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Brewster angle and reflectivity of optically nonuniform dense plasmas
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We provide theoretical analysis of the reflectance of shock-compressed plasmas and warm dense matter for
normal incidence of laser radiation as well as for the dependence of s- and p-polarized reflectivity on the
incidence angle. The self-consistent approach for the calculation of the optical and electronic properties of warm
dense matter and nonideal plasmas developed in our previous works is extended for the description of normal
and polarized reflectivity from the broadened optically nonuniform medium. Two methods are applied for the
calculation of the reflectivity from spatially broadened optically nonuniform medium. The first one is based on
the solution of the Helmholtz equation for the amplitudes of the electromagnetic field. Another one is based on
Drude theory of reflection. It allows us to calculate the ratio of the s- and p-polarized reflectivity if dependence
of the dielectric function on distance is known. For the case of the polarized reflectivity, the particular attention
is concentrated on the Brewster angle. The calculation results for the dielectric function, obtained within the
framework of the density-functional theory with the longitudinal expression for the dielectric tensor, are applied
for the calculation of the reflectivity. Comparison with the experimental data for shock-compressed xenon is
performed.
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I. INTRODUCTION

Measurements and theoretical analysis of optical properties
are conventional methods of phase diagram investigations
for various substances [1–10], particularly in shock-wave
experiments, where the number of the parameters measured
is restricted. However, there is a problem when establishing
a one-to-one correspondence between optical and electronic
properties.

Particular attention is paid to the reflectance of shock-
compressed xenon, which is measured in the unique exper-
iments of Mintsev and Zaporoghets [11–14]. There have been
many theoretical attempts do describe these experimental data.
Taking into account the static effective collisional frequency
within the framework of the Drude model [15] does not give
a satisfactory explanation of the results obtained. The more
accurate expressions for the dynamic effective collisional
frequency in the Born approximation [15] do not improve
agreement with the experiment. Other attempts to explain
experimental results within the framework of the Drude model
are associated with an artificial broadening of the wavefront
[13–18]. Despite a certain improvement of the agreement with
the experiment, this approach does not allow us to establish
one-to-one correspondence between the reflectance values and
the free charge concentration. Moreover, the agreement with
the experiment for normal incidence of laser radiation is
reached if the shock front width is 800 nm, which is much
higher than the initial theoretical estimation 100 nm [11] (the
estimation is based on the evaluation of the xenon ionization
rate). The value of the width 220 nm gives satisfactory
agreement of theoretical results with the experiment for the
dependence of polarized reflectivity on incident angle [14].
However, this value of the width makes the agreement with
experiment for the normal reflectance worse.
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The approach is suggested for the self-consistent descrip-
tion of optical and electronic properties of nonideal plasmas
and warm dense matter [19–23]. It gives a satisfactory descrip-
tion of experiments on normal reflectance of xenon plasmas
[19]. The approach is applied for the description of electronic
properties of warm dense hydrogen and selenium in the region
of the plasma and liquid-liquid phase transitions [22].

In this work, the approach [19–23] is extended to include
a description of the normal and polarized reflectance from
the broadened shock-wave front. In Sec. II, the method of
calculation of the dielectric function and reflectivity within
the framework of the density-functional theory (DFT) is briefly
discussed. The case of reflection from the ideal shock-wave
front is considered. The idea of the self-consistent approach for
description of optical and electronic properties of warm dense
matter and nonideal plasmas is briefly described. The methods
of calculation of normal reflectivity from the nonuniform
density profile and comparison with the experimental data
[11–13] for xenon plasma are considered in Sec. III. Reflectiv-
ity of s- and p-polarized components of the laser radiation
from the sharp shock-wave front is discussed in Sec. IV.
The calculation method for the polarized reflectivity from
the nonuniform shock front profile and comparison with the
experimental data [14] is considered in Sec. V. Experimental
results for the dependence of s- and p-polarized reflectivity
on incident angle [14] are used to investigate the influence of
the optical nonuniformity on the optical properties of xenon
plasmas. Conclusions are presented in Sec. VI.

II. SELF-CONSISTENT CALCULATION METHOD

The dielectric function (DF) is a complex function and can
be expressed as

ε = ε(1) + iε(2). (1)

We consider the interaction of the electromagnetic (trans-
verse) radiation with matter and the response function is
the transverse DF. The dependence on frequency ω of the
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imaginary part of the transverse DF is defined by the following
expression in the long-wavelength limit [24]:

ε
(2)
T (ω,RI) = (4π2e2/3ω2�) lim

|q|→0

∑
n,n′,α,k

2wk

× [f (T ,En,k)−f (T ,En′,k+q)] · |〈ψn′k|v̂α|ψnk〉|2
× δ(En′,k+q − Enk − �ω), (2)

at a given ion configuration RI and temperature T , where e

is the elementary charge, � is a system volume, q is a wave
vector of the incident radiation, and � is the Plank constant.
The summation is carried out over all electron states n, n′.
The summation over index α multiplied by 1/3 stands for the
averaging over three spatial coordinates. The summation is
also carried out over all k points in the Brillouin zone, taking
into account the weights wk of the k points. The factor 2
before the weights allows for the electron spin degeneracy.
f (T ,En,k) is the Fermi-Dirac distribution function. En,k is
an eigenvalue (an energy level) corresponding to the wave
function ψn,k, which is a solution of the Kohn-Sham equation.
We find this solution as a sum of plane waves and therefore
it can be represented by means of the Bloch function ψn,k =
eikr · un,k, where un,k is a cell periodic part. v̂ is the velocity
operator.

For local potentials V (r), the expression for velocity
operator is equivalent to the momentum operator p: v̂ = p/m,
where m is the electron mass. Substitution of this result in (2)
gives the Kubo-Greenwood formula [25,26]. For the nonlocal
potentials V (r,r′), the additional term arises in the expression
for the velocity operator v̂:

v̂ = p/m + (i/�)[V (r,r′),r], (3)

since the operators of the potential V (r,r′) and distance r
do not commute. It means that the substitution of the wave
functions obtained for a Hamiltonian with nonlocal potential
into the Kubo-Greenwood formula gives incorrect results.
However, the Kubo-Greenwood formula can be used with
corrections, which take into account the nonlocality of a
projector augmented wave (PAW) potential [3,27–30].

The longitudinal and transverse DF are equal to each other
in the long-wavelength limit. In this limit, the velocity operator
can be expressed as [31]

v̂ = lim
|q|→0

{[p2/2m + V (r,r′)], exp(iqr)}/�|q|. (4)

The substitution of (4) into (2) gives the expression for the
imaginary part of the longitudinal DF [32–34]:

ε
(2)
L (ω,RI) = (4π2e2/3�) lim

|q|→0

1

|q|2
∑

n,n′,α,k

2wk

× [f (T ,En,k)−f (T ,En′,k+q)]|〈un′,k+eαq | un,k〉|2
× δ(En′,k+q − En,k − �ω), (5)

where the unit vector eα determines the direction of the
Cartesian axis corresponding to the coordinate α. Since
we use the transformation of the velocity operator (4) for
the derivation of (5), the longitudinal expression has no
disadvantages, which the Kubo-Greenwood formula has. The
formula (5) can be used for any electron-ion potentials.

The eigenvalues and the wave functions are calculated
within the framework of the Kohn-Sham DFT approach.
Vienna Ab initio Simulation Package (VASP) [35–38] plane-
wave code is used in this work for DFT modeling.

It is shown in Refs. [24,39] that the longitudinal expression
(5) gives a more correct result in comparison with the widely
used Kubo-Greenwood formula within the framework of
the PAW approach. The correctness of the expression (5)
is confirmed in Refs. [19,40,41], where it is shown that
using (5) provides a better explanation of the experimental
dependence [11,12,18] of the shocked xenon reflectivity for
normal incidence on density in comparison with the Kubo-
Greenwood formalism.

The real part of the DF is obtained by the Kramers-Kronig
transformation,

ε(1)(ω,RI) = 1 + 2

π
P

∫ ∞

0
dω

′ ω
′
ε(2)(ω

′
,RI)

(ω′)2 − (ω + iη)2 , (6)

where P denotes the principle value (in the limit η → 0). It
should be noted that expressions (2) and (5) for the DF are
obtained for the limit of zero effective collisional frequency
(η → 0) and are applicable for frequencies ω � η. However,
in nonideal plasmas, the frequency of collisions has finite
value. The estimation of the influence of the collisions in
plasmas to the optical properties is discussed in Refs. [10,15–
17,42,43]. This problem requires a separate, more detailed
consideration, which is out of scope of the present work.

The scheme of the approach, which was developed for the
calculation of the optical and electronic properties of the dense
plasma and warm dense matter (WDM), is shown in Fig. 1.

The theoretical core of the approach is given in two
red rectangles. The central red rectangle includes the set of

FIG. 1. Scheme of the self-consistent approach for the calculation
of optical and electronic properties of warm dense matter and nonideal
plasmas. The basis of the self-consistent approach for the calculation
of the optical and electronic properties of warm dense matter and
nonideal plasmas within the framework of the DFT (two central
rectangles) and its applications for the case of the sharp shock
front with zero width and the normal incidence of the radiation are
represented in Ref. [19]. In the given work, the extension of the
approach for the case of normal and polarized reflectivity from the
broadened optically nonuniform shock-wave front (upper central and
upper right parts of the figure) are considered.
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the expressions discussed above. The key expression of the
approach is presented by (5), which determines the imaginary
part of the complex DF (1). The lower red rectangle indicates
the density-functional theory approach, which provides wave
functions and energy levels included in expression (5). The
core of the method is surrounded by the possible applications,
which can be divided into two parts: electronic properties
(in the black rectangles) and optical properties (in the black
ellipses).

The lower part of the scheme is the electronic proper-
ties, which include the conductivity, plasma frequency, and
electronic density of states (DOS). The DOS directly arises
from the DFT. The plasma frequency and conductivity are
determined by the imaginary part of the DF (5). The values
of plasma frequency of shock-compressed xenon plasma
are calculated in Ref. [19] with the DF, which also gives
good agreement of calculated values of conductivity and
normal reflectivity with the experiment. These results can be
considered as a validation of the approach.

The electronic properties are calculated within the frame-
work of the approach also for warm dense hydrogen and
liquid selenium [22] in the region of densities and tem-
peratures, where the first-order phase transition is observed
experimentally. The calculated values of the conductivity,
plasma frequency, and DOS demonstrate the dependence on
plasma density, which is characteristic for the first-order phase
transitions.

The upper part of the scheme describes the optical proper-
ties, which include reflectance (both normal and polarized),
Brewster angle, absorption, and transmission. Corrections
are considered which allow for the finite width of the
transient layer at the WDM border. The optical properties
are determined by the complex DF (1) with the real part of
the DF obtained from (5) by means of the Kramers-Kronig
transformation (6).

As it is mentioned above, the imaginary part of the DF is
included in the expressions for both the reflectivity and the
plasma frequency. The approach of calculation of the plasma
frequency and the effective free-electron density based on
using the sum rule is suggested in Ref. [19]. One and the
same sum over states defines explicitly both values. Therefore,
the values of the plasma frequency calculated within the
framework of the approach are directly associated with the
dependencies of the reflectivity on the plasma density. It allows
us to provide an approach for self-consistent description of
optical and electronic properties.

The upper part of the scheme is considered in the given
work for the shock-compressed xenon plasma. The approach
is extended for the description of normal and polarized
reflectivity from the broadened optically nonuniform shock-
wave front, using the calculation results for the DF obtained
in previous work [19]. The results are compared with the
experimental data [11–14].

III. NORMAL REFLECTANCE FROM THE NONUNIFORM
DENSITY PROFILE

The method of calculation of the normal reflectance from
the sharp border of vacuum and considered medium are
presented in Refs. [19,20,40,41], where the comparison with

FIG. 2. Schematic dependence of the dielectric function ε on
coordinate z on the border of two optically uniform media (I and II),
where z = 0: (a) the case of the sharp border (dashed line), where
the dielectric function changes from εI to εII abruptly; (b) the border
between media I and II is optically nonuniform medium III with the
finite width h, where the dielectric function changes continuously.

the experimental data for shock-compressed xenon plasmas is
given as well. The Fresnel formula is used,

R =
∣∣∣∣ (

√
ε − 1)

(
√

ε + 1)

∣∣∣∣
2

. (7)

It should be noted that formula (7) is derived for the
reflectance of the electromagnetic wave from the sharp border
between two optically uniform media with constant values of
the DF, as shown in Fig. 2(a). In this case, εI = 1 (vacuum)
and εII = ε and electromagnetic wave comes from region I.

For the general case, the calculation method of the reflectiv-
ity [15–18] is based on the solution of the Helmholtz equation,

d2E(z)

dz2
+ 4π2

λ2
ε(z,λ)E(z) = 0, (8)

where E(z) is a complex amplitude of the electric field with
the wavelength λ, ε(z,λ) is a nonuniform DF of the medium,
and z is a coordinate which determines the direction of the
electromagnetic wave propagation. The general solution of
Eq. (8) in region I (z < 0) in Fig. 2 for the DF ε(z,λ) = εI = 1
is given by the expression

E(z) = Ci exp(2πiz/λ) + Cr exp(−2πiz/λ), (9)

where Ci and Cr are the amplitudes of incident and reflected
waves, respectively. The values of Ci and Cr can be found
from the following set of equations:

Ci + Cr = E(0)

(2πi/λ)(Ci − Cr ) = E′(0), (10)

where E′ is a derivative dE/dz. The boundary conditions E(0)
and E′(0) are determined by the solution of Eq. (8) in the region
z > 0, which corresponds to region II in Fig. 2(a) or region III
in Fig. 2(b).

The reflectivity R is determined by the ratio of the
intensities of the reflected and incident waves |Cr |2/|Ci |2.
Substitution of the solution of the set of equations (10) gives
the following expression for the reflectivity:

R = |Cr |2
|Ci |2 =

∣∣∣∣2πiE(0) − λE′(0)

2πiE(0) + λE′(0)

∣∣∣∣
2

. (11)
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For the reflection from the sharp border between two
optically uniform media [Fig. 2(a)] with permittivities εI = 1
and εII = ε, the boundary conditions are E(0) = 1 and E′(0) =
2πi

√
ε/λ, which correspond to the solution of Eq. (8) E(z) =

exp (2πi
√

εz/λ) in the region z > 0. Substitution of these
boundary conditions into (11) gives the well-known Fresnel
formula (7).

In this work, we consider the reflection of the electromag-
netic wave from the spatially broadened border of vacuum
and considered medium. In the general case, the border
between vacuum and the shock-compressed medium is not
steplike. It is characterized by smearing of the density profile
within the region with finite width. The region corresponds
to the broadened shock-wave front. In this region, the optical
parameters, such as DF and refraction, change continuously
as schematically shown in Fig. 2(b). Therefore, such a region
is optically nonuniform. In this case, the Fresnel formula (7)
is inapplicable, since the solution of Eq. (8) in the region III
0 < z < h differs from E(z) = exp (2πi

√
εz/λ) in the region

z > 0. In order to find the values E(0) and E′(0), Eq. (8) is to
be solved for the range 0 < z < h with the following boundary
conditions at z = h:

E(h) = exp[2πi
√

ε(h,λ)h/λ],

E′(h) = (2πi/λ)
√

ε(h,λ)E(h), (12)

where h is the width of the optically nonuniform region. The
linear approximation for the dependence of the DF on distance
z is applied ε(z,λ) = 1 + [ε(h,λ) − 1](z/h) in region III.

The value of the ε(h,λ) is calculated within the framework
of the DFT by formulas (5) and (6). Within the framework of
the DFT, the generalized gradient approximation (GGA) for
the exchange and correlation part of the density functional is
used. The functional of Perdew, Burke, and Ernzerhof (PBE)
[44] is used. The solution of the Kohn-Sham equations is found
as a superpositions of the plane waves. The energy cutoff
of the plane-waves basis set is 180 eV, which provides the
convergence of the results.

Calculations are performed in the canonical ensemble. The
ion temperature is controlled by the Nosé-Hoover thermostat
[45,46]. The electron temperature coincides with the ion
temperature and is established by the Fermi-Dirac distribution
for occupancies f (T ,E). The temperature of the system
considered is T ∼ 30 000 K. The exact values of temperature
corresponding to each value of plasma density are given in
Table I. The data in Table I coincide with the experimental
values [11–14,18].

TABLE I. Densities ρ and temperatures T [11–14,18].

λ = 1064 nm λ = 694 nm, 532 nm

ρ (g/cm3) T (K) ρ (g/cm3) T (K)

0.51 30 050 0.53 32 900
0.97 29 570 1.1 33 100
1.46 30 260 1.6 33 120
1.98 29 810 2.2 32 090
2.7 29 250 2.8 32 020
3.84 28 810 3.4 31 040

FIG. 3. Dependencies of the shocked xenon plasma reflectivity
on the plasma density at various values of wavelengths 1064 nm
(a), 694 nm (b), and 532 nm (c). The experimental data [11,12,18]
are depicted by stars. The squares correspond to the calculated
reflectivities from the sharp wave front. The arrows indicate the values
of the plasma density, where the frequency of incident radiation and
the plasma frequency coincide with each other. The dashed lines are
calculated reflectivities from the broadened wave front.

The measured and calculated dependencies of the reflec-
tivity on density are shown in Fig. 3 for the wavelengths
of laser radiation 1064 nm [Fig. 3(a)], 694 nm [Fig. 3(b)],
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TABLE II. The width of the wave front h (nm) for various values
of the density ρ (g/cm3) and wavelengths λ.

ρ 0.97 1.46 1.98 2.7 3.84

λ = 1064 nm 0–130 0–145 0–110 0–80 0–70

ρ 1.1 1.6 2.2 2.8 3.4
λ = 694 nm 0–135 60–145 40–112 0–110 0–25
λ = 532 nm 130–180 130–175 96–120 75–115 —

and 532 nm [Fig. 3(c)]. The experimental data [11,12,18] are
depicted by stars with the error bars. The squares correspond
to the calculation results obtained in Refs. [19,40,41] without
introduction of wave-front broadening. As one can see, the
calculated reflectivities for the wavelengths 1064 and 694 nm
[Fig. 3(a) and 3(b)] are in a good agreement with the
experimental data both in the absolute values and in the density
dependence. Theoretical values of the reflectivity at 532 nm
are overestimated in comparison with the experimental ones.
However, the relative dependence of the reflection coefficient
on the density is reproduced.

The wave-front width h is a parameter of Eq. (8). It is
possible to choose the range of values of h, which gives the
exact experimental values of reflectances at each density within
the error bars. The values of the width h are given in Table II.
The range of h in Table II is determined by the experimental
error of measurement of reflectivity.

The dependence of reflectivity on density calculated by
formula (11) is depicted by dashed line in Fig. 3. The
introduction of wave-front broadening improves the agreement
with the experiment for wavelength λ = 532 nm and, at
the same time, it does not make worse the agreement for
λ = 694 nm. Therefore, since the values of the width are close
to the theoretical value 100 nm, which is physically justified,
the approach gives a complete explanation of the experimental
data [12,18].

IV. POLARIZED REFLECTIVITY FROM SHARP
SHOCK-WAVE FRONT

If the wave vector of the incoming electromagnetic wave
is not collinear with the surface normal, then the reflectivity
depends on polarization of the incident wave. In this case, the
incident wave should be separated into two polarizations for
description of reflectivity. The s-polarized wave is determined
by the component of the electric field, which is perpendicular
to the plane of incidence. The components of the electric field,
which are parallel to the incident plane, correspond to the p

polarization. The following Fresnel formulas are used for the
calculation of reflectivity of s- and p-polarized waves from
the sharp border of vacuum and considered medium:

Rs =
∣∣∣∣cos ϕ −

√
ε − sin2ϕ

cos ϕ +
√

ε − sin2ϕ

∣∣∣∣
2

, (13a)

Rp =
∣∣∣∣ε cos ϕ −

√
ε − sin2ϕ

ε cos ϕ +
√

ε − sin2ϕ

∣∣∣∣
2

, (13b)

where ϕ is the incident angle.

FIG. 4. Calculated dependencies of the shocked xenon plasma
s-polarized (upper lines) and p-polarized (lower lines) reflectivities
on the incident angle at various values of wavelengths and density:
λ = 1064 nm and ρ = 2.7 g/cm3 (solid lines); λ = 694 nm and
ρ = 2.8 g/cm3 (dashed lines); and λ = 532 nm and ρ = 2.8 g/cm3

(dash-dotted lines).

The DF is determined by formulas (5) and (6) within the
framework of the DFT. It is used for the calculation of the
polarized reflectivities by the expressions (13). In Fig. 4, the
results of the calculation of reflectivities from xenon plasmas
of the s-polarized (upper lines) and p-polarized (lower lines)
waves are shown for the three wavelengths λ = 1064 nm
(solid lines), 694 nm (dashed lines), and 532 nm (dash-
dotted lines). The incident angle, at which the p-polarized
reflectivity reaches the minimum value, is the Brewster angle.
The minimum differs from zero due to the considerable
conductance and absorbtion of the xenon plasma.

V. POLARIZED REFLECTIVITY FROM BROADENED
SHOCK WAVE FRONT

For the calculation of the dependence of the s-polarized
electric field E(z) amplitude on incident angle ϕ, the ex-
pression ε(z,λ) − sin2 ϕ is to be substituted in (8) and in the
boundary conditions (12) instead of ε(z,λ). The amplitude of
the p-polarized magnetic field H (z,ϕ) is a solution of the
equation

ε(z,λ)
∂

∂z

[
1

ε(z,λ)

∂H (z,ϕ)

∂z

]

+ [ε(z,λ) − sin2ϕ]H (z,ϕ) = 0, (14)

with the corresponding boundary conditions,

H (h,ϕ) = exp[2πi
√

ε(h,λ) − sin2 ϕh/λ],

Hz(h,ϕ) = (2πi/λ)
√

ε(h,λ) − sin2 ϕH (h,ϕ), (15)

where Hz = ∂H/∂z. The p-polarized reflectivity is calculated
by the following formula:

Rp(ϕ) =
∣∣∣∣2πi

√
1 − sin2 ϕH (0,ϕ) − λHz(0,ϕ)

2πi
√

1 − sin2 ϕH (0,ϕ) + λHz(0,ϕ)

∣∣∣∣
2

. (16)
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TABLE III. The widths of the wave front. The values of the
wave-front widths are obtained as a parameters of the solution of the
Helmholtz equations (h1) and from the Drude theory (h2)

λ (nm), ρ (g/cm3) h1 (nm) h2 (nm)

1064, 2.7 80 161
694, 2.8 100 154
532, 2.8 100 145

The expression (16) is obtained by the same procedure
as (11) and coincides with expression 13(b) for the sharp
border between the vacuum and considered medium. For the
calculation of the s-polarized reflectivity, the corresponding
values of the amplitude E(0,ϕ) and its derivative Ez(0,ϕ) are
to be substituted into (16) instead of H (0,ϕ) and Hz(0,ϕ).

The estimated values of the widths are presented in
Table III. The values (h1) correspond to the values of the
shock-wave width calculated as the solution parameters of the
Helmholtz equations (14).

The measured and calculated values of the Rs and Rp

reflectivity dependencies on the incident angle ϕ are shown
in Fig. 5 for the wavelengths of laser radiation 1064, 694, and
532 nm and densities 2.7 and 2.8 g/cm3. The experimental
data [13,14] are depicted by squares (Rs) and circles (Rp).
The solid lines coincide with the results shown in Fig. 4
obtained without introduction of the broadening of the wave
front for each value of the wavelength, respectively. Dashed
lines correspond to the results calculated with introduction of
the wave-front broadening, with the width h1.

The depth of the wave front h can be also estimated within
the framework of the Drude theory [47–49] for the polarized
reflection of the electromagnetic wave using the experimental
dependences of Rs and Rp on incident angle ϕ. For this
approach, the magnitude of h can be evaluated from the
equation

Rp

Rs

= π2h2

λ2

∣∣∣∣ n2 + 1

(n2 − 1)2 β2

∣∣∣∣, (17)

where n is a refraction coefficient of the plasma,β = N2 +
n2(1/N2) − 1 − n2, and N = N (z) = √

ε(z,λ) is the nonuni-
form refraction coefficient. The upper line averages over the
width of the transitive layer (wave front). The ratio Rs/Rp is
found at a value of the Brewster angle ϕB , where Rp reaches
the minimum value. For the linear dependence of N (z), the
expression (17) gives the following result for h:

h = λ

[(
3

2π

)(
Rp

Rs

)1/2

(R|n2 + 1|)−1/2

]
, (18)

where R is a reflection coefficient for the normal incidence.
The refraction coefficient n = √

ε is calculated within the
framework of the DFT. The values h2 in Table III are estimated
by formula (18) within the framework of the Drude theory
of reflection. As one can see, this method also gives the
estimation of the width, which is smaller than the estimations
of Refs. [13,14] and closer to the theoretical value 100 nm [11].

FIG. 5. Dependencies of the shocked xenon plasma Rs (green)
and Rp (red) reflectivities on the incident angle at various values of
wavelengths and density. The experimental data [13,14] are depicted
by squares (Rs) and circles (Rp). The solid lines correspond to
the calculation results, which are obtained without introduction of
wavefront broadening. The dashed lines correspond to the calculated
values of the reflectivity with the broadened wavefront.

VI. BREWSTER ANGLE

The Brewster angle is an angle of incidence at which the re-
flectivity of the p-polarized component of the electromagnetic
wave reaches the minimum value. Experimental and calculated
values of the Brewster angles ϕB are given in Table IV. The
experimental values of the Brewster angles [13,14] are shown
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TABLE IV. Brewster angles.

ϕB (degrees)

λ (nm), ρ (g/cm3) Refs. [13,14] Sharp front Broadened front

1064, 2.7 50 ± 10 70 60
694, 2.8 45 ± 10 65 55
532, 2.8 35 ± 5 55 45

in the second column. The values of ϕB in the third column
correspond to the minimum values of the Rp calculated by
the Fresnel formula (13) for the sharp wave front (h = 0 nm).
The values in the fourth column correspond to the minima
of p-polarized reflectivity calculated by formula (16) with
introduction of the shock-wave front broadening.

One can see that the calculated minima of the dependencies
Rp(ϕ) obtained for the case of the sharp front are shifted
relatively to the experimental ones. The introduction of wave-
front broadening improves the agreement with the experiment.
This result can be considered a notification of the existence of
the transitive region with finite width, where the refraction
changes continuously due to a smooth increase of the plasma
density.

VII. CONCLUSIONS

The self-consistent approach for the calculation of the
optical and electronic properties of warm dense matter and
nonideal plasmas [19–23] is modified to extend its application
for the description of reflectance from the broadened shock-
wave front and for the incidence of radiation at an arbitrary
angle. Expressions (8)–(18) are applied with the DF obtained
in Ref. [19].

(1) Within the framework of the approach, the method of
the calculation of reflectivity is applied, which is based on

the solution of the Helmholtz equation for the amplitudes
of the electromagnetic field. The method allows to take into
account the nonuniformity of the density profile (shock-wave
front broadening) and is used for the calculation of the normal
reflectivity as well as for s- and p-polarized reflectivities for a
number of incident angles.

(2) Another method is considered, which is based on the
Drude theory [47,48] of reflection. It allows us to calculate the
ratio of the s- and p-polarized reflectances if the dependence
of the dielectric function on distance is known.

(3) The inverse problem is solved: The width of the
shock-wave front is estimated based on calculated values
of reflectivity and dielectric function. The width values are
considered as a parameter of the solution of the Helmholtz
equation.
The additional method of the estimation of the width is
suggested. It allows us to estimate the wave-front width using
the experimental ratio of s- and p-polarized reflectivities
within the framework of the Drude theory of refraction from
an optically nonuniform medium.
Both values of the wave-front width are closer to the physically
approved width of propagation of electron avalanche in shock-
compressed xenon contrary to the results [14,17,18].

(4) The reflectivities calculated with taking into account of
the shock-wave broadening are in a good agreement with the
experimental data for xenon plasmas [11–14].
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