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Effect of the energy-spectrum law on clustering patterns for inertial particles subjected to gravity in
kinematic simulation
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We study the clustering of inertial particles using a periodic kinematic simulation. Particle clustering is observed
for different pairs of Stokes number and Froude number and different spectral power laws (1.4 � p � 2.1). The
main focus is to identify and then quantify the effect of p on the clustering attractor—by attractor we mean the
set of points in the physical space where the particles settle when time tends to infinity. It is observed that spectral
power laws can have a dramatic effect on the attractor shape. In particular, we observed an attractor type which
was not present in previous studies for Kolmogorov spectra (p = 5/3).
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I. INTRODUCTION

It is important to understand the particle clustering mecha-
nisms in order to explore, identify, and possibly monitor some
natural or handmade mixing processes such as those causing
rain formation [1–3], sediment transportation [4], fuel mixing,
and combustion. The kind of turbulence found in any of these
examples can be far from that underlying the observation of a
classical Kolmogorov spectrum, as such examples can involve
for example stratification or rotation effects [5].

The effect of gravity cannot be neglected and was analyzed
in previous studies where it has been shown to have a major
impact on the shape and topology of the particle clustering
[6–9]. Spectral laws have also been shown to govern the
particles separation [10–13]. In the present paper we analyze
the combination of both effects by extending our investi-
gation of the effect of gravity to non-Kolmogorov energy
spectra.

This is of practical and theoretical interest. Though the
−5/3 spectrum turbulence has a general character and is
often observed in nature even when Kolmogorov assumptions
are not met (see, e.g., [14]), other sprectral laws are also
observed in particular in two-dimensional flows (e.g., plasmas
and geophysical flows) where a −3 spectral power law can
be observed. (See, e.g., [15] for an overview of nonisotropic
flows.) From a theoretical point of view it is also interesting
to look at the effect of departing from the “classical” −5/3
spectral law. For example, in [10] it was observed that the −5/3
spectrum corresponded to an extremum in the discrepancy
between theory and KS prediction.

Here following the work of [6], an initially uniformly
distributed cloud of particles is tracked in a synthetic field
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mimicking turbulent flows (kinematic simulation). Clustering
consists in the concentration of the cloud in some regions of the
physical space leading to a very inhomogeneous distribution
of particles.

There are different ways to analyze particle clustering in
turbulent flow and direct numerical simulation (DNS) is the
most widely used method (e.g., [2,16,17]). There are several
reasons to use kinematic simulation for the study of particle
clustering [6] but the main advantage for our study is that in
this synthetic model the energy distribution is an input variable.
So there is no need for complex forcing methods to create a
particular turbulence energy distribution.

The clustering mechanism would be different in the inertial
or dissipation range of turbulent flow [18]. In our paper we
only study the effect of the scales in the inertial range as
this is possible by using a synthetic model where forcing and
dissipation are not needed to develop an inertial range.

Though there is no particular difficulty in considering par-
ticles with different inertia in kinematic simulation, this study
is limited to particles having the same inertia. Furthermore,
the particles are considered small enough so that they neither
affect the flow nor interact with each other (one-way coupling).

The positions of particles are monitored as a function
of time and a Lagrangian attractor is observed for some
cases. That is, the initially homogeneously distributed cloud of
particles will end in a set of loci that does not evolve any further.
The particles move within that set which we call “Lagrangian
attractor” and its dependence on St and Fr numbers is studied.

We only consider attractors with integer dimensions (one-
dimensional and two-dimensional structures) which are easy
to identify. To compare our results with the reference case
p = 5/3 in [6] we use the nearest-neighbor distance analysis
to identify the integer dimensions of the Lagrangian attractors
while varying the power law (p).
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The paper is organized as follows: in Sec. II we introduce
the KS model, its notations, and its parameters. The different
kinds of Lagrangian attractor are discussed and introduced in
Sec. III. The effect of the spectral law is introduced in Sec. IV.
A quantitative analysis is conducted in Sec. V. Section VI
summarizes our main conclusions.

II. KINEMATIC SIMULATION TECHNIQUE

Kinematic simulation (KS) is a particular case of synthetic
turbulence where the focus is on particle’s trajectory at the
expense of solving the Navier-Stokes equation. An analytical
formula “synthetic flow” is used for the Eulerian flow field.
Though the synthetic turbulence retains less information than
the whole flow contains, its success relies on keeping what is
paramount for the Lagrangian story.

The simplicity of the KS model excludes some features of
real turbulent flows but captures the part of the physics which
is required to perform Lagrangian particle analysis.

KS modeling has been successfully employed and validated
[19–21]. This kind of simulation is much less computing-time
consuming than DNS, which is important for the present study
where we need to run many cases (more than a 1000 cases for
100 turnover times). Each case corresponds to a given St, Fr,
p, and time and involves 15 625 particles.

With synthetic simulations, one can develop models where
turbulence ingredients and complexity can be added step
by step helping to understand their respective importance.
These synthetic models can be a useful complement to direct
numerical simulation. In particular, with KS it is possible to
play with the spectral law [10] and its consequences in terms
of particle’s dispersion.

As we are not interested in two-particle dispersion, we limit
our study to the scale ratio kimax/kimin = 9 [22] used in [6].

In KS, the computational task reduces to the calculation of
each particle trajectory. This trajectory is, for a given initial
condition, X0, solution of the differential equation set:

dX
dt

= V(t), (1)

dV
dt

= F(uE(X,t),V,t), (2)

where X(t) is the particle’s position, V(t) its Lagrangian
velocity, and uE the analytical Eulerian velocity used in KS.
F is a function relating the Lagrangian acceleration to the
Eulerian and Lagrangian velocities.

In KS uE takes the form of a truncated Fourier series, sum
of Nk = N3 Fourier modes:

u(x) =
N∑

i=1

N∑
j=1

N∑
l=1

aij l cos(kij l · x) + bij l sin(kij l · x), (3)

where aijl and bijl are the decomposition coefficients corre-
sponding to the wave vector kijl. In its general form the KS
field can also be a function of time but we limit the study to a
steady KS.
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FIG. 1. Spectral energy distribution for different power laws.

A. Energy spectrum and kinematic simulation

In kinematic simulation the underlying Eulerian velocity
field is generated as a sum of random incompressible Fourier
modes with a prescribed energy spectrum E(k). In the present
work, the spectrum is chosen as a power law with an exponent,
p, varying from 1.4 to 2.5 and is defined as

E(k) = (p − 1)
u2

0

kmin

(
k

kmin

)−p

(4)

for kmin � k � kmax (see Fig. 1).
The turbulence rms velocity urms is fixed so that the total

turbulent kinetic energy density is the same for all cases:

E = 1

2

∫ kmax

kmin

E(k)dk � 1

2
u2

0. (5)

Tuning the power p allows us to change the energy distribution
on scales from narrow range energetic scales for p → 2.5 to
more equidistribution for p → 1.4. We expect the Lagrangian
attractors’ topology to be significantly affected by the modi-
fication in the spectral energy distribution. The characteristic
velocity associated with the smallest scale η is given by

u(η) =
√

E(kη)

kη

= u0

√
p − 1

(
L

η

) 1−p

2

(6)

and the associated characteristic time is

τ (η) = η

u(η)
= η

u0

1√
p − 1

(
L

η

) p−1
2

. (7)

B. Periodic KS method for periodic flow

Following [6], the wave vectors kij l = (ki,kj ,kl) follow an
arithmetic distribution to enforce a periodic condition for the
velocity flow field:

ki = 2π

Lx

(ni − 1), kj = 2π

Ly

(nj − 1), kl = 2π

Lz

(nl − 1),

(8)
where (ni,nj ,nl) are integers satisfying 1 � ni � N . In prac-
tice, we choose (Lx = Ly = Lz) for creating an isotropic
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TABLE I. Periodic KS parameters.

Lx = Ly = Lz 1
N 10
Np 15625
urms 0.8703
L 0.2106
L 1
η 0.0642
T 0.2420
td 1.1491
ki/kimin 9
kmax/kmin 15.5885
ReL 38.94

turbulence and to ensure the flow incompressibility the Fourier
coefficient vectors aij l and bij l are set orthogonal to the wave
vector:

aij l · kij l = bij l · kij l = 0. (9)

Their magnitude is fixed by the energy spectrum, E(k) (4),

|aij l|2 = |bij l|2 = 2E(k)�kijl/mk, (10)

where mk is the number of wave vectors of wave number
k = ‖kij l‖. This is the key point for using KS for this study.
The use of (4) in (10) is straightforward and does not require
complicated forcing techniques. From the spectral law, the rms
velocity (5) and the integral length scale can be defined:

L = 3π

4

∫ kmax

kmin
k−1E(k)dk∫ kmax

kmin
E(k)dk

. (11)

The Kolmogorov length scale is defined as η = 2π/kmax,
whereas the largest physical scale is L = 2π/kmin which deter-
mines the inertial range [η,L] over which (4) is observed. It is
worth noting that L � L for sufficiently large inertial ranges.
However, here in contrast to other KS studies the inertial range
is small and L � 5L. In this paper, nondimensional numbers
(St and Fr) are based on the integral length scale L and for
the sake of future comparisons both are reported in Table I.
The ratio between the largest length scale and the Kolmogorov
length scale is kmax/kmin and the associated Reynolds number
is ReL = (kmax/kmin)4/3. This is the standard way to define a
Reynolds number in KS and a DNS or an experiment yielding
the same ratio kmax/kmin would have a much larger Reynolds

number. Finally, a characteristic time for normalization can be
td = L/urms or T = L/urms. All the periodic KS parameters
are gathered in Table I.

The particles are initially homogeneously distributed (this
initial distribution is the same for all cases) and whenever
a particle leaves the turbulence box domain (e.g., Xi > Lx)
it is reinjected from the opposite side to keep the periodic
condition.

C. Equation of motion

Following [23] the equation of motion for the inertial
particle is derived from [24,25] and consists of a drag force
and drift acceleration (weight):

dV
dt

= 1

τa

[u(xp(t),t) − V(t) + Vd ], (12)

where τa is the particle’s aerodynamic response time and Vd =
τag the particle’s terminal fall velocity or drift velocity.

D. Nondimensional parameters

Two nondimensional parameters are introduced to make
quantitative analyses of the particle clustering.

(i) The Stokes number expresses the ratio between the
particle’s response time (inertia effect) and the turbulence
characteristic time

St = τa/T = τaurms/L. (13)

It measures the relative importance of the particle inertia. In
the limiting case St = 0; the heavy particles recover the motion
of the fluid tracers, whereas for St → ∞ the heavy particles
become less and less influenced by the surrounding velocity
field.

(ii) The Froude number is the ratio between inertial forces
and gravitational forces:

Fr = urms/
√

gL. (14)

In practice, in our study the rms velocity urms and inertial
length scale are constant and g is varied.

FIG. 2. Different characteristic attractor shapes.
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III. CLUSTERING PATTERNS, LAGRANGIAN
ATTRACTORS

A. Different clustering patterns

Figure 2 illustrates the nomenclature we use for the different
characteristic shapes we observed for the Lagrangian attractor.

The particles initially uniformly distributed in the flow field
are allowed to evolve until a Lagrangian attractor is achieved.
The shape of the attractor varies from clear one-dimensional
structures to three-dimensional distributed structures.

(a) 1D-H: horizontal one-dimensional Lagrangian attractor
as in Fig. 2(a).

(b) 1D-V: vertical one-dimensional Lagrangian attractor as
in Fig. 2(b). The attractor has a point on each top and bottom
face of the box (z = −0.5 and z = 0.5).

(c) 2D-L: two-dimensional vertical curtainlike layer as in
Fig. 2(c) (see also [3]).

(d) 1D-L: complex 1D layered structure as in Fig. 2(d). This
case was not previously observed for p = 5/3 and appears only
for larger values of p.

(e) 3D: any three-dimensional structure without any partic-
ular structure in the cloud as in Fig. 2(e). This is in fact the
most common observation.

B. Quantification of clustering patterns: Nearest-neighbor
distance analysis

Visualizations of the particle cloud for small discrete
increments of the three parameters St, Fr, and p can be tedious.
It means looking at thousands of cases in this study in a system-
atic order. Beyond the simple visualization, it is important to
quantify the Lagrangian attractors using an appropriate method
for spatial clustering. The average distance to nearest neighbor
is chosen here for direct comparison with [6].

The advantage of using this approach is that it is not
necessary to reach the final cluster at t → ∞, a snapshot at
earlier times gives us a clear idea of the kind of Lagrangian
attractor to expect. The average distance to the nearest neighbor
� [7] is introduced to systematically quantify the clustering
patterns. At a given time for each particle Xm its nearest
neighbor is Xn = (xn,yn,zn). Then we define the average
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FIG. 3. � as a function of p for St = 0.124, 0.207, 0.413, and 1
at t = 100 and without gravity Fr = ∞.
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FIG. 4. � as a function of p for St = 0.124, 0.207, 0.413, and 1
at t = 100 and Fr = 0.49.

distance to the nearest neighbor as

� = 1

Np

√√√√ Np∑
m=1

�2
mn, (15)

where �2
mn = (xm − xn)2 + (ym − yn)2 + (zm − zn)2. In prac-

tice, the method will detect a one-dimensional structure for
� � �cr1 = 0.008, while 2D layered structures are observed
for 0.01 = �cr2− � � � �cr2+ = 0.014.

We applied the average-distance-to-nearest-neighbor
method to all run cases to see the variations in the attractor
patterns for the same time t = 100 which we found large
enough to reach the critical values �cr1,�cr2− , and �cr2+ .

IV. PARTICLE ATTRACTORS WITH MODIFIED POWER
LAWS OF ENERGY SPECTRUM

Before analyzing all cases in terms of isocontours, we first
run a few cases for different values of St with and without (Fr =
∞) gravity and quantify them using the nearest-neighbor
analysis.
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FIG. 5. � as a function of p for Fr = 0.57, 0.63, 0.85, 1.2, and
∞ at t = 100; St = 0.207.
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A. 0.124 � St � 1

Initially we consider two values for the Froude number
in order to investigate the effect of the spectral power law
variations with increasing values of the Stokes number St. The
results with no gravity (Fr = ∞) are shown in Fig. 3: � is

almost constant so that it can be concluded that the particle
clustering is barely influenced by the spectral power law in the
absence of gravity.

By contrast to the case Fr = ∞, the clustering can become
more significant when the Froude number Fr is decreased as
shown in Fig. 4 for Fr = 0.49. The curves of � as a function
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FIG. 6. Fr = 0.89: (a) Isocontours of � as functions of (St,p). Particle clusters with different power laws of energy spectrum for increasing
values of St. (b) p = 2.5, (c) p = 2.1, (d) p = 5/3, and (e) p = 1.5 and from left to right St = 0.09, 0.298, 0.413, and 0.91.
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of St show troughs characteristics of 1D attractors. The case
St = 1 seems rather insensitive to that range of Fr numbers
and power laws.

B. 0.59 � Fr � 1.2

It is equally important to observe the clustering variations
for some cases with a constant Stokes number by varying the

Froude numbers and the power laws. Figure 5 shows the case
St = 0.207 for Fr ∈ [0.57,∞[.

It confirms the previous result that in the absence of
gravity (Fr = ∞) the energy distribution has little effect on the
clustering pattern. Apart from that result there is no particular
trend when varying the Froude number but there is a clear effect
of the power law on all cases with gravity (Fr �= ∞) where
different troughs characteristics of 1D Lagrangian attractors
can be observed.
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FIG. 7. Fr = 0.59: (a) Isocontours of � as functions of (St,p). Particle clusters with different power laws of energy spectrum for increasing
values of St. (b) p = 2.4, (c) p = 2.1, (d) p = 5/3, and (e) p = 1.5 and from left to right St = 0.1, 0.207, 0.413, and 0.91.
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V. COMPREHENSIVE ANALYSIS WITH POWER LAW
VARIATIONS

Previous results give a useful but limited insight of the effect
of the spectral law; we now analyze the clustering of inertial
particles with different power laws of energy spectrum fixing
either St or Fr and varying the two other parameters.

Isocontours of � are plotted as functions of (St,p) for a
given Fr (Figs. 6, 7, and 8) in Sec. V A or as functions of
(Fr,p) for a given St in Sec. V B (Figs. 9, 10, and 11). Results
are summarized in Tables II and III, respectively.

Colorwise light gray (blue online) corresponds to 1D
Lagrangian attractor, very light gray—around 0.012–0.014
(yellow-green online)—to the 2D-L, and dark gray (dark red
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FIG. 8. Fr = 0.49: (a) � as a function of (St,p). Particle clusters with different power laws of energy spectrum for increasing values of St.
(b) p = 2.5, (c) p = 2.1, (d) p = 5/3, and (e) p = 1.5 and from left to right St = 0.16, 0.413, 0.70, and 0.91.
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FIG. 9. St = 0.207: (a) Isocontours of � as functions of (Fr,p). Typical particle clusters for different spectral power laws and decreasing
values of Fr: (b) p = 2.5, (c) p = 2.1, (d) p = 5/3, and (e) p = 1.5 and from left to right Fr = 1.1, 0.85, 0.72, and 0.6.

online) to 3D structures. In all the graphs, typical attractors
are represented in rows (b)–(e): row (b) corresponds to p ∈
[2.4,2.5], row (c) to p ∈ [2,2.1], row (d) to the reference case
(Kolmogorov spectrum) p = 5/3, and row (e) to p = 1.5.

The cases p = 5/3 are hereinafter referred to as “standard”
or “reference” case as we can analyze the departure from the
attractor found for p = 5/3 when we vary p.

A. Analysis in relation to constant Fr

Cases for different Froude numbers Fr are listed in Table II.
The power law exponent is in the range 1.4 � p � 2.5. Each
case has been quantified using the nearest neighbor analysis
for varying values of the Stokes number, 0.041 � St � 1. We
run almost 300 cases for each Fr and the isocontours of the
nearest-neighbor distance � as a function of (St,p) are plotted
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FIG. 10. St = 0.413: (a) Isocontours of � as functions of (Fr,p). Typical particle clusters for different spectral power laws and decreasing
values of Fr: (b) p = 2.5, (c) p = 2.1, (d) p = 5/3, and (e) p = 1.5 and from left to right Fr = 1.1, 0.85, 0.72, and 0.6.

for three representative cases in Figs. 6(a)–8(a). Characteristic
3D plots of the cloud are also shown to visualize the variations
in the attractors with respect to the power law exponents p.

1. “High” Fr values: 0.89 and 0.59

Figure 6 shows the cases for Fr = 0.89. A well-defined
1D attractor is observed around St = 0.413 [row (d)] for

p = 5/3. As p departs from 5/3 this typical 1D attractor is
lost.

None are observed for p = 1.5 but 1D attractors reappear
for steeper spectral laws (p � 2.1) at lower Stokes numbers
(St ∈ [0.207,0.400]) but over a larger range of Stokes numbers.

The attractors also reappear in different shapes. For
example, we observe a 1D-H attractor for St = 0.413 with
p = 5/3, but this 1D-H attractor is reshaped into a different

043109-9



NICOLLEAU, FARHAN, AND NOWAKOWSKI PHYSICAL REVIEW E 94, 043109 (2016)

FIG. 11. St = 1: (a) Isocontours of � as functions of (Fr,p). Typical particle clusters for different spectral power laws and decreasing
values of Fr: (b) Fr = 0.67,p = 1.67, (c) Fr = 0.95,p = 1.67, (d) Fr = 0.95,p = 2, and (e) Fr = 0.67,p = 2.

1D-V attractor with p = 2.5 as illustrated in Fig. 6 row
(b) (St = 0.298). Therefore, increases in the power law not
only affect the value of the Stokes number St at which a
one-dimensional attractor appears but can also change the
orientation and shape of the attractor. Alteration in the attractor
shape can be expected as the turbulence energy is redistributed
over different Eulerian structures but the change from 1D-H to
1D-V is significative as it is an indication that the gravity effect
may be enhanced by the Eulerian velocity field topology—that
in KS is governed by the spectral law.

By contrast, the 2D layered attractor observed for large
Stokes numbers (St = 0.91) is fairly independent of the
spectral law so that it is merely a function of St and Fr and the
Eulerian velocity field topology has no effect on it.

The second value of the Froude number is Fr = 0.59 and
the results are plotted in Fig. 7. For this Fr value, the reference
case with p = 5/3 is a 1D-V attractor where the particles
accumulate for St = 0.207 [Fig. 7 row (d)]. This attractor

TABLE II. Occurrences of attractors for given Fr numbers
varying St and p.

Froude number Fr

Attractor 0.89 0.59 0.49 0.32

1D-H St <0.5 <0.25 No No
p 1.5–2.5 2.1–2.5

1D-V St 0.2–0.3 0.2–0.3 0.1–0.4 0.1–0.3
p 1.5–2 1.5–1.8 1.5–2.5 1.5–2.5

2D-L St >0.5 >0.3 >0.2 >0.1
p All All All All

1D-L St No No 0.4–0.85 0.1–0.3
p 1.7–2.5 1.7–2

remains for a larger range of power law (p ∈ [1.5,1.8]); it
even reappears for steeper energy distributions p ∈ [2.2,2.4]
but as a 1D-H attractor.

So for this lower value for Fr it is still possible to affect
the attractor’s topology by varying the spectral power law. A
1D-H attractor appears for St = 0.1 and p ∈ [2,2.2] as shown
in Fig. 7 row (c). These variations in 1D attractor orientation
show the effect of the power law variations in relation to Fr.

The result observed for Fr = 0.89 for the 2D layered attrac-
tors is confirmed; that is, the 2D layered attractor observed for
large Stokes numbers (St = 0.91) is fairly independent of the
spectral law.

By comparing both cases Fr = 0.89 and 0.59, we can
deduce that the Lagrangian attractor topology is more immune
to variation of p for lower values of Fr.

We can also conclude comparing results for both Froude
numbers that, in accordance with previous results for p = 5/3
[6], the decrease in the Froude number allows for the formation

TABLE III. Occurrences of attractors for given St numbers
varying Fr and p.

Stokes number St

Attractor 0.124 0.207 0.413 1

1D-H Fr 0.65–1.34 0.65–1.34 0.65–1.34 No
p 1.5–2.5 1.5–2.0 1.5–2.5

1D-V Fr No 0.5–0.65 No No
p 1.5–2

2D-L Fr No No 0.4–0.6 0.4–1.34
p 1.5–2.5 1.5–2.5

1D-L Fr No No No No
p
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of the layers at lower Stokes numbers (here St � 0.413). This
result is independent of the spectral power law we chose.

2. “Low” Fr values: 0.49 and 0.32

We carry on the analysis decreasing further the Froude
number to Fr = 0.49 (Fig. 8). The Kolmogorov energy
spectrum for this particular value of Fr generates a 1D-V
attractor with St = 0.16 as shown in Fig. 8 row (d). This
attractor is particularly resilient to changes in the spectral law
as it persists for p ∈]1.5,2]. That is in line with previous
observations indicating that with higher gravity effects the
1D-V attractor is observed over a larger range of spectral
energy distributions.

The 2D layered attractors are still to be observed for St �
0.413 but are somehow reinforced showing an inhomegeneous
distribution of particles and clustering concentration within
the layer itself. In extreme cases as (St = 0.7,p = 2.1) the 2D
layer is shredded into multi-1D-H attractors giving rise to an
attractor type that we labeled complex 1D layered (1D-L).

It is also found that the range of Stokes numbers for which
a 1D attractor can appear increases with decreasing values of
Fr. For instance, this range is [0.2–0.42] for Fr = 0.89, while
for Fr = 0.49, it expands to [0.16–0.70].

We can conclude this section by summarizing all of our
results in Table II which also includes cases for Fr = 0.32.

B. Analysis in terms of constant St

In this section, we fix the Stokes number St and the changes
in attractors’ patterns are analyzed in terms of varying the
values of p and Fr. We examine the variations in clustering
for four different values of the Stokes number namely 0.124,
0.207, 0.413, and 1. The Froude number varies in the range
0.49 � Fr � 1.34 and p ∈ [1.5,2.5].

1. Low St values: 0.207

For a low value of the Stokes number (St = 0.207, Fig. 9),
three different types of 1D attractor appear. A 1D-H attractor
appears for the high value of Fr = 1.1 and this horizontal
attractor persists for p ∈ [1.5,2] (first column, rows c, d, and
e). For higher values of p (p = 2.5) the 1D-H is recovered but
at a higher Froude number around Fr = 1.4.

For a midranged value of Fr ([0.7,1]), a 1D-H attractor
appears which reshapes into more complex structures with
p > 2 as seen in Fig. 9 rows (b) and (c). For low values of Fr,
in Fig. 9(a), the light gray (blue online) area between 0.65 <

Fr < 0.5 represents a strong one-dimensional clustering. This
attractor shape is retained by the cluster even when p is varied
as evidenced from the contour plot in Fig. 9(a). This area
stretches backward and forward for respectively decreasing
and increasing values of the power law p. This means that for
St = 0.207 in the range 0.65 < Fr < 0.5 in order to achieve
a one-dimensional attractor, one has to increase the gravity
effect when the power law is increased and vice versa.

2. “High” St values: 0.413 and 1

We now increase the Stokes number to 0.413 and the
evolution of inertial particles is studied for different spectral
power laws as shown in Fig. 10. The reference case (p = 5/3)

for this particular value of St produces a 1D-H attractor.
It corresponds to the second plot in row (d) of Fig. 10.
We can notice that because of that relatively high inertia
of the particles, the attractor’s shape is robust and does
not change even when the power is increased or decreased
in the range ]1.55–2[. This corresponds to the black (dark
blue online) area around Fr = 0.85 that can be observed in
Fig. 10(a).

In agreement with the case St = 0.207, we also observe
that the dark gray (blue online) area shown around Fr = 0.85
shifts towards the right as p is increased [dark gray (blue
online) spots for 0.8 � Fr < 0.57]. By comparing the rows
(b) and (d) in Fig. 10, the trace of an identical attractor (Fr =
0.85,p = 5/3) can be observed with higher power laws but at
higher gravity (Fr = 0.72,p = 2.5).

We also observe the 2D-L attractors at low Fr which retain
their shapes independent of p.

Finally, the attractor variations are examined for heavier
particles [St = 1, Fig. 11(a)]. We note that there is no real
deviation of the clustering pattern for p �= 5/3 as shown in
Figs. 11(b)–11(e). This shows that gravity (Fr) is the main
parameter governing the clustering and the Eulerian structure
becomes less relevant as St approaches unity.

The results are summarized in Table III where we add the
case St = 0.124 not shown here.

VI. CONCLUSION

We quantify the variations in particle clustering in the
presence of gravity with modified spectral power laws,
from very steep (p → 2.5) to very flat (p → 1.4) energy
distributions.

Though the existence and shape of a Lagrangian attractor
depends on the three parameters (Fr,St,p), some general trends
have been found.

The spectral law can have a significant effect on the
Lagrangian attractor shape but for some ranges of Froude or
Stokes numbers, in particular when a 2D layer is achieved,
the spectral law has little or no effect on the clustering. 1D
or 2D attractors can only be observed when there is gravity
(Fr �= ∞). In the absence of gravity (Fr = ∞) no 1D or 2D
attractor is observed and the energy distribution (p ∈ [1.4,2])
has no effect on this result.

However, the energy distribution can have an effect on
1D attractor shapes. For instance, for the high values of the
Froude number we studied (Fr > 1), the orientation of the
Lagrangian attractor depends on the Stokes number St. But
though the particles with low Stokes numbers, St < 0.2, move
towards a horizontal 1D attractor with little effect of p, the
variations in spectral power law do either modify or destroy the
attractor structure for larger Stokes numbers, 0.2 < St � 0.5.
This shows that when the gravity effect is small (large Fr), the
particles with larger St are more sensitive to a modification in
the energy distribution.

As the gravity effect becomes more dominant (0.5 <

Fr < 0.95), the ranges of St and p which can lead to a
one-dimensional attractor increase.

For low values of Fr < 0.5, no attractor develops in the
horizontal direction; the large gravity effect is to stretch the
attractors in the vertical direction and force the particles to
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move in clear vertical patterns. As a result, we observed some
2D-L, 1D-V, or the complex 1D-L attractors. This complex
1D-L attractor was only observed for p > 5/3.
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