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Nonaxisymmetric disturbances in compound liquid jets falling under gravity
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The disintegration of a compound thread of fluid can be utilized in a wide variety of applications including the
production of compound droplets or capsules. In this paper we investigate the linear instability of a compound
inviscid liquid jet falling under gravity in a surrounding gas with respect to nonaxisymmetric waves. We derive
an analytical expression for the dispersion relation, which takes into account the non-uniform nature of the jet,
and which we then solve numerically. Particular attention is paid to investigating the effects of the liquid-to-gas
density ratio on the growth and development of different wave modes as well as the influence of gravity. Our
results show that there exists some nonaxisymmetric long wavelength disturbances that are more unstable than
their asymmetric equivalents and that the influence of gravity can alter the behavior of these modes.
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I. INTRODUCTION

The production of capsules which encase a droplet (al-
ternatively known as compound droplets) find a whole host
of applications in modern settings. A typical example is the
production of such capsules in pharmaceutics (see [1]) where
the outer ‘shell’ may offer a mechanism for slow release of the
inner core droplet material into the body or blood stream. Such
compound droplets may be produced from the deformation
and rupture of a compound liquid jet which has a tendency,
due to surface tension forces, to breakup into spherical shaped
droplets. The compound jet itself is composed of an inner
thread of fluid which is completely covered by another outer
immiscible liquid. This type of fluid system contain two
interfaces, an inner interface separating the core and annular
fluid whilst the outer interface separates the annular fluid and
ambient gas regions.

Understanding the tendency of a fluid column to disin-
tegrate into a series of periodic droplets has been a subject
of interest for almost 150 years dating back to the early
works of Rayleigh [2] and Savart [3]. Since then a large body
of literature has accumulated investigating myriad different
settings, applications, and aspects of this prototypical set-
up considered by Rayleigh. A testament to the growing
importance of liquid jet rupture can be gauged by the number
of reviews in modern times including those of Lin [4], Eggers
[5], Eggers and Villermaux [6], and Papageorgiu [7].

The presence, and consequent effects, of the surrounding
gas or fluid on the rupture of a liquid jet was originally
considered by Weber [8] and Tomotika [9] who investigated
the instability of a liquid jet immersed in a viscous fluid. Their
results identified the optimum parameter values at which the
liquid jet was unstable. Later, a number of authors including
Sterling and Sleicher [10], Reitz and Bracco [11], Lin and
Reitz [12] investigated the influence of a surround gas on the
breakup of a liquid jet identifying a number of key features
including how the presence of a surrounding gas can enhance
the breakup process.

*Corresponding author: J.Uddin@bham.ac.uk

Rayleigh’s original analysis, which did not take into account
any surrounding medium, suggested that only modes which
are axisymmetric can be unstable on the surface of a liquid jet.
However, in the presence of a surrounding gas (which is of par-
ticular relevance when, say, a liquid jet is assumed to be moving
with high speed) experiments reveal the onset of a different
type of breakup structure. In such cases nonaxisymmetric
waves are found to grow with time and for sufficiently high
speed jets the jet shape can become deformed. Experimental
verification of this situation can be found in Hoyt and Taylor
[13] where high Reynolds number jets discharging into air
were observed to include nonaxisymmetric instabilities.

One-dimensional temporal instability analysis of an invis-
cid compound jet was considered by Sanz and Meseguer
[14]. They studied the influence of surface tension ratios,
density ratios, and radii ratios of inner to outer fluids and
established the breakup regimes and finally compared the
theoretical results with the experiment performed by Hertz
and Hermanrud [15]. The capillary instability of compound
jets in the presence of viscosity was presented by Radev
and Tchavdarov [16]. By using two-dimensional equation of
motion the influence of secondary fluid layer on the instability
was investigated numerically and three types of breakup
regimes were identified in this analysis.

A mathematical treatment of such nonaxisymmetric waves
along a liquid jet was treated initially by Yang [17] who demon-
strated that such instabilities, on a inviscid liquid jet, only
occur for high Weber number values and that for sufficiently
large Weber numbers nonaxisymmetric modes can be more
unstable than their symmetric counterparts. Subsequently a
number of authors including Ruo et al. [18], Avital [19], and
Ibrahim [20] have considered similar situations involving the
inclusion of viscosity and Chen et al. [21] have considered
the nonaxisymmetric modes in annular jets (these authors
were able to show analytically for two special cases, a very
thin annular jet and an annular jet with disturbances of very
small axial wavelength, that the axisymmetric instability mode
has the largest growth rate). Extensions of all these works
were then examined by Ruo et al. [22] who considered
the instability of a compound liquid jet to nonaxisymmetric
disturbances in the presence of a surrounding gas. A number
of similar studies examining instability of compound jets can
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be found in Chauhan et al. [23], Ramos [24], Chauhan et al.
[25], Craster et al. [26], Chiu and Lin [27], and references
cited therein. These authors concluded that the propagation
of nonaxisymmetric waves along the compound liquid jet
are similar to those of single liquid jets with the key factor
influencing relative growth of nonaxisymmetric waves being
the Weber number and the gas to shell density ratio.

Liquid jets which are accelerating, due to for example,
rotational or gravitational forces have received less attention.
Recently Amini et al. [28] investigated the effects of gravita-
tional forces on a liquid jet concluding that gravitational forces
can alter maximal growth rates towards shorter waves and
increase cut-off frequencies. Vu et al. [29,30] have investigated
the unsteady evolution of compound jet interfaces numerically
using the front tracking and finite difference method. Their
results provide good agreement with experimental results but
do not take into account three dimensional effects and most
notably the presence of nonaxisymmetric distortions to the jet.
In this paper we examine the instability of a compound inviscid
liquid jet which is falling vertically under the influence of
gravity in the presence of a surrounding gas. We pay particular
attention to the growth of nonaxisymmetric modes and the
effects caused by the non-uniform nature of the jet.

Given the complexity of the physical set-up described
above, in this paper we restrict ourselves to the simplified
case of an inviscid jet and we only consider a linear temporal
stability analysis. Both of these simplifications have impli-
cations on reproducing experimental results but the results
presented within this paper can be used to understand the
behavior of the system as a whole and in particular appreciate
the influence of key parameters. The effects of viscosity in
the surrounding medium are known to influence the growth
rates and unstable wave numbers of disturbances (see Gordillo
and Perez-Saborid [31]). However, as mentioned by those
authors the neglect of viscous effects is reasonable under
some conditions and provides a basis for understanding the
instability of a compound jet in such cases. Additionally,
viscous effects strongly influence absolute instability regions
for such co-flowing systems (Herrada et al. [32]). Spatial
stability analysis can improve upon temporal stability analysis
and comparisons between theoretical results and experiments
(Gonzalez and Garcia [33]). However, both temporal and
spatial stability analysis are only useful if the liquid thread
is in the jetting regime which can only be determined via a
spatiotemporal analysis as conducted by Herrada et al. [32,34].
Global stability analysis can add yet further insight into such
problems (see Theofilis [35] for a review) and has been applied
to jets falling under gravity by Sauter and Buggisch [36] and
Rubio-Rubio et al. [37] although de Luca et al. [38] suggest
that jet breakup could be linked to the amplification of the
so-called pseudo-modal disturbances rather than exponentially
growing modal disturbances. In such cases the comparisons
between linear theory and experiments can prove limited
especially when the jets become very thin as discussed by
Javadi et al. [39].

II. PROBLEM FORMULATION

We begin by considering an inviscid compound jet which
emerges from a concentric tube with exit velocity U and moves

FIG. 1. A schematic of the compound jet depicting the inner and
outer jets with some of the parameter values.

in a surrounding gas (which is initially stationary). The initial
outer radius of the compound jet is a with the inner jet having a
smaller initial radius χa, where 0 < χ < 1. It is assumed that
the compound jet, after emerging from a circular orifice, falls
in a vertical direction under the influence of gravity. It is also
assumed that all the fluids are incompressible and immiscible.
The geometry of the compound jet is described in a cylindrical
coordinate system (r,θ,x), where r is the radial component, θ

is the azimuthal component and x represents the axial direction
of the jet (see Fig. 1). The velocity vector describing the flow
can be written as u[z] = (w[z],v[z],u[z]), where the subscript
z = I is for the inner fluid, z = O is for the outer fluid and
z = A is for the surrounding gas. Here we denote r = R(x,t)
as the interface of inner fluid with the outer one, r = S(x,t)
as the interface of outer fluid with the surrounding gas, σ [I ]

is the surface tension at the interface r = R(x,t), and σ [O] is
the surface tension at the interface r = S(x,t). The density of
the fluids is denoted by ρ[z], and the pressure and the time
are denoted as p[z] and t , respectively. The gravity is taken
as g = (0,0,g). In addition, the surface tensions σ [I ] and σ [O]

are assumed to be constant at the inner and the outer interface,
respectively.

The continuity equation and the Euler equation, which
describe the resulting dynamics of the compound jet, are given
by

∂u[z]

∂x
+ ∂w[z]

∂r
+ w[z]

r
+ 1

r

∂v[z]

∂θ
= 0, (1)

∂u[z]

∂t
+ u[z] ∂u[z]

∂x
+ w[z] ∂u[z]

∂r
+ v[z]

r

∂u[z]

∂θ

= − 1

ρ[z]

∂p[z]

∂x
+ (δIz + δOz)g, (2)

∂v[z]

∂t
+ u[z] ∂v[z]

∂x
+ w[z] ∂v[z]

∂r
+ v[z]

r

∂v[z]

∂θ
+ v[z]w[z]

r

= − 1

ρ[z]

1

r

∂p[z]

∂θ
, (3)
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and

∂w[z]

∂t
+ u[z] ∂w[z]

∂x
+ w[z] ∂w[z]

∂r
+ v[z]

r

∂w[z]

∂θ
− (v[z])2

r

= − 1

ρ[z]

∂p[z]

∂r
, (4)

where δIz and δOz are the Kronecker δ symbols with free
index z. These equations are supplemented by the kinematic
conditions and the normal stress conditions. The kinematic
conditions, at the interface r = R(x,t), are given by

w[z] = ∂R

∂t
+ u[z] ∂R

∂x
+ v[z]

r

∂R

∂θ
, (5)

where z = I,O. Similarly, the kinematic conditions, at the
interface r = S(x,t), are given by

w[z] = ∂S

∂t
+ u[z] ∂S

∂x
+ v[z]

r

∂S

∂θ
, (6)

where z = O,A. For inviscid fluids, we have the classical
free surface condition of constant pressure and hence zero
tangential stress condition. The normal stress conditions, at
the interfaces r = R(x,t) and r = S(x,t), are

p[I ] − p[O] = σ [I ]κ [I ] (7)

and

p[O] − p[A] = σ [O]κ [O], (8)

respectively, where κ [I ] is the curvature of the inner free surface
and κ [O] is the curvature of the outer free surface, which are
given by

κ [I ] = ∂

∂x

(
− 1

E[I ]

∂R

∂x

)
+ ∂

∂r

(
r

E[I ]

)
+ ∂

∂θ

(
− 1

rE[I ]

∂R

∂θ

)
,

(9)

κ [O]= ∂

∂x

(
− 1

E[O]

∂S

∂x

)
+ ∂

∂r

(
r

E[O]

)
+ ∂

∂θ

(
− 1

rE[O]

∂S

∂θ

)
,

(10)

where

E[I ] =
(

1 +
(

∂R

∂x

)2

+ 1

r2

(
∂R

∂θ

)2
) 1

2

, (11)

E[O] =
(

1 +
(

∂S

∂x

)2

+ 1

r2

(
∂S

∂θ

)2
) 1

2

. (12)

We can non-dimensionalize the velocity components with the
initial jet velocity U at the tube exit, so we have w̄[z] =
w[z]/U , v̄[z] = v[z]/U , and ū[z] = u[z]/U , radial lengths with
the outer jet radius a so that r̄ = r/a, the azimuthal component
θ̄ = θ and the axial length with a characteristic wavelength
L (typically much greater than a) in the axial direction as
x̄ = x/L. The time and the pressure are scaled by t̄ = tU/L

and p̄[z] = p[z]/ρ[O]U 2, respectively. By assuming the jet is
slender, we define a small parameter ε as ε = a/L � 1. The
dimensionless forms of the inner and the outer radii of the jet
at the nozzle are R(0,t) = χ and S(0,t) = 1, respectively.

After dropping the overbars, the resulting dimensionless
continuity and Euler equations can be written as

∂u[z]

∂x
+ 1

ε

∂w[z]

∂r
+ 1

ε

w[z]

r
+ 1

εr

∂v[z]

∂θ
= 0, (13)

∂u[z]

∂t
+ u[z] ∂u[z]

∂x
+ w[z]

ε

∂u[z]

∂r
+ v[z]

εr

∂u[z]

∂θ

= −((δIz)ρ + (δAz)ρG)
∂p[z]

∂x
+ (δIz + δOz)

1

F 2
, (14)

∂v[z]

∂t
+ u[z] ∂v[z]

∂x
+ w[z]

ε

∂v[z]

∂r
+ v[z]

εr

∂v[z]

∂θ
+ v[z]w[z]

εr

= −((δIz)ρ + (δAz)ρG)
1

εr

∂p[z]

∂θ
, (15)

and
∂w[z]

∂t
+ u[z] ∂w[z]

∂x
+ w[z]

ε

∂w[z]

∂r
+ v[z]

εr

∂w[z]

∂θ
− (v[z])2

εr

= −((δIz)ρ + (δAz)ρG)
1

ε

∂p[z]

∂r
, (16)

where ρG = ρ[A]/ρ[O] is the density ratio of the surrounding
gas to the outer fluid, δIz,δOz, and δAz are the Kronecker
δ symbols with free index z. The dimensionless kinematic
conditions, at the interface r = R(x,t) and r = S(x,t), are
given by

w[z] = ∂R

∂t
+ u[z] ∂R

∂x
+ v[z]

εr

∂R

∂θ
, (17)

where z = I,O and

w[z] = ∂S

∂t
+ u[z] ∂S

∂x
+ v[z]

εr

∂S

∂θ
, (18)

where z = O,A, respectively. The dimensionless normal stress
conditions, at the interfaces r = S(x,t) and r = R(x,t), are

p[O] − p[A] = 1

We

∂

∂x

(
− ε2

E[O]

∂S

∂x

)

+ ∂

∂r

(
r

E[O]

)
+ ∂

∂θ

(
− 1

rE[O]

∂S

∂θ

)
(19)

and

p[I ] − p[O] = σ

We

∂

∂x

(
− ε2

E[I ]

∂R

∂x

)

+ ∂

∂r

(
r

E[I ]

)
+ ∂

∂θ

(
− 1

rE[I ]

∂R

∂θ

)
, (20)

respectively, where

E[I ] =
(

1 + ε2

(
∂R

∂x

)2

+ 1

r2

(
∂R

∂θ

)2
) 1

2

, (21)

E[O] =
(

1 + ε2

(
∂S

∂x

)2

+ 1

r2

(
∂S

∂θ

)2
) 1

2

, (22)

and σ = σ [I ]/σ [O] is the ratio of surface tension between inner
and outer fluid interfaces. There are two key nondimensional
numbers; namely the Weber number We = ρ[O]U 2a/σ [I ]

which measures the ratio of surface tension forces to inertia and
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the Froude number F = gL/U 2 which measures the relative
importance of gravity forces over inertia.

III. ASYMPTOTIC FORM OF THE STEADY
STATE SOLUTIONS

In order to find the steady state solutions, we consider
motionless gas [22], that is u[A] = (0,0,0), and expand our
variables using an asymptotic slender jet steady expansion of
the form

{w[z],v[z],u[z],p[z]} = {
0,0,(δIz + δOz)u

[z]
0 (x),

×p
[z]
0 (r,θ,x)

} + (εr)
{
(δIz + δOz)

[
w

[z]
1 (θ,x),

× v
[z]
1 (θ,x),u[z]

1 (θ,x)
]
,p

[z]
1 (θ,x)

} + O(ε2r2), (23)

{R,S} = {R0(x),S0(x)} + ε{R1(θ,x),S1(θ,x)} + O(ε2).

(24)

Substituting the above asymptotic expansions in
Eqs. (13)–(22), consequently, the leading order continuity
equation for the inner and outer fluids is

w
[z]
1 = −1

2

∂u
[z]
0

∂x
, (25)

where z = I,O. The leading order kinematic conditions (17)
and (18), at r = R(x) and r = S(x), give

∂

∂x

(
R2

0u
[I ]
0

) = 0 (26)

and

∂

∂x

((
S2

0 − R2
0

)
u

[O]
0

) = 0, (27)

respectively. The leading order normal stress conditions (19)
and (20), at r = S(x,t) and r = R(x,t), yield

p
[O]
0 = 1

S0We
+ p

[A]
0 , and p

[I ]
0 = 1

We

(
σ

R0
+ 1

S0

)
+ p

[A]
0 ,

(28)

respectively. The leading order azimuthal and radial momen-
tum equations (15) and (16) give ∂p

[z]
0 /∂θ = 0 and ∂p

[z]
0 /∂r =

0, respectively. We now substitute Eq. (28) in the axial
momentum equation (14) for the inner and the outer fluids,
which after using the boundary conditions at the nozzle, which
are u

[I ]
0 = u

[O]
0 = S0 = 1 and R0 = χ , yields

u
[I ]
0 =

√
1 + 2x

F 2
+ 1

ρWe

(
1 + σ

χ
− σ

R0
− 1

S0

)
(29)

and

u
[O]
0 =

√
1 + 2x

F 2
+ 1

ρWe

(
1 − 1

S0

)
. (30)

Similarly one may integrate Eqs. (26) and (27) and then use
the boundary conditions at the nozzle to derive expressions
for R0 and S0 and then consequently use Eq. (28) to arrive at
expressions for p

[O]
0 and p

[I ]
0 [40–42].

IV. LINEAR ANALYSIS

We now consider a linear temporal instability analysis
of a nonaxisymmetric compound liquid jet moving in a
surrounding gas. We consider small perturbations to the steady
state solutions found in the previous section. We now note that
the evolution of the jet depends on a length scale x = O(1), but
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FIG. 2. Growth rate of the disturbances versus wave number at
x = 0. Other parameters are ρ = 1,ρG = 0.001,σ = 1,F = 1, and
χ = 0.4: (a) We = 1000, (b) We = 3000, (c) We = 10 000.
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unstable disturbances along the jet typically have wavelengths
which are much smaller (see [2]) and are comparable to ε when
x = O(1). We therefore consider traveling short waves of the
form eλt̂+i(kx̂+mθ), where k = k(x) = O(1) and λ = λ(x) =
O(1) are the frequency and wave number of disturbances.
Additionally, x̂ = x/ε and t̂ = t/ε are small length and time
scales. Thus, we have a multiple scale formulation as the
perturbations grow along the jet having wavelength of O(ε).
Now we introduce small time dependent perturbations to the
steady state solutions which take the form

(w[z],v[z],u[z],p[z]) = (
0,0,(δIz + δOz)u

[z]
0 ,p

[z]
0

)
+�(w̃(r)[z],ṽ(r)[z],ũ(r)[z],p̃(r)[z])�,

(31)

(R,S) = (R0,S0) + �(R̃,S̃)�, (32)

where � = exp(λt̂ + i(kx̂ + mθ )) and 0 < � � ε. Substitut-
ing the expansions (31) and (32) into Eqs. (13)–(22) yields a
set of equations which are given in the Appendix. Nontrivial
solutions to this set of equations are given by the dispersion
relation

D(k,λ; We,m,σ,ρ,ρG,χ,x) = 0. (33)

We note that the above dispersion relation does not
explicitly depend on the Froude number F and instead
this dependency only enters via the steady state solutions
u

[O]
0 ,u

[I ]
0 ,R0, and S0 from the previous section. In general these

will vary along x and will be different for different values
of F .

V. RESULTS AND DISCUSSION

The dispersion relation we obtain above is a quartic in
λ and reduces to the one obtained by Yang [17] when we
set σ = 0,S0 = R0 = 1, and ρ = 1. For arbitrary values of
the parameters we solve this equation using Ferrari’s method
[43] to obtain the most unstable modes. We are interested in
investigating parameter regimes which resemble those used
in the experiments of Hertz and Hermanrud [15] (which is
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FIG. 3. Growth rate of the disturbances versus wave number
for various values of Froude number. Other parameters are ρ = 1,

ρG = 0.01,σ = 1,x = 1,χ = 0.5,m = 1, and We = 1000.
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FIG. 4. Growth rate of the disturbances versus wave number at
various locations of the jet. Other parameters are ρ = 1,ρG = 0.001,

σ = 1,F = 1,χ = 0.4,m = 1, and We = 3000.

the most comprehensive experimental compound jet paper
to date) and for this purpose we consider jets with typical
radii R ∼ 10−3–10−5 m, typical velocities U ∼ 10 m/s, and
typical dynamic viscosities 1–10 cP. This leads to an effective
Reynolds number Re ∼ O(103) which allows us to neglect
viscous effects. Moreover, typical surface tension values used
were in the range σ0 ∼ 20–72 dyn/cm which leads to values
for the Weber number as We ∼ O(103). As we increase the
Weber number we see the sinuous mode m = 1 first becomes
unstable (and indeed is more unstable than the symmetric
mode) for long wavelength disturbances. As the Weber number
is further increased we notice the appearance of higher order
unstable modes while the wave number range of instability
also increases. We demonstrate these trends in Fig. 2. Figure 3
presents the growth rate of disturbances for various Froude
numbers at a certain distance along the jet at x = 1 for the
sinuous mode m = 1, where we can see that the growth rate
of disturbances decreases with a decrease in Froude number.
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W
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FIG. 5. Critical values of the Weber number for the growing
nonaxisymmetric mode versus the gas to shell liquid density ratios
for various values of liquid-liquid density ratios at x = 0. Other
parameters are m = 1,σ = 1,F = 1, and χ = 0.5.
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FIG. 6. (a) Maximum wave number k∗ versus the Weber number
for various values of m. (b) Maximum growth rate of disturbances λ∗

versus the Weber number for various values of m. Other parameters
are ρ = 1,σ = 1,ρG = 0.001,F = 1, and χ = 0.4.

Conversely, the growth rate increases for the smaller values
of Weber number at m = 0 as the sinus mode does not grow
for the smaller values of Weber number. We can see how the
growth rate of disturbances are affected as we move down
the jet in Fig. 4 where we plot the growth rate of the sinuous
mode for a range of locations along the jet. The range of
unstable wave numebrs for the sinuous mode decreases with
distance along the jet as does the growth rate of disturbances.
In Fig. 5 we plot how changing the density ratio between the
surrounding gas and the outer fluid affects the critical Weber
number for various liquid-liquid density ratios (between the
inner and the outer jet). From this figure we see that as we
increases the liquid-liquid density ratios ρ we see a reduction
in the critical Weber number for all shell to gas density ratios
(the density ratio between the surrounding gas and the outer
fluid) ρG with the largest differences occurring when the shell
to gas density ratio is smallest. In Fig. 6 we plot both the
most unstable wave number (that is the wave number k = k∗
at which the growth rate is maximal) as well as the growth
rate itself versus Weber numbers for various values of m. The
appearance of higher modes can be seen as the Weber number
increases and only for the highest Weber numbers presented
∼104 do modes m = 3 appear. Since only the most unstable
wave mode and its associated growth rate are plotted in this
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FIG. 7. (a) Maximum wave number k∗ versus the gas to shell
liquid density ratios for various values of m. (b) Maximum growth
rate of disturbance λ∗ versus the gas to shell liquid density
ratios for various values of m. Other parameters are ρ = 1,σ = 1,

We = 10 000,F = 1, and χ = 0.4.

figure we do not observe the fact that there are wave modes
where the sinuous mode m = 1 is in fact more unstable than
the symmetric mode which is more clearly seen in Fig. 2. We
do a similar analysis in Fig. 7 where we plot the growth rate
and the most unstable wave number versus gas to shell density
ratios. We observe a similar trend in this case for increasing
values of ρG.

VI. CONCLUSION

We have formulated the governing equations for an inviscid
compound liquid jet which is falling under gravity in the
presence of a surrounding gas. The model equations are then
utilised to find a steady state solution which is dependent
on axial location. Small linear nonaxisymmetric disturbances
about this steady state are then considered to yield a dispersion
relation relating the growth of disturbances to the associated
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wave number for different nonaxisymmetric modes m. We
have shown that higher modes are present when the Weber
number is sufficiently high and that for certain ranges of
the wave number the sinuous mode can be greater then the
symmetric mode.

APPENDIX

The Appendix details the dispersion relation (33). We
substitute the expansions (31) and (32) into the non-
dimensionalized form of Eqs. (13)–(22), which yields at
O(�/ε):

ikũ[z] + ∂w̃[z]

∂r
+ w̃[z]

r
= 0, (A1)

(
λ + ik(δIz + δOz)u[z]

0

)
ũ[z] = −((δIz)ρ + (δAz)ρG)p̃[z]ik,

(A2)(
λ + ik(δIz + δOz)u[z]

0

)
ṽ[z] = −((δIz)ρ + (δAz)ρG)p̃[z]ik,

(A3)

(
λ + ik(δIz + δOz)u[z]

0

)
w̃[z] = −(δIzρ + δAzρ

G)
∂p̃[z]

∂r
, (A4)

w̃[z] = (
λ + iku

[z]
0

)
R̃ for z = I,O, (A5)

w̃[z] = (
λ + ik(δOz)u[z]

0

)
S̃ for z = O,A, (A6)

p̃[I ] − p̃[O] = σ

We

(
k2 − 1

R2
0

)
R̃, (A7)

p̃[O] − p̃[A] = 1

We

(
k2 − 1

S2
0

)
S̃. (A8)

Using Eqs. (A2) and (A4) to eliminate p̃[z] we get w̃[z] =
1
ik

∂ũ[z]

∂r
and similarly Eqs. (A2) and (A3) gives ṽ[z] = ũ[z]

rk
. By

substituting these result in Eq. (A1), we have

∂2ũ[z]

∂r2
+ 1

r

∂ũ[z]

∂r
− (m2 + k2)ũ[z] = 0, (A9)

which has solution

ũ[z] = C[z]Im(kr) + D[z]Km(kr). (A10)

By using the value of ũ[z], we are able to get

w̃[z] = 1

ik
(C[z]I ′

m(kr) − D[z]K ′
m(kr)). (A11)

By using Eq. (A2) in Eq. (A10), yields

p̃[z] = −(
λ + ik(δIz + δOz)u[z]

0

)
ik(δIzρ + δAzρG)

(C[z]Im(kr) + D[z]Km(kr)),

(A12)

where Im(kr) and Km(kr) are the modified Bessel functions of
first and second kind, respectively. To avoid the singularities,
and to ensure finite values at r = 0, we require that D[I ] and
C[A] will be equal to zero.

Substituting the values of w̃[z] in Eqs. (A5) and (A6), yields

1

ik
(C[I ]I ′

m(kR0)) = (
λ + iku

[I ]
0

)
R̃, (A13)

1

ik
(C[O]I ′

m(kR0) − D[O]K ′
m(kR0)) = (

λ + iku
[O]
0

)
R̃, (A14)

1

ik
(C[O]I ′

m(kS0) − D[O]K ′
m(kS0)) = (

λ + iku
[O]
0

)
S̃, (A15)

1

ik
(−D[A]K ′

m(kS0)) = (λ)S̃. (A16)

Similarly, using the values of p̃[z] from Eq. (A12) in Eqs. (A7)
and (A8), we get

−(
λ + iku

[I ]
0

)
ikρ

(C[I ]Im(kR0)) +
(
λ + iku

[O]
0

)
ik

(C[O]Im(kR0)

+D[O]Km(kR0)) = σ

We

(
k2 − 1

R2
0

)
R̃, (A17)

−(
λ + iku

[O]
0

)
ik

(C[O]Im(kR0) + D[O]Km(kR0))

+ λ

ikρG
(D[A]Km(kR0)) = 1

We

(
k2 − 1

S2
0

)
S̃. (A18)

We can write Eqs. (A13)–(A18) as

By = 0, (A19)

where

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ik

(I ′
m(kR0)) 0 0 0 −λ + iku

[I ]
0 0

0 1
ik

(I ′
m(kR0)) − 1

ik
(K ′

m(kR0)) 0 −λ + iku
[O]
0 0

0 1
ik

(I ′
m(kR0)) − 1

ik
(K ′

m(kR0)) 0 0 −λ + iku
[O]
0

0 0 0 1
ik

(I ′
m(kR0)) 0 −λ

−
(
λ+iku

[I ]
0

)
ikρ

Im(kR0)

(
λ+iku

[O]
0

)
ik

Im(kR0)

(
λ+iku

[O]
0

)
ik

Km(kR0) 0 − σ
We

(
k2 − 1

R2
0

)
0

0
−
(
λ+iku

[O]
0

)
ik

Im(kR0)
−
(
λ+iku

[O]
0

)
ik

Km(kR0) λ
ikρG Km(kR0) 0 − 1

We

(
k2 − 1

S2
0

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

y� = [C[O]C[I ]D[O]D[A]R̃S̃].

The determinant of the matrix then gives the expression in Eq. (33).
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