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Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a
finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an
A + B → C reaction on such density profiles in the host phase and classify them in a parameter space spanned
by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the
density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with
differential diffusivity can create eight different types of density profiles featuring up to two extrema in density,
at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability
scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the
gravity field.

DOI: 10.1103/PhysRevE.94.043115

I. INTRODUCTION

The study of partially miscible stratifications has recently
gained interest due to its relevance for groundwater manage-
ment [1,2], enhanced oil recovery [3–5], or carbon dioxide
(CO2) sequestration [5–14]. Such stratifications are typically
composed of a reservoir phase A dissolving with a finite
solubility into a host phase, containing chemicals that may
react with A. The dissolution of A is limited by its solubility
in the host phase, where most of the dynamics occurs [12–18].
Upon dissolution and reaction, various concentration profiles
can develop and thereby affect the physical properties of the
host phase.

In particular, dynamic changes in concentrations can induce
spatiotemporal variations of the density of the solution,
which in turn can generate hydrodynamic buoyancy-driven
instabilities [19]. As an example, Rayleigh-Taylor convection
can develop when locally a denser zone overlies a less dense
one in the gravity field [20] or gravity currents can also
arise from horizontal density gradients [21,22]. In the case
of partially miscible interfaces, so-called dissolution-driven
convection can also develop when the transfer of one phase into
the other one locally changes the density of the host solution
upon dissolution [23,24]. This is the case, for instance, during
dissolution from above of less dense CO2 or of an ester into
aqueous solutions [12–18] or upon dissolution from below of
methanol into cyclohexane [25].

We thus see that changes of density gradients by reaction-
diffusion processes during dissolution in partially miscible
systems can be the source of convective motions affecting
mixing and the transfer from one phase to the other. Classifying
the possible density profiles developing around A + B → C

reaction-diffusion fronts in such partially miscible systems
is therefore crucial to understanding the onset of possible
buoyancy-driven instabilities. It also helps to predict the spatial
zones in which convection could be localized in cases of
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nonmonotonic density profiles i.e., spatial profiles featuring
local extrema [26–29].

Density profiles have already been classified in the case of
a miscible interface between two solutions containing solutes
A and B. In the nonreactive case, six different density profiles
can develop depending on the relative contribution of A and B

to density and the ratio of their diffusion coefficients [30]. In
the reactive case where an A + B → C reaction takes place,
six different profiles are also possible if all species diffuse at
the same rate [31,32]. On the contrary, if differential diffusion
is taken into account, the number of possible density profiles
increases up to 62 in the miscible case [33].

For partially miscible stratifications, the possible density
profiles have been classified in the case where all species
diffuse at the same rate [15,16]: Without reaction, only two
density profiles can build up, monotonically increasing or
decreasing [16]. The number of possible density profiles
increases up to four when a reaction A + B → C takes
place in the host phase [15,16]. If the nonreactive profile
can be buoyantly unstable, i.e., the density of the solution
increases upon dissolution, a minimum of density is formed
when C contributes less to density than B, which slows
down the growth of buoyancy-driven fingering [15–17]. If
C is sufficiently denser than B, the density profile remains
monotonic and the reaction can accelerate the development
of the instability [15,16]. Chemistry can even be at the
origin of the instability by creating a maximum of density
when the dissolving species decreases or does not modify
density [16,34–38]. Similarly to what has been done in
miscible stratifications [33], a classification of the possible
density profiles is now needed for partially miscible systems
in the more general case where species can diffuse at different
rates.

In this context, we analyze here theoretically the reaction-
diffusion (RD) density profiles building up in a partially
miscible system when a species A dissolves into a host solution
of B and an A + B → C reaction takes place in the host
phase. We classify these profiles in a parameter space spanned
by the diffusivity and solutal expansion coefficient ratios. To
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do so, we derive asymptotic concentration profiles from the
classical RD equations. By reconstructing the density profiles
in the host solution, we show that eight different types of
RD density profiles can be observed, with zero, one, or two
extrema at the reaction front or below. Each type of RD density
profile will lead to a different scenario for the development
of buoyancy-driven convection. The classification developed
here can be used as a framework to unify previous results as
well as predict potential dynamics in unexplored parameter
zones.

This work is structured as follows. The model and the
equations are presented in Sec. II. We compute the asymptotic
concentration profiles in Sec. III and construct the related RD
density profiles both above and below the reaction front in
Sec. IV. Section V gives more details about the extrema of
density below the reaction front. The global density profiles
are described in Sec. VI and compared to their counterparts in
miscible stratifications in Sec. VII. Finally, we summarize this
study in Sec. VIII.

II. MODEL

Let us consider an isothermal partially miscible system
in which a reservoir phase A is placed in contact with a
host phase along a planar interface located at z = 0 with z

pointing into the host phase (Fig. 1). Although this study
is valid for any orientation of the z axis with regard to
gravity, Fig. 1 illustrates the special case where the interface
is at the top of the host phase, which is the case, for
instance, in the convective dissolution of CO2 into brine
during CO2 sequestration [6,7,12–14]. The host phase contains
a dissolved reactant B in initial concentration B0. Phase
A dissolves in the course of time into the host phase and
reacts with B according to the A + B → C scheme. This
bimolecular reaction is considered to occur as an elementary
step so that its rate is given by qAB, with q the kinetic
constant and A and B the concentrations of species A and B,
respectively.

In order to model the dynamics in the host phase, we make
the following assumptions. At the interface, the concentration
of A is equal to its solubility A0 in the host phase (local

FIG. 1. Schematic of a two-layer partially miscible stratification,
where the reservoir phase A dissolves with a finite solubility into the
host phase (shaded) containing a dissolved reactant B.

chemical equilibrium). This value is not limited by the
concentration of A in the reservoir phase and does not evolve
over time. Moreover, we suppose that A0 does not depend on
the concentrations of B or C. This approximation is valid as
long as the initial concentration B0 of the solute B in solution
is small enough [14]. No mass transfer takes place from the
host phase to the reservoir phase A.

The RD equations governing the evolution of the concen-
tration profiles A, B, and C in the host phase are

∂A

∂t
= DA

∂2A

∂z2
− qAB, (1a)

∂B

∂t
= DB

∂2B

∂z2
− qAB, (1b)

∂C

∂t
= DC

∂2C

∂z2
+ qAB, (1c)

where the molecular diffusion coefficients Di are assumed
constant for each species i = A, B, and C. To describe the
convective dynamics in the host phase, Eqs. (1) can be coupled
to an equation for the velocity of the fluid. We explicitly do
not detail the flow equation here as we aim to classify the
density profiles before the onset of convection, i.e., when there
is still no fluid flow. In this limit, the profiles governed by
reaction and diffusion processes depend on the z direction
only. Our approach is thus generic, in other words, valid for
any flow equation, e.g., Darcy’s law in porous media and Hele-
Shaw cells, and Stokes or Navier-Stokes equations in other
cases [20]. The buoyancy term ρg typically appears in such a
flow equation, where g is the gravity field and ρ is the density
of the solution depending on the concentrations. In a diluted
solution, this dependence is assumed to be linear [9] as

ρ = ρ0(1 + αAA + αBB + αCC), (2)

where ρ0 is the density of the solvent of the host phase and
αi = 1

ρ0

∂ρ

∂i
is the solutal expansion coefficient of species i.

To solve Eqs. (1), we use the initial conditions

A = A0 for z = 0, A = 0 for z > 0, (3a)

B = B0, C = 0 ∀z (3b)

and the boundary conditions

A = A0,
∂B

∂z
= 0,

∂C

∂z
= 0 for z = 0, (4a)

A → 0, B → B0, C → 0 for z → ∞. (4b)

We nondimensionalize Eqs. (1) by introducing the dimen-
sionless time t̃ = t/tc, space coordinate z̃ = z/lc, concentra-
tions [Ã,B̃,C̃] = [A,B,C]/A0, and density ρ̃ = (ρ − ρ0)/ρc,
with tc = 1/(qA0) and lc = √

DAtc, the characteristic RD
time and length scales [15,16,31,32], respectively, and ρc

a characteristic density whose expression depends on the
flow equation. For example, if Darcy’s law is used, ρc =
μDA/(κlcg), with μ the viscosity of the solvent, κ the
permeability of the porous medium, and g the norm of the
gravity field.

Substituting these dimensionless variables into Eqs. (1)
and (2) and dropping tildes for convenience leads to the
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dimensionless equations

∂A

∂t
= ∂2A

∂z2
− AB, (5a)

∂B

∂t
= δB

∂2B

∂z2
− AB, (5b)

∂C

∂t
= δC

∂2C

∂z2
+ AB, (5c)

ρ = RAA + RBB + RCC. (5d)

Here δi = Di/DA is the ratio of diffusion coefficient of
species i to that of the dissolving species A. The Rayleigh
number Ri = αiA0ρ0/ρc of species i quantifies the relative
contribution of i to density; Ri can be positive, zero, or
negative, depending on whether species i increases (αi > 0),
does not modify (αi = 0), or decreases (αi < 0) the density of
the solution.

The initial conditions (3) are nondimensionalized as

A = 1 for z = 0, A = 0 for z > 0, (6a)

B = β, C = 0 ∀z, (6b)

where β = B0/A0 is the ratio of the initial concentration of B

and the solubility of A in the host phase. Similarly, boundary
conditions (4) become

A = 1,
∂B

∂z
= 0,

∂C

∂z
= 0 for z = 0, (7a)

A → 0, B → β, C → 0 for z → ∞. (7b)

The dynamics in this reactive partially miscible stratification
depends thus on six dimensionless parameters: the diffusivity
ratios δB and δC ; the Rayleigh numbers RA, RB , and RC ;
and the ratio β of the initial concentration of B and solubility
of A.

III. REACTION-DIFFUSION CONCENTRATION
PROFILES

To understand the dynamics in the host phase and re-
construct the density profiles (5d) therein, we compute the
RD concentration profile solutions of Eqs. (5a)–(5c) with
the initial (6) and boundary (7) conditions specific to the
partially miscible case and compare them to their nonreactive
counterpart.

A. Nonreactive case (β = 0)

We first recall the dynamics in the nonreactive case upon
dissolution of A into the host phase [12–14]. The only species
present in solution is A and its diffusive concentration profile
is a solution of Fick’s law ∂A

∂t
= ∂2A

∂z2 with initial conditions (6)
and boundary conditions (7) where B = 0 and C = 0. We
introduce the self-similar variable η = z/(2

√
t) and thus solve

A′′ + 2ηA′ = 0, with the notation A′ = dA
dη

and A′′ = d2A
dη2 . The

solution, illustrated in Fig. 2(a), is

A = 1 − erf(η), (8)

where erf(η) is the error function. Species A dissolves from
the boundary η = 0 and spreads towards the bulk of the host

solution. The flux Jnr of A dissolving through the interface
into the host phase is evaluated as Jnr = − ∂A

∂z

∣∣
z=0 and reads

Jnr = 1√
πt

, (9)

where nr stands for nonreactive. This flux decreases in time as
diffusion smoothes the concentration gradient.

B. Reactive case (β �= 0)

In the reactive case, all three species A, B, and C contribute
to the density of the host phase. The dimensionless density (5d)
therefore evolves in space and time depending on the dynamic
changes of the concentration profiles A, B, and C.

1. Asymptotic solutions

An analytical solution of Eqs. (5a)–(5c) can be obtained
by assuming that the reaction takes place only at a reaction
front that moves on a diffusive time scale. The position of the
reaction front is defined as zf = 2ηf

√
t , where ηf > 0 is a

constant [39–42]. This assumption is valid in the asymptotic
regime when the reaction is limited by the diffusive transport
of A and B towards each other, i.e., for sufficiently large times
compared to the characteristic chemical reaction time (t � 1).
In this limit, species A and B are immediately and entirely
consumed at the reaction front. Outside the reaction front, no
reaction takes place and the concentration fields j are solutions
of the diffusive equations δj j

′′ + 2ηj ′ = 0 with the boundary
conditions

A = 1, B ′ = 0, C ′ = 0 for η = 0, (10a)

A = 0, B = 0, C = γ for η = ηf , (10b)

A → 0, B → β, C → 0 for η → ∞, (10c)

where γ is the concentration of C at the reaction front,
computed with Eq. (13b). The asymptotic concentration fields
in the region above the reaction front 0 � η � ηf denoted by
U (for upper) are

AU = 1 − erf(η)

erf(ηf )
, (11a)

BU = 0, (11b)

CU = γ. (11c)

The asymptotic concentration fields in the region below the
reaction front η � ηf denoted by L (for lower) are

AL = 0, (12a)

BL = β

(
1 − erfc(η/

√
δB)

erfc(ηf /
√

δB)

)
, (12b)

CL = γ
erfc(η/

√
δC)

erfc(ηf /
√

δC)
, (12c)

where erfc(η) = 1 − erf(η) is the complementary error
function.
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(a) (b)

(c) (d)

FIG. 2. Asymptotic concentration profiles (11) and (12) of A–C for (a) δB = δC = β = 1 compared to the nonreactive profile (8) of A

(dashed black), (b) δB = δC = 1 and different β, (c) δC = β = 1, and different δB , and (d) δB = β = 1, and different δC .

2. Concentration profiles

Let us analyze the shape of the concentration profiles (11)
and (12), shown in Fig. 2 for different values of parameters β,
δB , and δC . Here AU is like an error function, decreasing mono-
tonically from the interface like the nonreactive concentration
profile (8). The consumption of A by the reaction is reflected
by the denominator erf(ηf ) � 1 in Eq. (11a): At the same
coordinate η, AU is smaller than its nonreactive counterpart
[Fig. 2(a)]. This difference grows when β or δB increases
[Figs. 2(b) and 2(c)], due to a larger flux of reactant B towards
the reaction front.

Below the reaction front, BL given by (12b) increases from
0 at the front towards its initial value β in the bulk of the
solution [Fig. 2(b)]. This profile becomes sharper when δB

decreases [Fig. 2(c)] as then weaker diffusion of B acts less
efficiently at smoothing the concentration gradient. Neither A

nor B depends on δC [Fig. 2(d)]. The concentration profiles
A and B are monotonic, like their counterparts in miscible
systems.

The product C accumulates in the zone 0 � η � ηf be-
tween the interface and the reaction front and its concentration
decreases monotonically beyond η > ηf . The amount of
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C produced increases with β and δB following a larger
consumption of A [Figs. 2(b) and 2(c)]. Increasing δC does
not affect the total amount of C produced, but smoothes its
concentration profile because of faster diffusion [Fig. 2(d)].

3. Position of the reaction front and maximum concentration of C

We now examine ηf , the position of the reaction front
in self-similar coordinates, and γ , the dimensionless con-
centration of product C at ηf . To compute ηf and γ , we
invoke the fact that the reaction is diffusion limited. According
to the stoichiometry of the reaction, the fluxes must be equal at
the reaction front, i.e., A′

U |ηf
= −δBB ′

L|ηf
= δCC ′

L|ηf
, which

after rearrangement gives

erfc(ηf /
√

δB) = β
√

δB erf(ηf ) exp

[
−η2

f

(
1

δB

− 1

)]
, (13a)

γ = erfc(ηf /
√

δC)√
δC erf(ηf )

exp

[
η2

f

(
1

δC

− 1

)]
. (13b)

We use a Newton-Raphson iterative method [43] to obtain ηf

as a function of δB and β from the implicit Eq. (13a). Once
ηf is known, γ can be explicitly computed as a function of δC

and ηf using Eq. (13b).
Let us analyze how ηf and γ depend on the parameters β,

δB , and δC . In the case of contact between miscible solutions
of A and B, ηf can be of either sign, i.e., the reaction front
can move in either direction with regard to its initial position
or stay immobile, depending on the diffusivity and initial
concentration ratios [31,32,39–42]. Here A progressively
invades the host solution from the interface where it dissolves.
Therefore, the reaction front always moves in the same
direction towards positive η (ηf > 0).

The value of ηf depends on β and δB and determines the
rate at which the front moves forward. When δB = 1, the
dependence of ηf on β is given by erf(ηf ) = 1

β+1 [16]. More

FIG. 3. Position ηf of the reaction front with regard to the
interface at ηf = 0, computed with Eq. (13a), decreases when δB

or β increases.

generally, ηf decreases, i.e., the motion of the reaction front
slows down, when β or δB increases [Figs. 2(b), 2(c), and 3].
Note that for small ηf and short time, the reaction front can be
assumed to be at the interface, so only the lower concentration
profiles are considered [44,45]. Increasing β or δB amplifies
the flux of fresh reactant B towards the reaction zone. This
enhances the consumption of the dissolving species A, slowing
down its invasion of the host phase and increasing the amount
of C produced [Figs. 2(b), 2(c), and 4(a)]. Thus γ increases
when β and δB increase. In particular, when δB = δC , γ is
equal to β [15,16]. In addition, γ decreases when δC increases
[Figs. 2(d) and 4(b)] because then the product diffuses faster
away from its production zone.

(a)

(b)

FIG. 4. Maximum product concentration γ given by (13b) is
amplified when β increases or (a) δB increases (δC = 1) or (b) δC

decreases (δB = 1).
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(a) (b)

FIG. 5. The flux J [Eq. (14)] of A through the interface decreases with time and at a given time increases with (a) β (δB = 1) and (b) δB

(β = 1). The solid curve represents the flux Jnr in the nonreactive case Eq. (9).

4. Flux of A through the interface

The reactive flux J = − ∂AU

∂z

∣∣
z=0 of A through the interface

is evaluated as

J = 1

erf(ηf )
√

πt
= Jnr

erf(ηf )
, (14)

which shows that the flux decreases with time. As erf(ηf ) �
1, the reactive flux is always larger than its nonreactive
counterpart (9). The difference between the reactive and
nonreactive cases increases with β and δB , as shown in Fig. 5.
When the host solution is more concentrated in B or when this
species diffuses faster, the consumption of A by the reaction is
indeed amplified, which accelerates the transfer of A towards
the host solution.

IV. CLASSIFICATION OF THE REACTION-DIFFUSION
DENSITY PROFILES

As the presence of extrema in the density profile ρ is known
to affect the convective stability of the system [15,16,31,32],
we search for the region in the parameter space where ρ is
nonmonotonic, i.e., for which its derivative ρ ′ changes sign at
a given location ηm.

A. Nonreactive case (β = 0)

We first consider the density profile in the nonreactive case,
where ρ depends only on the concentration profile (8) of
species A as [15,16]

ρ = RAA = RA[1 − erf(η)]. (15)

The derivative ρ ′ is given by

ρ ′ = RAA′ = − 2√
π

RAe−η2
. (16)

The sign of ρ ′, depending on RA only, is constant. Thus
ρ monotonically increases along z when RA > 0, decreases
along z when RA < 0, and is constant when RA = 0.

B. Reactive case (β �= 0)

The asymptotic RD density profiles computed by inserting
solutions (11) and (12) into Eq. (5d) are

ρU = RA

(
1 − erf(η)

erf(ηf )

)
+ RCγ, (17a)

ρL = RBβ

(
1 − erfc(η/

√
δB)

erfc(ηf /
√

δB)

)
+ RCγ

erfc(η/
√

δC)

erfc(ηf /
√

δC)
.

(17b)

Equations (17) show that in the bulk solution (η → ∞), where
B is the only species contributing to the density, ρ tends to its
initial value RBβ. At the reaction front ηf , where A and B are
entirely consumed by the reaction and C is the only species
present at concentration γ , the density is given by ρ = RCγ .
At the interface, A = 1, B = 0, C = γ and the density is equal
to RA + RCγ .

We now analyze the density profiles above and below the
reaction front separately.

1. Above the reaction front (0 � η � η f )

Above the reaction front, the reactant B is not present
because it has been consumed by the reaction. Only A and C

contribute to the density profile. The derivative ρ ′
U is written

as

ρ ′
U = RAA′

U = − 2√
π

RA

erf(ηf )
e−η2

. (18)

Similarly to its nonreactive counterpart (see Sec. IV A), ρU is
a monotonic function with two possibilities. If A decreases
or does not change the density of the solution (RA � 0),
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FIG. 6. Classification of the density profiles ρU above the reaction
front (0 � η � ηf ): monotonic increasing in zone IIU (dot hatched),
constant on the boundary RA = 0, and monotonic decreasing in zone
IU (shaded). The dashed line in the plots ρU (η) indicates the position
ηf of the reaction front.

ρ increases or remains constant from the interface towards the
reaction front (ρ ′

U � 0, zone IIU in Fig. 6). In the other case
(RA > 0), the density decreases from the interface towards the
reaction front (ρ ′

U < 0, zone IU in Fig. 6). Note that in this
study, the notation II will always correspond to monotonically
increasing profiles and I to monotonically decreasing profiles
along z. This classification does not depend on the magnitude
of RA, but only on its sign.

2. Below the reaction front (η � η f )

Below the reaction front, two species contribute to the
density profile, the dissolved reactant B and the product C,
so ρ ′

L reads

ρ ′
L = RBB ′

L + RCC ′
L

= 2√
π

(
RB

βe−η2/δB

erfc(ηf /
√

δB)
√

δB

−RC

γ e−η2/δC

erfc(ηf /
√

δC)
√

δC

)
.

(19)

Therefore, the balance between both contributions RBB ′
L and

RCC ′
L to the slope of the density profile determines whether

ρL has an extremum or not.
Let us first mention a few trivial cases before moving to

the more complex case where both species B and C increase
the density of the solution. When C does not contribute to the
density of the solution [RC = 0, Fig. 7(a)], the density profile
trivially follows the B profile and ρ ′

L = RBB ′
L. As B increases

from zero at the reaction front to its bulk value β (B ′
L > 0,

Fig. 2), ρL increases along z when B increases the density of
the solution (RB > 0, zone IIL). Conversely, when B decreases
the density (RB < 0, zone IL), ρL decreases along z (ρ ′

L < 0).
When neither B nor C contributes to the density [boundary
RB = 0 in Fig. 7(a)], ρL is a constant (ρ ′

L = 0). Similarly,
when RB = 0 but RC �= 0, the density profile follows the C

profile, with C decreasing from γ at the reaction front to zero
in the bulk (C ′

L < 0, Fig. 2). Thus ρL decreases towards the

(a)

(b)

FIG. 7. Classification of the density profiles ρL below the reaction
front (η � ηf ) for (a) RC = 0 and (b) RC > 0: monotonic decreasing
in zone IL (shaded), monotonic increasing in zone IIL (dot hatched),
with a minimum in zone IIIL, with a maximum in zone IVL, and
constant for RB = RC = 0 or RB/RC = δB/δC = 1. The dashed line
in the plots ρL(η) indicates the position ηf of the reaction front.

bulk when C increases the density of the solution [RC > 0, in
zone IL of Fig. 7(b)] and vice versa (not shown here).

Finally, the trivial case when RB and RC are of opposite
sign can be understood as follows. As B ′

L > 0 and C ′
L < 0,

the density gradients RBB ′
L and RCC ′

L are then of the same
sign and the density profile is monotonic [Eq. (19)]. More
specifically, the density profile decreases along z when C

increases the density and B decreases it [RC > 0 and RB < 0,
in zone IL of Fig. 7(b)] and vice versa (not shown here).

Let us now restrict our analysis to cases where B and C

increase the density of the solution (RB and RC positive)
without loss of generality. The sign of ρ ′

L can straightforwardly
be deduced when RB and RC are negative with the relation
ρ ′

L(−RB,−RC) = −ρ ′
L(RB,RC) derived from Eq. (19).

The case δB = δC has already been analyzed [15,16]. The
density ρL decreases if RB < RC , is constant if RB = RC , and
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otherwise increases. We now consider the most general case
where B and C diffuse at different rates (δB �= δC).

With the conditions RB,RC > 0 and δB �= δC , we insert
Eqs. (13a) and (13b) into Eq. (19) and rewrite it as

ρ ′
L = 2√

π

e−η2
f

erf(ηf )

RC

δB

×
(

RB

RC

e−(η2−η2
f )/δB − δB

δC

e−(η2−η2
f )/δC

)
. (20)

Thus ρL admits an extremum at η = ηm if the equality

ρ ′
L|ηm

= 0 ⇔ η2
m − η2

f =
ln

(
RBδC

RCδB

)
1
δB

− 1
δC

(21)

is satisfied, which is equivalent to(
δB

δC

− RB

RC

)(
δB

δC

− 1

)
> 0, (22)

and if

ρ ′′
L|ηm

= 4ηme−η2
f

√
πerf(ηf )

(
RBδC

RCδB

)(δB/δC )/((δB/δC )−1)

×
(

RC

δBδC

)(
δB

δC

− 1

)
�= 0. (23)

As a consequence, ρL has a minimum (ρ ′
L|

ηm
= 0 and

ρ ′′
L|

ηm
> 0) if δB/δC > max(1,RB/RC) [zone IIIL in Figs. 7(b)

and 8(a)] and a maximum if δB/δC < min(1,RB/RC) [zone
IVL in Figs. 7(b) and 8(a)].

Therefore, when (22) or (23) is not satisfied, ρL is
monotonic. As the sign of its derivative ρ ′

L does not change,
we determine whether ρL increases or decreases by looking at
the sign of ρ ′

L close to the reaction front,

ρ ′
L|η→ηf

→ 2√
π

e−η2
f

erf(ηf )

RC

δB

(
RB

RC

− δB

δC

)
, (24)

and when (24) is equal to zero (i.e., when δB/δC = RB/RC),
at the sign of ρ ′′

L|
η→ηf

,

ρ ′′
L|η→ηf ,δB/δC=RB/RC

→ 4ηf e−η2
f

√
πerf(ηf )

RC

δCδB

(
δB

δC

− 1

)
. (25)

From the possible signs of (24) and (25), we deduce that
ρL is monotonically decreasing if 0 < RB/RC � δB/δC < 1
[in zone IL of Fig. 7(b)] and monotonically increasing if
1 < δB/δC � RB/RC [zone IIL of Fig. 7(b)]. In conclusion,
Fig. 7 summarizes the classification of the four possible lower
density profiles ρL in the reactive system: monotonically
decreasing (zone IL), monotonically increasing (zone IIL),
with a minimum (zone IIIL), or with a maximum (zone IVL),
corresponding to

RB

RC

� δB

δC

� 1 for RC > 0,

RB < 0 for RC = 0 (zone IL); (26a)

1 � δB

δC

� RB

RC

for RC > 0,

RB > 0 for RC = 0 (zone IIL); (26b)

FIG. 8. Characteristics of the extremum ρm of density for RB =
RC = 1. (a) For any value of δB , the relative density extremum
(ρm − ρ∞)/ρ∞ becomes negative when δB/δC > 1, illustrating the
transition from zone IVL to zone IIIL. (b) The relative distance
(ηm − ηf )/ηf between the extremum and the reaction front increases
when δB/δC decreases or δB increases.

δB

δC

> max

(
1,

RB

RC

)
for RC > 0 (zone IIIL); (26c)

δB

δC

< min

(
1,

RB

RC

)
for RC > 0 (zone IVL). (26d)

V. EXTREMA BELOW THE REACTION FRONT

In zones IIIL and IVL of Fig. 7(b), the density profiles ρL

below the reaction front have extrema because of differential
diffusivity (δB �= δC). We now analyze these extrema in detail
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and in particular how their characteristics depend on the
diffusivity ratio.

Figure 8(a) illustrates the transition from zone IVL to
zone IIIL of Fig. 7(b) when δB/δC is increased along the
line RB/RC = 1, i.e., if B and C contribute equally to the
density of the solution and only differential diffusivity effects
are at play. This allows one to understand the switch from a
maximum to a minimum in the density profile when δB/δC

is increased. The relative value of the extremum is defined
as (ρm − ρ∞)/ρ∞, where ρm = ρ(ηm) is the extremum of
density and ρ∞ = ρ(η → ∞) = RBβ is the density in the
bulk solution. This relative value is positive in zone IVL, as
the maximum ρm is larger than ρ∞, and conversely negative
in zone IIIL, where ρm is a minimum. The transition between
these two zones occurs when B and C diffuse at the same rate
(δB = δC). The density profile is then constant and equal to
ρ∞ = RBβ everywhere.

The maximum of density in zone IVL can be understood
as follows. When the reactant B diffuses more slowly than the
product C (δB < δC), its concentration just below the reaction
front becomes larger than in the case of equal diffusivities
[see Fig. 2(c)]. This can induce a maximum of density if B is
sufficiently denser than C (RB > RCδB/δC). If this is not the
case (RB � RCδB/δC), the density decreases monotonically
(zone IIL).

Similarly, the minimum of density in zone IIIL can be
explained by the slower diffusion (δC < δB) and sufficiently
large contribution to density of C (RC > RBδC/δB). The faster
escape of B towards the reaction front is not compensated by
the diffusion of C, as C lags behind in the upper part of the
solution [see Fig. 2(d)].

In both zones IIIL and IVL, the absolute value of the
extremum increases when the differential diffusivity effect
becomes more important, i.e., when |1 − δB/δC | increases.
This increase is amplified with smaller δB [Fig. 8(a)] and
δC (not shown here) as the concentration profiles are then
sharper. Furthermore, the relative distance between the ex-
tremum and the reaction front increases when δB/δC decreases
[Fig. 8(b)] and when δB [Fig. 8(b)] or δC (not shown here)
increases.

VI. GLOBAL DENSITY PROFILES AND
POSSIBLE DYNAMICS

In order to have an idea of the global density profiles in the
host phase, the two types of density profiles ρU (0 � η � ηf ,
Fig. 6) must be combined with the four possible lower density
profiles ρL (η � ηf , Fig. 7), leading to eight different possible
types of density profiles: monotonic (increasing or decreasing),
with one extremum (minimum or maximum, at the reaction
front or below), or two extrema (minimum followed by
maximum or the opposite). All these profiles are shown in
Fig. 9.

Further quantitative studies such as linear stability analyses
or nonlinear simulations are necessary to analyze the temporal
dynamics and assess the convective stability of these density
profiles for a given initial angle between the interface and
gravity. The density profiles presented here are valid at
large times and could thus become unstable with regard

(a)

(b)

FIG. 9. Classification of the global density profiles ρ for RC > 0
and (a) RA > 0 or (b) RA < 0. Typical plots of ρ(η) are included,
with a dashed line showing the position of the reaction front ηf .

to convection before this asymptotic limit. However, their
spatial dependence, i.e., the type and number of extrema,
typically remains the same over time as shown previously
for specific zones [15,16,46]. Therefore, we can analyze the
shape of the density profiles to predict possible scenarios for
the development of buoyancy-driven instabilities.

As the convective dynamics depend on the orientation
of the interface with regard to gravity, we fix ideas by
considering a horizontal interface. The reservoir A is on top
of the denser host phase containing B and gravity points
downward along z, so the initial density stratification is
statically stable. We discuss which part(s) of the profile can
evidently be buoyantly unstable and associate each zone with
dynamics previously observed in quantitative studies (e.g.,
[15–17,34–38,44,45]).
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A. RA > 0: Chemistry can modify the characteristics
of the buoyancy-driven instability

If the density of the host solution increases upon dissolution
of A (RA > 0), the density profile in the nonreactive case can
be buoyantly unstable, as a boundary layer of denser fluid rich
in A grows on top of the solution. More specifically, buoyancy-
driven convection does not develop immediately, but after
an onset time depending on the experimental conditions
[12–14]. This is the case, e.g., of alkyl formate [17] or gaseous
CO2 [15,18,44–46] dissolving into an aqueous solution. Even
when a reaction takes place in the host phase, it is not possible
to observe a stratification statically stable everywhere: At least
above the reaction front, the density of the solution decreases
downward due to the contribution of the dissolving species to
density [Fig. 9(a)].

When the upper and lower density profiles are of the same
type I [zone IU + IL in Fig. 9(a)], global density profiles are
monotonically decreasing like their nonreactive counterpart
(Sec. IV A). This case has been illustrated by experiments
of CO2 dissolving into a solution of monoethanolamine
(δB/δC ≈ 1 and RB/RC ≈ 0.45) [44]. The instability develops
faster than in the nonreactive case because the contribution
of the product C to density adds to that of the dissolving
species [15,16].

Density profiles of other zones in Fig. 9(a) have at least
one minimum, at the reaction front or below, which can lead
to different dynamics. In zone IU + IIL, the minimum forms
at the reaction front even without differential diffusivity if
the product is less dense than the initially dissolved reactant
(RC < RB) [15,16]. In that case, this minimum acts as a
stabilizing barrier because locally less dense fluid lies on top
of denser one. The instability and thus the fingering pattern
observed experimentally develop more slowly than in the
nonreactive case [15–17].

By contrast, the minimum of density in zone IU + IIIL,
below the reaction front, can build up only if the product
and initially dissolved reactant diffuse at different rates.
This zone has been illustrated by the experiments of CO2

dissolving into aqueous solutions of alkali metals (δB/δC ≈ 2
and RB/RC ≈ 0.4). In that case, the instability develops faster
than without reaction [15,46]. The concentration of C above
and at the reaction front is larger than in the equal diffusivities
case [Figs. 2(d) and 4], which increases the density jump at
the origin of convection and thus opposes the stabilizing effect
of the minimum [46].

In zone IU + IVL, the minimum of density at the reaction
front is followed by a maximum where denser fluid lies on top
of a less dense one. We expect that this local unstable density
stratification can generate buoyancy-driven convection. This
type of density profile can build up during the dissolution
of CO2 into a solution of sodium carbonate and bicarbonate
(δB/δC ≈ 0.8 and RB/RC ≈ 1.11) [44,45].

B. RA � 0: Chemistry can be at the origin
of buoyancy-driven instability

When the density of the host solution decreases or remains
constant upon dissolution of A (RA � 0), the corresponding
nonreactive case is buoyantly stable. This is usually the case
when a gas, e.g., oxygen [34–38], dissolves into an aqueous

solution, except when that gas is CO2 [8]. The dissolution of
CO2 can nevertheless decrease the density of some organic
solvents, for example, nitrobenzene or chlorobenzene [47].
Studying the case RA � 0 is also relevant in the context of
CO2 sequestration, because the density of the brine decreases
upon dissolution of CO2 with a sufficiently large fraction of
hydrogen sulfide (H2S) impurities [48,49].

If the upper and lower density profiles are both of type
II increasing [zone IIU + IIL in Fig. 9(b)], they combine in
a global profile statically stable as everywhere less dense
fluid lies on top of a denser one. Despite this statically stable
stratification, this profile can still be unstable with regard to
double diffusive instabilities if species B and C diffuse at
different rates (δB �= δC) [19,30,33].

Outside this zone, reactions create a maximum in the
density profile, and as discussed above, this localized unstable
density stratification can be at the origin of buoyancy-driven
convection. This is indeed the case in the methylene-blue-
glucose system corresponding to zone IIU + IL (RA = RB = 0
and RC > 0) [34–38]. Unlike zones IU + IVL and IIU + IVL,
the maximum is here located exactly at the reaction front.
The location of the density maximum seems to affect the
development of fingering as the periodic birth of fingers
described by Wylock et al. [44,45] has not been reported in
the methylene-blue–glucose system [34–38].

To the best of our knowledge, no experiment illustrates yet
the development of the fingering pattern in zones IIU + IIIL
and IIU + IVL. We expect that the dynamics in these zones will
look like those in zones IU + IIIL and IU + IVL, respectively,
although the instability could grow more slowly due to the
stable density gradient above the reaction front.

VII. COMPARISON WITH MISCIBLE STRATIFICATIONS

The density profiles classified here for partially miscible
systems bear some similarities and differences with their
counterparts in miscible stratifications [33]. In both cases, the
theoretical framework used to compute the density profiles is
similar. The same RD equations can be solved to compute
the concentration fields in both systems. The main difference
lies in the initial and boundary conditions with a constant
concentration of A imposed at the top boundary, equal to
the solubility A0 of A in the host solution for the partially
miscible stratification. By contrast, for miscible stratifications,
no-flux boundary conditions are imposed at η → ±∞ as
the system is typically isolated while the miscible interface
expands diffusively in both directions around η = 0, the initial
contact line. This completely changes the picture, as discussed
below.

Although the expressions for the concentration profiles
below the reaction front (12) have the same form in both
systems, the maximum concentration γ of the product and the
coordinate ηf of the reaction front are different. Moreover, the
number of possible profiles is much larger in miscible fluids,
where 62 profiles can be obtained [33]. Indeed, the situation
above the reaction front is more complex: Density profiles
with zero, one, or two extrema can develop in miscible cases
because of the combination of the two opposing concentration
gradients A′

U and C ′
U [33]. By contrast, here only A′

U affects
the type of upper density profile. Furthermore, in miscible
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stratifications the front can remain at the same location or
move towards positive or negative η, amplifying the number
of possibilities. On the contrary, here there is only one direction
possible for the movement of the reaction front: Species A can
only invade the host phase from the interface where it dissolves
towards positive η.

VIII. CONCLUSION

We have computed theoretically reaction-diffusion density
profiles in partially miscible stratifications where a solute A

dissolves into a host phase containing a solute B and an A +
B → C reaction takes place. While only two different types
of density profiles can develop in the nonreactive case, eight
different types of profiles can be observed in the reactive case,
depending on the solutal and diffusivity ratios, each potentially
associated with a different type of convective dynamics. The
coupling between dissolution and diffusion on the one hand
and chemistry on the other multiplies the number of possible
scenarios for the development of buoyancy-driven instabilities.
This enlarged complexity can be explained by the increased
number of parameters as three species A, B, and C are involved
in the dynamics instead of only one in the nonreactive case.

This work opens possibilities for further research. We have
proposed a general framework, independent of the chosen flow
equation, in order to guide future quantitative experiments,
linear stability analyses, or nonlinear simulations. The present
study also represents a step towards a similar classification of
density profiles in immiscible stratifications where the transfer
of solutes between phases can be limited by diffusion and
complex dynamics can appear in both phases. Further, we
note that our results can easily be extended to any property
of the fluid depending linearly on the concentrations of the
solutes, such as surface tension. Understanding the coupling of
chemistry, differential diffusivity, and fluid flow helps clarify
the development of convection, for instance, in industrial
setups (chemical extraction, etc.) or geological formations
(CO2 sequestration, enhanced oil recovery, natural convection
in aquifers beneath saline lakes, etc.).
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