rij

∂H

∂rij

− pyi(pzi − pzj )

pij

∂H

∂pij

− yi(zi − zj )

rij

∂H

∂rij

]
. (10)

There are some obvious cancellations due to terms of equal and opposite sign resulting in{
N∑

i=1

Lix,H

}
=

N∑
i=1

∑
j �=i

1

pij

∂H

∂pij

(pzjpyi) +
N∑

i=1

∑
j �=i

1

pij

∂H

∂pij

(−pzipyj ) +
N∑

i=1

∑
j �=i

1

rij

∂H

∂rij

(zjyi) +
N∑

i=1

∑
j �=i

1

rij

∂H

∂rij

(−ziyj ).

(11)
Since pij = pji , the first and second terms cancel each other. Similarly, rij = rji results in the third and fourth terms canceling
each other. Therefore, {

N∑
i=1

Lix,H

}
= 0. (12)
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FIG. 1. Plots of r2[V (r,p) = ε2

4αr2 eα[1−(rp/ε)4]] (in atomic units) where α = 1 and ε = 1 (a) and α = 1 and ε = 2 (b) show that for rp � ε,
the potential becomes very repulsive. Since V H and V P have similar functional forms, common notations are used to denote the potentials and
their corresponding variables: V (r,p) denotes V H or V P , α denotes αH or αP , ε denotes εH or εP , r denotes ri or rij , and p denotes pi or pij .
Therefore, the highly repulsive behavior of V (r,p) as rp � ε enforces the Heisenberg and Pauli principles within the classical framework.

Similar steps lead to {∑N
i=1 Liy,H } = 0 and {∑N

i=1 Liz,H } =
0, resulting in

dLT

dt
= {LT ,H } = 0. (13)

Therefore, the total angular momentum is also a conserved
quantity for a Hamiltonian with MDPs that are spherically
symmetric in position and momentum space.

III. GROUND STATE ENERGIES

In the next four sections we will examine ground state,
excited state, ionization, and scattering properties of MDPs,
beginning in this section with ground-state energies. This
requires the choice of a specific MDP, and we have chosen
the KW MDP because ground states of many-electron atoms
have been modeled with KW MDP [57] (therefore, we drop
the KW designation in what follows). Before we continue
it is important to specify more precisely the strategy. The
empirical parameters in this model are used to train the model
to match Hartree-Fock (HF) ground-state energies of a subset
of the elements [77]. The trained model is then tested for its
transferability to ionization energies and ground-state energies
of other elements that were not used in the training.

The MDP interaction between an electron and the nucleus
is stabilized by the Heisenberg MDP

V H (ri,pi) = ε2
H �

2

4αHmer
2
i

eαH [1−(ripi/εH �)4], (14)

where me is mass of electron, ri and pi are the magnitudes
of position and momentum of the ith electron relative to
the nucleus, and εH and αH are parameters. Because V H is

more repulsive, scaling as r−2, than the attractive electron-ion
attraction, scaling as −r−1, the electron resides in a potential at
a finite distance from the nucleus. The ion is taken to be at rest
relative to the electron due to the large ion-electron mass ratio.
However, the KW prescription only includes a Heisenberg
interaction between species and no statistical interaction
between ions by its definition [78]. For a many-electron atom,
the Pauli exclusion principle is incorporated through the Pauli
MDP expressed as

V P (rij ,pij ) = ε2
P �

2

4αP mer
2
ij

eαP [1−(rij pij /εP �)4], (15)

where rij and pij are the magnitudes of relative position and
momentum of the ith and j th electron, respectively, and εP

and αP are parameters. V H tries to impose the condition
ripi � εH �, which is analogous to the Heisenberg uncertainty
principle, and V P tries to impose the condition rijpij � εP �,
which is analogous to the Pauli exclusion principle. The region
excluded from phase space by Pauli and Heisenberg MDPs is
referred to as the “core.” εH and εP are parameters that decide
the size of the core, while αH and αP are parameters that
decide the hardness of exclusion from the core. Note that V H

and V P have similar functional forms. Therefore, they are
illustrated in a combined manner as r2V (r,p) in Fig. 1, where
V denotes V H or V P ,r denotes ri or rij , and p denotes pi

or pij . From Fig. 1 we can infer that for ripi � εH � and
rijpij � εP � the potentials become very repulsive, thereby
enforcing the Heisenberg and Pauli principles within the
classical framework. The properties of the ground state depend
on the values of the core sizes and the hardness parameters. For
simplicity [79], we try to quantify the influence of core sizes
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on the ground-state energies; therefore, we fix the values of
the hardness parameters αH and αP to be 2 and 1, respectively,
as suggested by Beck et al. [80] based on their stopping power
studies.

The ground state of a many-electron atom is obtained by
minimization of the Hamiltonian with respect to positions and
momenta of the electrons keeping their spins fixed, which
requires a simultaneous solution for the set of equations
∂H
∂ri

= 0 and ∂H
∂pi

= 0 for i = 1 to Ne. The minimized Hamil-
tonian would result in a frozen configuration for the ground
state with zero electron velocities but nonzero momenta, as
mentioned below Eq. (5). Thus, the MDP model has the
desired nonclassical behavior. The energy of the minimized
Hamiltonian gives the ground-state energy E. The electrons
are assigned successive spin values of 1/2 and −1/2 and are
initialized with certain position and momentum values prior
to minimization. Atomic units were used for the calculation.
Following Ref. [57], minimization was performed using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [81] as
implemented in the MATLAB solver “fminunc.” BFGS is an
unconstrained optimization method belonging to the class of
quasi-Newton methods. Despite the use of BFGS we cannot
be sure that the optimization results in a global minimum. To
identify the core sizes that resulted in ground-state energies in
close agreement with HF (Hartree-Fock) values we performed
the minimization for a range of core sizes for some elements.
For an atom with M electrons, the Hamiltonian is a function
of 6M variables; therefore, the cost of minimization increases
as M becomes larger. On a laptop with Intel Core i3 processor
(2.53 GHz and 4 GB RAM) it took about 4 sec and 5
min to obtain the ground states of nitrogen and calcium,
respectively. A search in the parameter space requires a number
of minimizations, therefore, we performed the search only for

some elements, namely, nitrogen (N), neon (Ne), aluminum
(Al), argon (Ar), and calcium (Ca).

Correlated core sizes (εH,εP )

The percentage deviation from HF defined as
�HF (αH ,αP ) = 100|(E − EHF )/EHF | was traced as a
surface for N, Ne, Al, Ar, and Ca for εH spanning from about
1 to 2 and εP spanning from about 1 to 2.5. The space was
discretized with a grid spacing of 0.01, therefore about 15 000
minimizations were performed for each element considered.
After parallelizing, minimizations to trace the surface for Ca
on a node with about 10 cores took about 2 days. The search
was crucial because the search led us to identify correlated
εH and εP values that resulted in ground-state energies in
very good agreement with HF values for all the elements
considered. Figure 2 shows the projected surface of �HF for
Al and Ca and the correlated (εH ,εP ) points that correspond
to �HF � 4%. Using the same condition, the correlated set of
(εH ,εP ) were extracted from �HF surfaces of other elements
considered (N, Ne, and Ar) as shown in Fig. 3(b) (points).
Relative error with respect to HF values �HF (%), are shown
in Fig. 3(a). For each of these elements the ground-state
energy with minimum �HF are comparable with ground-state
energy experimentally measured [82].

We observed that the correlated (εH ,εP ) follow a pattern
with respect to atomic number (Z), that is, the correlation
extends to higher values of εH with increasing atomic number,
as seen in Fig. 3(b). The reason for this pattern is not
understood. The correlation between εH and εP is captured
well by a parabolic relation expressed as

εP = A(Z)ε2
H + B(Z)εH + C(Z). (16)
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FIG. 2. Projected surface of �HF (%) = 100|(E − EHF )/EHF | in (εH ,εP ) plane for Al (a) and Ca (b) showing the region of minima.
(εH ,εP ) points (white dots) corresponding to �HF � 4% follow a curve indicating that there is a correlation between εH and εP values that
result in ground-state energies which are in very good agreement with HF values. The correlation between the parameters reveal some degree
of transferability to ground-state energies of other elements that are not tested.
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FIG. 3. (a) Relative error �HF (%) of MDP prediction of ground-state energies with respect to HF values (green circles connected by
dashed green line) for N, Ne, Al, Ar, and Ca show that the KW formulation is an excellent model for ground-state energies (lines are to guide
the eye). (b) Correlated (εH ,εP ) points (circles in shades of red from light to dark corresponding to increasing atomic number) extracted from
the �HF surfaces. Also shown are curve fits (solid curves in shades of red increasing from light to dark corresponding to increasing atomic
number) using εP = Aε2

H + BεH + C for N, Ne, Al, Ar, and Ca. For all the elements considered, the curve fits match well with the points
extracted from the corresponding �HF surfaces, suggesting a possible transferability with respect to the atomic number.

There is no particular reason for expressing εP as a function
of εH ; a similar fit would yield εH as a function of εP . We
quantified the pattern with respect to atomic number by fitting
the coefficients A,B, and C to fourth degree polynomials as
shown in Fig. 4(a). We then interpolated the coefficients for
fluorine (F) and sulfur (S) to obtain their correlated (εH ,εP )
that resulted in ground-state energies in good agreement with
HF. The maximum �HF was ∼10% and ∼5% for F and
S, respectively. This is remarkable because it confirms the
transferability of the trained (εH ,εP ) to ground-state energies
of F and S that were not included in the training. Figure 4(b)
shows the interpolated (εH ,εP ) curves of F and S along with
the parabolic fits of (εH ,εP ) for N, Ne, Al, Ar, and Ca.

IV. EXCITED STATE ORBITS

In this section we turn to excited state properties, defined as
ṙ �= 0,ṗ �= 0, and H < 0. Again, we make use of the MDP, but
for an electron-ion pair with the simpler Hamilton equations
given by

dr
dt

= p
me

+ ∂Veff(r,p)

∂p
,

(17)
dp
dt

= −∂Veff(r,p)

∂r
,

where Veff(r,p) contains both the attractive Coulomb potential
and the (repulsive) Heisenberg MDP.

In contrast with the minimization procedure used in the
previous section, we now examine several initial value prob-

lems for (17). The Hamilton equations (17) with ionic charge
Z = 1,αH = 5, and εH = 0.9535 were numerically integrated
(after conversion to atomic units) using MATLAB’s RK45
integrator. We considered the following initial conditions: (i)
r = 1x̂,p = 1ŷ, (ii) r = 1x̂,p = 1√

2
x̂ + 1√

2
ŷ, (iii) r = 1x̂,p =

1x̂; these choices yield quite different behaviors. As shown in
Fig. 5(a), the trajectory is Kepler-like (blue curve) for initial
condition (i), is of zig-zag nature (green curve) for (ii), and is
a reciprocating pattern (red curve) for (iii). Note that condition
(iii) corresponds to zero initial angular momentum, which is
an important test of any MDP; zero initial angular momentum
would result in a Coulomb catastrophe in the absence of the
proper MDP. The stabilizing nature is due to the dominant 1/r2

contribution in the MDP in the limit of p = 0 or rp = εH ,
compared to the (infinitely deep) attractive Coulomb potential
−1/r . We found the energy and angular momentum to be
conserved for all three trajectories as expected from Sec. II.

One way of interpreting the trajectories’ nature is by
superimposing their (r,p) dynamics on the total energy contour
as shown in Fig. 5(b). Depending on the initial condition, the
electron executes a trajectory that confines its energy to a
contour marked by its initial energy. This implies that the
minimum of the confining potential Veff(r,p) changes with the
electron’s momentum in accordance with energy conservation.
Further, though Fig. 5(b) gives the impression that (r,p)
dynamics for the three different trajectories overlap with each
other, Figs. 5(c) and 5(d) showing the magnified regions 1 and
2 of Fig. 5(b) reveal a kind of band structure in their (r,p)
dynamics that do not exactly overlap with each other.
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FIG. 4. (a) Coefficients A, B, and C of the fit εP = Aε2
H + BεH + C vary as a function of atomic number (Z). The pattern in the data points

of A (green circles), B (black star), and C (red squares) corresponding to N, Ne, Al, Ar, and Ca are captured well by fourth degree polynomial
fits for A (solid green curve), B (dotted black curve), and C (dashed red curve). (b) Correlated (εH ,εP ) curves for F (blue dashed) and S (blue
solid) computed with A, B, and C interpolated using their corresponding fourth degree polynomial fits. Ground state energies for F and S from
their correlated (εH ,εP ) are in good agreement with HF values (with a maximum �HF of ∼10% and ∼5% for F and S, respectively). This
confirms the transferability of the trained (εH ,εP ) to ground-state energies of elements that were not included in the training.

V. FIRST AND SECOND IONIZATION ENERGIES

The identity (being bound or free) of an electron in a finite-
temperature plasma is continuously changing. Moreover, in
processes such as charged-particle stopping, much of the
energy loss can be due to ionization [83]. Therefore, in addition
to atomic properties, MDPs must accurately capture transitions
between bound and free states. In this subsection we examine
these properties through comparisons of predicted first and
second ionization energies with experimental values. We do
this in a manner that allows us to assess the transferable
properties of the MDPs by using parameters previously trained
on ground-state properties.

The nth ionization energy is given by

In = En − E0, (18)

where En is the energy of an ion with n electrons removed
and E0 is the (ground-state) energy of the neutral atom. En

for n = 1,2 were obtained by minimizing the corresponding
Hamiltonian using the same minimization algorithm employed
above for every correlated εH and εP pair trained on the
ground-state energy of the corresponding neutral atom. The
corresponding set of first and second ionization energies were
then computed. From this set, we chose those that minimized
the combined error defined as

�EGS,1,2 = (EGS − EHF)2 + (I1 − I1,expt.)
2 + (I2 − I2,expt.)

2,

(19)

where I1,expt. and I2,expt. are experimentally measured first and
second ionization energies given by NIST data [82]. As shown
in Fig. 6, first ionization energies are in good agreement with
the NIST data, while the second ionization energies yield

mixed results. Therefore, the parameters εH and εP trained
to give very accurate neutral ground-state energies transfer
well to the prediction of first and second ionization energies,
with some outliers.

VI. SCATTERING PROPERTIES OF FREE
ELECTRON STATES

In this section we examine our fourth criteria for plasma be-
havior: scattering properties of continuum states. We quantify
the MDP’s ability to accurately describe continuum properties
through tests based on the momentum transfer cross section
(MTCS), an important quantity related to stopping power
[84–86] and other transport properties [87]. As in previous
sections, we reduce the many-body Hamiltonian to a simpler
system of an electron scattered by a screened ion. The
Hamiltonian in the reference frame of the ion is given by

HC= p2

2me

+ V Y (r), (20)

V Y (r)= −Ze2

r
e−r/λ, (21)

where Z is the ionic charge and λ is the screening length,
which is chosen appropriate to a plasma; for example, for
dense plasmas, λ is typically a finite temperature Thomas-
Fermi screening length [88]. For the rest of this section atomic
units have been used and λ is expressed through an inverse
screening parameter κB = aB/λ where aB is the Bohr radius.

We begin by comparing the quantum and classical MTCS
to identify the conditions where they differ appreciably. The
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FIG. 5. (a) Electron trajectory around ion (black dot) corresponding to different initial conditions: Kepler-like motion from t = 0 to
t = 50 a.u. (blue curve), zig-zag motion from t = 0 to t = 50 a.u. (dark green curve), zig-zag motion from t = 50 to t = 231 a.u. (light green
curve), and reciprocating motion from t = 0 to t = 50 a.u. (red curve). Reciprocating motion corresponds to zero initial angular momentum,
which would result in an unstable trajectory in the absence of Heisenberg MDP. (b) Magnitude of position (r) and magnitude of momentum (p)
corresponding to the trajectories in (a) from t = 0 to t = 50 a.u. are superimposed on the Hamiltonian surface. (c) Region 1 of (b) magnified
to show the bandlike structure in (r,p) dynamics. (d) Region 2 of (b) magnified to show a similar bandlike structure in (r,p) dynamics.

quantum MTCS is given by

σ
QM
tr = 4π

k2

∞∑
l=0

(l + 1) sin2(δl − δl+1), (22)

where k is the magnitude of the wave vector of a free electron
and δl is the phase shift for angular momentum quantum
number l. For simplicity, we chose the WKB approximation

for δl [84,87], which is given by

δl =
∫

dr

√
k2 − (l + 1/2)2

r2
− 2V Y (r)

−
∫

dr

√
k2 − (l + 1/2)2

r2
. (23)
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FIG. 6. For N, F, Ne, Al, S, Ar, and Ca, first and second
ionization energies were computed using MDPs with the correlated
(εH ,εP ) optimized to give accurate neutral ground-state energies.
MDP prediction of first ionization energies (red curve) is in good
agreement with NIST data (dashed blue curve); second ionization
energies using MDPs (green curve) yield mixed results compared to
NIST data (dashed cyan curve). Therefore, the parameters trained on
neutral ground-state energies transfer fairly well to the prediction of
first and second ionization energies with some outliers.

The classical MTCS [87] is given by

σCL
tr =

∫ ∞

0
db[1 − cos θ (b)]b, (24)

where θ (b) is the scattering angle for an impact parameter
b. For a Hamiltonian without an MDP the scattering angle is
given by the semianalytic formula

θ (b) = π − 2b

∫ ∞

rm

dr

r2

1√
1 − b2/r2 − V Y (r)/E

, (25)

where rm is the classical turning point given by the largest root
of the equation

1 − b2

r2
m

− V Y (rm)

E
= 0. (26)

Now, for a Hamiltonian with an MDP, Eq. (25) cannot be
applied; therefore, we computed the scattering angle from
the electron’s trajectory, which was obtained by numeri-
cally integrating its Hamilton equations until the electron-
ion interaction became negligible. We refer to this as the
trajectory method for MTCS. For the purely classical case
with Z = 1, κB = 1, and energy range E = 10 to 100
a.u., we compared the MTCS from trajectories with the
semianalytic MTCS Eq. (25). They are in good agreement
as shown in Fig. 7, thereby validating our implementation.
For the same conditions, the quantum MTCS differ appre-
ciably from the classical MTCS as shown in Fig. 7. Also
shown in Fig. 7 are asymptotic limits of the classical and
quantum MTCS values (denoted by σCM

tr,asym. and σ
QM
tr,asym.

respectively) derived in Ref. [89] that have analytic expressions

101 102

E (a.u.)

10−3

10−2

10−1

σ
tr

(a
.u

.)

Classical σtr using trajectory method

Classical σtr using semi-analytic method

Classical σtr: asymptotic limit

Quantum σtr using WKB phase shifts

Quantum σtr: asymptotic limit

FIG. 7. Comparison of the classical and quantum MTCS for
Z = 1,κB = 1, and E = 10 to 100 a.u. The classical MTCS using
semianalytic method (blue dashed) and the trajectory method (cyan
dashed) are in very good agreement. They also match with the
asymptotic limit of the classical MTCS (red dashed) given by Eq. (27).
The quantum MTCS (black dashed) differ significantly from the
classical result. Also shown is the asymptotic limit of the quantum
MTCS (pink dashed) given by Eq. (28) with the difference from the
numerical quantum MTCS decreasing as energy increases.

given by

σCM
tr,asym. = 4π

(
Z

2E

)2[
ln

(
4E

Z
λ

)
− γ − 1

2

]
, (27)

σ
QM
tr,asym. = 4π

(
Z

2E

)2[
ln(2

√
2Eλ) − 1

2

]
, (28)

where γ = 0.577 [89]. These expressions reveal that in the
asymptotic limit, the quantum MTCS qualitatively differs from
the classical MTCS due to a lower limit set by the deBroglie
wavelength on the distance of closest approach for quantum
scattering. Therefore, the test for MDP is if it can include the
necessary quantum effects to bridge the gap between classical
and quantum MTCS values.

Since the interaction is between an electron and a screened
ion, Heisenberg MDP is added to HC [Eq. (20)]. Using the
trajectory method, we computed scattering angles for a range
of impact parameters for αH = 1 and εH = 0.125, 0.25,
and 0.5, as shown in Fig. 8. We found a structure in the
scattering angles for low-impact parameters which is due to
the MDP’s influence on the electron-ion interaction as evident
in the electron trajectories for b = 0.026, 0.028, and 0.03, as
shown in Fig. 9(b). Those trajectories correspond to the impact
parameter range where the scattering angle decreases to zero
and then increases [as marked by the vertical dotted lines in
Fig. 9(a)]. We performed an optimization with respect to the
free parameters, αH and εH , to minimize the squared difference
between the quantum MTCS and the MTCS using MDP. The
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FIG. 8. Scattering angle θ vs impact parameter b corresponding
to Z = 1,κB = 1, and E = 10 a.u. for the purely classical case (black
dashed curve) and with Heisenberg MDP (blue curve: αH = 1,εH =
0.125; green curve: αH = 1,εH = 0.25; red curve: αH = 1,εH =
0.5). Scattering at low impact parameters is highly influenced by
the MDP, resulting in a structure in the scattering angles with the
angle decreasing to zero and then increasing as impact parameter
increases. Scattering angles of all the curves overlap with each other
for large impact parameters.

optimized MTCS using MDP are close to the purely classical
values, as shown in Fig. 10(a), implying that the MDP doesn’t

incorporate the required quantum effects despite having a
strong effect on the electron-ion scattering for small impact
parameters. Figure 10(b) shows the filled contour of MTCS
for a range of αH and εH for Z = 1,κB = 1, and E = 25 a.u.
The lowest MTCS value on the MTCS contour is about
0.016 a.u. which is larger than the corresponding quantum
MTCS value of 0.0122 a.u. Similar observations were made
from MTCS contours for energies in the range of 10 to
100 a.u. for Z = 1 and κB = 1. Therefore, though MDP
serves as a good model for ground-state energies and first
ionization energies of many-electron atoms, it is unable to
incorporate the quantum effects in scattering of a free electron
by a stationary screened ion, suggesting its limitation for
plasmas.

VII. SUMMARY AND CONCLUSION

In summary, we have examined a time-dependent,
quantum-mechanical method for large-scale simulations of
nonequilibrium systems as an alternative to more expensive
methods such as TD-DFT, TD-HF etc., and which relaxes most
limitations associated with the relatively fast WPMD [47] and
QSP [51] methods. In particular, our focus has been on the
use of a classical-like, Hamiltonian-based framework based
on effective momentum-dependent interactions [62] that
has desirable conservation properties and the computational
scaling of standard classical molecular dynamics. For sim-
plicity, we employed the KW MDP form [62] since they have
been quite successful for many atomic properties [58,61,66–
70,72,73,75,76]. We examined their strengths and weaknesses
for use in nonequilibrium dense plasma simulations using four
criteria.
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FIG. 9. (a) Scattering angle vs impact parameter obtained using MDP with αH = 1,εH = 0.125 for Z = 1, κB = 1, and E = 10 a.u. There
is a structure in the scattering angles with the angles becoming nearly zero for an impact parameter of b = 0.028 a.u. (b) Electron trajectory for
b = 0.028 a.u. (red curve) reveals that though there is a strong interaction between the electron and the screened ion (black dot), the interaction
is such that the scattering angle is nearly zero in the asymptotic limit of the trajectory. Electron trajectories for b = 0.026 a.u. (blue curve) and
b = 0.03 a.u. (green curve) indicated by the vertical lines in (a) show that though the corresponding scattering angles are similar in magnitude,
the nature of the trajectories are different with the electron scattered upward for b = 0.026 a.u. while the electron is scattered downward for
b = 0.03 a.u.
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FIG. 10. (a) For Z = 1, κB = 1, and E = 10 to 100 a.u. the classical MTCS (blue curve) and the quantum MTCS (green curve) are
compared with the MTCS using MDP (red dots) optimized with respect to its free parameters αH and εH to minimize the squared difference
between the quantum MTCS and the MTCS using MDP. (b) Filled contour of MTCS using MDP for a range of αH and εH for Z = 1, κB = 1,
and E = 25 a.u. The lowest value on the MTCS contour is 0.016 a.u., which is still large compared to the corresponding quantum MTCS value
of 0.0122 a.u. Though the MDP significantly influences the electron-ion scattering for small impact parameters, its MTCS predictions are close
to the classical MTCS suggesting the MDP’s limitation for modeling electron-ion scattering in dense plasmas.

We first trained the parameters based on HF calculations
to give accurate ground-state energies for neutral atoms
with atomic number less than 20; the excellent agreement
with HF calculations is shown in Fig. 3(a). We found a
correlation between the parameters and fitted the correlation
to a parabolic relation as shown in Fig. 3(b), revealing a level
of transferability of these parameters to previously untrained
systems.

Next, we computed the properties of excited state orbits
of electron-ion pair and found disparate properties of the
trajectories depending on the initial angular momentum,
including unusual reciprocating patterns. An important feature
of the KW MDP is the stabilization of the Coulomb catastrophe
for the special case of zero initial angular momentum [see
reciprocating motion case in Fig. 5(a)].

Because plasma electrons persistently undergo ionization
and recobination events, we then turned to the ionization
process itself, with the ionization energy as our quality metric
for the MDP. From the fixed, previously determined ground-
state parameters we predicted the first- and second-ionization
energies and found first ionization ionization energies to be
in good agreement with experimental values, again suggesting
good transferability. However, the second ionization energies
were mixed, with half accurate and half with an error as large as
a factor of two, as shown in Fig. 6. The reason for this behavior
in the second ionization energy is currently unknown.

Finally, we examined continuum states responsible for
electronic transport processes, such as stopping power [84] and
electrical and thermal conductivity [87]. We chose to examine
the ability of the KW MDP to reproduce the MTCS versus
energy for electron-ion collisions. A screened interaction was

chosen because it more realistically represents the dense
plasma environment and because the Rutherford MTCS
has pathological properties (i.e., a large impact parameter
divergence) in this context. Using a WKB approach [87], we
computed the classical and quantum MTCS and compared
with predictions from KW MDP trajectories. As we showed
in Fig. 10, KW MDP cannot yield the correct MTCS
despite training the parameters, suggesting that the functional
form itself is responsible. Thus, although KW MDPs were
successful for ground-state properties, they cannot capture
scattering properties important for plasma simulations.

The results presented here were for isolated atoms and
ions. To quantify the implications of our findings on many-
body properties of a plasma, large-scale molecular dynamics
simulations are needed; this is beyond the scope of the present
work and will be explored in a future work. However, our
results have suggested several areas of improvement. First, the
KW forms did not include a Heisenberg interaction between
electrons, which is unphysical. Second, the functional form of
the KW appears to have emerged to recover a Bohr picture of
the ground state, which yields poor properties for scattering
states. Third, alternate training methods should be explored,
including optimizing on several properties (e.g., ground-state
energy and cross sections) simultaneously. Such explorations
are underway and will be the subject of a future work.

ACKNOWLEDGMENT

The work was supported by the Air Force Office of
Scientific Research.

043205-11



DHARUMAN, VERBONCOEUR, CHRISTLIEB, AND MURILLO PHYSICAL REVIEW E 94, 043205 (2016)

[1] J. A. Frenje, P. E. Grabowski, C. K. Li, F. H. Séguin, A. B.
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