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Autoresonances of m = 2 diocotron oscillations in non-neutral electron plasmas
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The existence of autoresonances for m = 2 diocotron oscillations of non-neutral electron plasmas in a uniform
magnetic field was predicted by particle-in-cell simulations and it was confirmed in experiments. The obtained
results show clear deviations from the standard threshold amplitude dependence on the sweep rate. The threshold
amplitude approaches a constant at a lower sweep rate when there is a damping force. It was also found that the
aspect ratio for the oval cross section of the confined plasma can be controlled by the frequency of the externally
applied driving force.
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I. INTRODUCTION

Autoresonance is a phenomenon observed in a wide range
of nonlinear oscillations. Thus, autoresonances have been
studied in various fields, i.e., atomic physics, plasma physics,
solid state physics, and so on [1–8]. Unique features of
autoresonance are that the oscillation frequency of the system
follows that of the external driving force when the driving
amplitude exceeds a threshold amplitude and that it becomes
possible to control the amplitude of the oscillation by the
driving frequency.

When a single particle of mass m is confined in a one-
dimensional potential U (x) = −U0 cos x, a solution for the
equation of motion ẍ + ω2

0 sin x = 0 (ω2
0 ≡ U0/m) can be

expressed with Jacobi’s elliptic functions. Here f0 = ω0/2π is
the small-amplitude resonance frequency. With an additional
driving force F = F0 cos(ω0t − αt2/2), the equation of mo-
tion becomes

ẍ + ω2
0 sin x = ε cos(ω0t − αt2/2) (ε ≡ F0/m), (1)

where the driving frequency f (= f0 − αt/2π ) changes
linearly as a function of time t and α is defined as a sweep
rate.

In the case of non-neutral plasmas, m = 1 diocotron
oscillations [9–12] and Bernstein-Greene-Kruskal modes [13]
have been studied. The autoresonance for the axial harmonic
oscillation of an antiproton plasma has been applied for
the production of antihydrogen atoms [14,15]. The obtained
results were well explained by a theoretical model [16,17],
which revealed that the threshold amplitude Vth is proportional
to the power of the sweep rate as

Vth ∝ α3/4. (2)

Hereafter, this dependence is referred to as the standard
threshold amplitude dependence.

So far, there are several reports on the autoresonance with
a damping term mγ ẋ [6,7,11,12], whose equation of motion
is given by

ẍ + γ ẋ + ω2
0 sin x = ε cos(ω0t − αt2/2). (3)

In a superconducting Josephson resonator, it was observed that
Vth(α) deviated slightly from the standard one [6] and the effect
of the Q (= ω0/γ ) factor on m = 1 diocotron oscillations was

reported [11]. Also, numerical calculations for Eq. (3) suggest
that Vth(α) can deviate significantly from the standard one at
smaller α [18].

In this paper we report simulation and experimental results
on the autoresonances for m = 2 diocotron oscillations of
non-neutral electron plasmas in a uniform magnetic field,
which is an example of autoresonance with a damping term.
Being different from autoresonances of the m = 1 diocotron
oscillation and axial harmonic oscillation, in which the center
of mass moves as an oscillator, the center of mass stays on the
axis of symmetry for m = 2 diocotron oscillations. Instead,
the cross section of the oval profile changes as a function
of resonant frequency [19] and the decay constant of the
oscillation becomes much larger. Experimental results on the
m = 1 diocotron oscillation and axial harmonic oscillation are
also presented for a comparison of the damping terms.

II. SETUP FOR EXPERIMENTS AND SIMULATIONS

A. Experimental setup

A schematic of the experimental setup for m = 2 diocotron
oscillations is shown in Fig. 1(a). Non-neutral electron
plasmas are confined with a multiring electrode trap, which
contains 45 ring electrodes with an inner radius of R = 35
mm and an axial length of 12 mm. There are 4-mm gaps
between electrodes. Five electrodes denoted by closed squares
are segmented azimuthally into four pieces, so azimuthal
oscillations can be excited and detected. The radial and
axial confinement is provided by a uniform magnetic field
of ∼96 G and the electrostatic potential V1 = V2 = −50 V
that is applied to five electrodes at both ends. Thus, the axial
length of the confined electron plasma becomes ∼57 cm.
Other electrodes are grounded except two sets of azimuthally
segmented electrodes. For m = 2 diocotron experiments, a pair
of azimuthally segmented electrodes at the center is connected
to an oscillator and another pair of azimuthally segmented
electrodes at the different axial position is used to pick up
signals through an amplifier, as shown in the figure. For m = 1
diocotron experiments, the pairs of segmented electrodes are
disconnected.

The experimental procedure is as follows. At first, electrons
from a cathode are injected for 1 s by reducing the potential
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FIG. 1. (a) Schematic drawing of the experimental setup for m =
1 and 2 diocotron autoresonances of non-neutral electron plasmas
in a uniform magnetic field B ∼ 96 G. Open squares are grounded
ring electrodes. Five pairs of solid squares represent azimuthally
segmented electrodes. Gray squares at both ends are ring electrodes
where the potentials V1 and V2 are applied. The number of electrons is
changed by the cathode potential and V1 during the electron injection.
(b) Experimental setup for autoresonances of the axial harmonic
oscillations B ∼ 190 G.

V1. Typically, (6.5–9.5) × 108 electrons are confined with a
density of ∼106 cm−3. The number of electrons is changed
to control the density of the plasma and f0 for the m = 2
diocotron oscillations. After a holding time of ∼300 ms, an
external rf drive is applied for a few milliseconds with a fixed
sweep rate and the excited signal is recorded simultaneously
with a digital oscilloscope. To detect the number of electrons
the potential V2 is grounded to guide electrons towards a
Faraday cup, which is made of a phosphor screen coated
with an Al foil with a thickness of ∼500 Å. A CCD camera
behind the phosphor screen is used to record the images of the
extracted electron plasmas when necessary.

Also shown in Fig. 1(b) is the experimental setup for
autoresonances of axial harmonic oscillations with a uniform
magnetic field of ∼190 G. In this case, only a part of the trap
is used for the confinement of electrons. Three electrodes at
the center and other electrodes are biased to −15 and −40 V,
respectively. The potential created on the axis of symmetry
is shown by the solid line in the figure. The small-amplitude
axial oscillation frequency in this case is f0 ∼ 9.5 MHz. The
experimental procedure is almost the same, but the electrons
are injected only for 400 μs, which results in an electron
number of ∼1.9 × 107. The holding time is made 5 s to

make sure that all the electrons are at the bottom of the
potential through collisions with background neutrals. Then
an external driving force is applied to ring electrodes for a few
milliseconds with a fixed sweep rate and the excited signal is
detected from electrodes on the other side.

B. WARP simulations

Originally, the autoresonances for m = 2 diocotron os-
cillations were found with the particle-in-cell (PIC) code
WARP [20,21], which has been a powerful tool to predict and
study several non-neutral plasma experiments and phenomena
[22–25]. Here WARP simulations are applied to evaluate
autoresonances of m = 2 diocotron oscillations for the current
experimental setup. One of the advantages of using WARP is its
capability of calculating the proper particle drifts and Lamor
radius without resolving the gyromotion in space and time.
The time step is 10−8 s and the grid sizes are 2 mm along
the magnetic field and 0.9 mm in the perpendicular plane to
the magnetic field. Most of the simulation geometries, i.e., the
magnetic field, radius of electrodes, plasma length, and so on,
are the same with experiments.

However, it should be noted that the experimental con-
ditions are not perfectly reproduced in the simulations. In
general, PIC simulations do not include a realistic model for
collisions and collisions exist only artificially via numerical
effects. In fact, the growth rates of the modes and their
decay constants in simulations are faster than those in the
experiments. Also, the plasma density cannot be too high,
because the grid space should be less than the Debye length.
The smaller grid space results in the unfavorably longer
calculation time. Furthermore, the required long calculation
time makes it difficult to evaluate threshold amplitudes in
smaller α. In consequence, the resonance frequency can be
different from the one in experiment. This is compensated for
with the use of the normalized sweep rate αn ≡ α/2πf 2

0 , which
means how much the frequency is swept during one cycle of
the small-amplitude resonance frequency f0. The normalized
sweep rate is useful to compare experimental results with
calculations that have different f0.

In simulations, electrons are not injected but prepared inside
the trap from the beginning. The initial circular radial density
profile measured in an experiment is imitated and an ideal
local equilibrium with cylindrical symmetry is calculated by
assuming the Boltzmann distribution at a constant radius and
solving the Poisson equation [20]. Then an external rf drive is
applied to observe if an autoresonance is excited or not.

In spite of these limitations, the correspondence of radial
profiles of plasmas between experiments and simulations are
good, which ensures the feasibility of WARP for the current
investigation. Shown in Fig. 2 are examples of the radial
profiles of a plasma when the m = 2 diocotron oscillation
is excited with large-amplitude rf bursts.

III. RESULTS AND DISCUSSION

A. Threshold amplitudes

Shown in Fig. 3 are the experimental results for m = 2
diocotron oscillations with f0 ∼ 240 kHz. In Figs. 3(a) and
3(b), the external drive is applied for 4 ms (from time 0
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FIG. 2. Radial profiles of a plasma with a large amplitude
m = 2 diocotron oscillation observed in (a) an experiment and
(b) a simulation. The circular halo around the oval core is created
when the m = 2 diocotron oscillation is excited with large-amplitude
rf bursts.

to 4 ms) by sweeping the frequency from 240 to 232 kHz,
which corresponds to α/2π = 2 kHz/ms. The excited signal
is recorded for 10 ms (10 Ms/s, 100 kpts) and a fast Fourier
transformation (FFT) is applied 100 times for 10 kpts (1 ms)
by shifting 1 kpts (0.1 ms) every time to observe the time
variation of the excited signal. When the amplitude of the
external drive Vd is 1.0 V, which is below a threshold, the
frequency of the excited signal stays almost constant around
240 kHz, as in Fig. 3(a). Here the darker tone means the lower
power and the white line reflects the frequency of the excited
oscillation. On the other hand, when Vd becomes 1.1 V, which
is above a threshold, it can be clearly seen in Fig. 3(b) that
the frequency of the excited oscillation follows that of the
external drive, which is used to judge if the external drive
results in autoresonance or not. It can also be seen that the
frequency of the excited oscillation goes back to the original
frequency after the external drive is stopped at 4 ms.

The measurement is repeated by changing the sweep rate
and driving amplitude to obtain the threshold amplitude Vth as
a function of sweep rate α/2π , which is plotted in Fig. 3(c).
The upper horizontal axis is αn. The error bars in the figure
correspond to the voltage step �V used to scan the external rf
amplitude. Although there are shot by shot fluctuations, ±�V

covers the fluctuations. It can be clearly seen that the Vth

dependence deviates from the standard dependence of α3/4

at the smaller α. The dotted line is the fitting curve Vth =
(0.81 ± 0.12) + (0.17 ± 0.05)α0.78±0.06. This means that there
is a critical amplitude of 0.81 ± 0.12 V for the onset of
autoresonance, below which the external drive is no longer
sufficient to overcome the damping losses. In fact, this is
consistent with the prediction of the theoretical model [11].
Following the theoretical models in Refs. [11,17], the threshold
of the normalized drive strength with a damping term can be
expressed by

εth =
√

8

ω0

{(
α

3
+ γ 2

16

)1/2

+ γ

4

}3/2

= 2f0√
π

{(
2π

3
αn + γ 2

n

16

)1/2

+ γn

4

}3/2

, (4)

where γn ≡ γ /f0 is the normalized decay constant. This means
that εth approaches constant when α becomes negligible to
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FIG. 3. Autoresonance for m = 2 diocotron oscillation with f0 ∼
240 kHz. (a) FFT spectra below a threshold amplitude Vth. The
frequency of the excited oscillation stays constant. (b) FFT spectra
above Vth. The frequency of the excited oscillation follows that of
the external drive. (c) Vth as a function of α/2π . It deviates from the
standard dependence of α3/4 at the lower sweep rate. (d) The decay
time constant of the small amplitude m = 2 diocotron oscillation is
about 1.8 ms, which corresponds to the normalized decay constant
γn ∼ 0.0023.

γ 2. When α dominates the damping term, the original result
(∝α3/4) is reproduced. The fitting curve with Eq. (4) overlaps
the one shown in Fig. 3(c), which gives γn = 0.032 ± 0.002.

043204-3



GOMBEROFF, HIGAKI, KAGA, ITO, AND OKAMOTO PHYSICAL REVIEW E 94, 043204 (2016)

normalized sweep rate α n

normalized sweep rate α n

sweep rate α/2π (kHz/ms)

sweep rate α/2π (MHz/ms)

th
re

sh
ol

d 
am

pl
itu

de
 (V

)
th

re
sh

ol
d 

am
pl

itu
de

 (V
)

m = 1 diocotron
f  = 101 kHz0

harmonic
f  = 9.5 MHz0

γ  ~ 0.0001n

γ  ~ 0.00015n

(a)

(b)
FIG. 4. (a) Threshold amplitude dependence on the sweep rate

for m = 1 diocotron autoresonances. (b) Threshold amplitude depen-
dence on the sweep rate for autoresonances of the axial harmonic
oscillations.

Diocotron oscillations excited in non-neutral electron plas-
mas have natural decay time constants. The dotted line in
Fig. 3(d) shows an example of the measurement for a small
amplitude m = 2 diocotron oscillation with f0 ∼ 240 kHz.
The oscillation is excited by rf bursts just before 0 ms and
the power of the excited signal is plotted as a function of
time. The exponential fitting (solid line) gives a decay time
constant of ∼1.8 ms, which corresponds to γn ∼ 0.0023. It
should be noted that this decay constant is obtained after a
small-amplitude burst, which is probably different from the
one obtained with a large-amplitude external drive.

For comparison with the results obtained for m = 2
diocotron oscillations, a similar measurement is performed for
autoresonances of the m = 1 diocotron oscillation with f0 ∼
101 kHz and an axial harmonic oscillation with f0 ∼ 9.5 MHz.
The obtained threshold amplitudes are plotted as functions
of α/2π in Fig. 4. For the m = 1 diocotron oscillation in
Fig. 4(a), the fitting line is proportional to α0.78±0.09 and the
observed normalized decay constant is γn ∼ 0.0001, which
is about 20 times smaller than that of the m = 2 diocotron
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FIG. 5. Red triangles and blue squares are Vth determined by
WARP simulations with different numbers of macroparticles. Open
circles, triangles, and squares are Vth obtained from calculations with
γn = 2π × 0.001, 2π × 0.003, and 2π × 0.005, respectively [18].
Solid circles and diamonds are the normalized experimental data for
f0 ∼ 240 and 404 kHz, respectively. Dotted and dashed lines are the
fitting curves with Eq. (4), which gives γn ∼ 0.032 and 0.045 for
f0 ∼ 240 and 404 kHz, respectively.

oscillation. Also, for the harmonic oscillation in Fig. 4(b),
there is no clear deviation from the standard dependence.
The fitting line is α0.75±0.01 and γn is 0.000 15, which is also
much smaller than that of the m = 2 diocotron oscillation. The
smaller decay constants of the m = 1 diocotron oscillation and
the axial harmonic oscillation mean weaker damping than that
of the m = 2 diocotron oscillation. The comparison with αn

between Figs. 3(c) and 4(b) makes it clear that the threshold
amplitude approaches a constant at a lower sweep rate when
there is a damping force. In fact, the power fitting with the
data αn � 10−4 in Fig. 3(c) gives a threshold dependence of
Vth ∝ α0.57±0.03

n , which also deviates clearly from that of the
m = 1 diocotron oscillation in Fig. 4(a).

In Fig. 5 the experimental results for m = 2 diocotron
oscillations with f0 ∼ 240 kHz (closed circles) and f0 ∼
404 kHz (closed diamonds) are plotted with numerical calcu-
lations for the equation of motion below, where the normalized
time is tn = tf0:

ẍ + γnẋ + 4π2 sin x = ε

f 2
0

cos
[
2π

(
tn − αnt

2
n/2

)]
. (5)

Open circles, triangles, and squares correspond to the threshold
amplitudes calculated with γn = 2π × 0.001, 2π × 0.003, and
2π × 0.005 [18]. Although the sweep rate can be normalized
with αn, it is difficult to normalize the threshold amplitude.
This is because the threshold amplitude obtained in experiment
is the output voltage of the oscillator, which is different
from the amplitude applied to electron plasmas with different
parameters. Here the experimental threshold amplitudes are
normalized to the calculated value at αn = 10−3. Dotted
and dashed lines are the fitting curves for experiments with
Eq. (4), which gives γn = 0.032 ± 0.002 for f0 ∼ 240 kHz
and γn = 0.045 ± 0.002 for f0 ∼ 404 kHz. These values are
10 times larger than those for the small-amplitude oscillation.
It is thought that the difference is due to the nonlinearity of
the oscillations with the driving force, which results in the
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deformation of the plasma cross section with a velocity shear
and viscosity. In fact, it can be said that γn in the nonlinear
regime with the driving force is measured through the present
experiments.

The deviation from the standard threshold amplitude
dependence is also observed in simulations. Due to the long
calculation time necessary, the smallest α/2π in simulations is
limited to 25 kHz/ms, which corresponds to αn ∼ 4 × 10−4.
Red triangles and blue squares in Fig. 5 are Vth obtained
by WARP simulations with macroparticles of 5 × 105 and
2.5 × 105 for ∼2.8 × 108 electrons, respectively. It can be seen
in Fig. 5 that the simulation results deviate from the standard
threshold amplitude dependence at larger αn compared with
experiments. In general, fewer macroparticles with the higher
weight lead to the higher numerical collisions. It is thought
that the numerical collisions result in the higher damping rate
compared with experiments. Nevertheless, it can be seen that
the deviations of Vth from the standard dependence at the
smaller αn in simulations are reproduced.

B. Oval cross section of a plasma

In Ref. [19] the frequency of a large-amplitude m = 2
diocotron oscillation without applied fields was obtained as
a function of the aspect ratio λ as in Eq. (6), where a plasma
column is characterized by a constant density n, an ellipsoidal
cross section with the constant area Ap, and its aspect ratio
λ. Here c and e are the speed of light and electron charge,
respectively. Five lines in Fig. 6(a) are the normalized m = 2
diocotron frequency as a function of λ calculated with Eq. (6)
for different values of

√
Ap/πR2 ≡ rp/R,

2πf = 2cenπ

B

[
2λ

(1 + λ)2
+ A2

p

4π2R4

1 + λ2

λ

]
(6)

∼ ωD

2

⎡
⎣1 +

(
r2
p

R2

)2

− (�λ)2

4

⎧⎨
⎩1 − 2

(
r2
p

R2

)2
⎫⎬
⎭

⎤
⎦. (7)

Introducing the effective circular plasma radius rp and expand-
ing Eq. (6) with λ = 1 + �λ up to the second order in �λ,
Eq. (6) can be approximated as Eq. (7), where the diocotron
frequency is denoted by ωD ≡ 2cenπ/B. When rp/R <

2−1/4 ∼ 0.84, the m = 2 diocotron frequency becomes smaller
as λ (or �λ) becomes larger. The fact that the frequency in
Eq. (7) is proportional to 1 − c0(�λ)2 (c0 is a constant) means
that x in Eq. (5) can be replaced with �λ in the case of
the m = 2 diocotron oscillation. Thus, in autoresonances of
m = 2 diocotron oscillations, it is expected that an elliptical
cross section of the plasma (i.e., λ) can be controlled with the
applied frequency.

The closed circles in Fig. 6(a) are experimental data. In
experiments, it was confirmed that the smaller stop frequency
results in the larger λ. Images in Figs. 6(b)–6(e) are obtained
with α = 5 kHz/ms and Vd = 2.0 V for the case of m = 2
diocotron oscillations with f0 ∼ 240 kHz. Only the sweep time
is changed to obtain images at the end of the external drive with
the different stop frequencies of 230, 220, 210, and 200 kHz
for Figs. 6(b), 6(c), 6(d), and 6(e), respectively. It can be seen
from the images that some electrons are lost and the area of
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FIG. 6. (a) Normalized frequency of m = 2 diocotron oscillations
as a function of the aspect ratio λ calculated with Eq. (6). The
thick solid line, dashed line, dotted line, dash-dotted line, and thin
line correspond to

√
Ap/πR2 ∼ 0.29, 0.43, 0.57, 0.71, and 0.86, in

Eq. (6), respectively. Closed circles are from experiments and the red
and blue lines are the simulation results. Also shown are phosphor
screen images of plasmas extracted at the end of the external drive
for the different stop frequencies of (b) 230, (c) 220, (d) 210, and
(e) 200 kHz, respectively.

the plasma cross section becomes smaller, when λ becomes
larger. This means that the resonance frequency without the
external drive becomes smaller due to the smaller rp. It was
also confirmed by keeping the plasma after the external drive
was stopped that the resonance frequency goes back to a final
frequency ffin, which is less than the original f0 ∼ 240 kHz.
The solid circles are the stop frequency normalized by the final
frequency ffin as a function of λ.

The fact that the cross section of a plasma changes as a
function of the drive frequency is also confirmed in WARP

simulations. The red and blue lines in Fig. 6(a) are obtained in
WARP simulations, which agree with Eq. (6). In the case of the
blue line, as the λ becomes too high with a strong nonlinearity,
the autoresonance is lost and the cross section of a plasma goes
back to a circular one. A similar behavior is also observed in
experiments.

In general, the resonance frequency of the nonlinear
oscillation depends on its amplitude. Examples are the m = 1
diocotron oscillation and the axial harmonic oscillation of
non-neutral plasmas in a uniform magnetic field. In addition,
autoresonance makes it possible to control the oscillation am-
plitude through the external driving frequency. The obtained
results on m = 2 diocotron oscillations suggest that if the
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nonlinear resonance frequency depends on another parameter,
the external driving frequency can control the parameter
through autoresonance.

IV. SUMMARY

Autoresonances of m = 2 diocotron oscillations in non-
neutral electron plasmas in a uniform magnetic field were
investigated in both particle simulations and experiments. A
unique feature in this case is that the dependence of the
threshold amplitude Vth on the sweep rate α deviated from
that of the standard autoresonance Vth ∝ α3/4. The results of

experiments and simulations showed that the damping force
imposed a stricter condition for the onset of autoresonance. The
threshold amplitude approached a constant at the lower sweep
rate when there was a damping force, which was consistent
with the prediction of the theoretical model [11]. Also, it was
found that an elliptical cross section of the plasma (i.e., the
aspect ratio) could be controlled with the applied frequency.
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