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Heat and momentum transfer for magnetoconvection in a vertical external magnetic field
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The scaling theory of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)] for turbulent heat and momentum
transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. A
comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows
us to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number
of unknown parameters in the model. Also included is the Chandrasekhar limit, for which the outer magnetic
induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion.
Our theory identifies four distinct regimes of magnetoconvection that are distinguished by the strength of the
outer magnetic field and the level of turbulence in the flow, respectively.
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I. INTRODUCTION

One of the central questions in turbulent convection is that
of the global transport of heat and momentum as a function
of thermal driving and the properties of a working fluid [1–3].
In the simplest setting of turbulent convection—the Rayleigh-
Bénard case—one considers an infinitely extended horizontal
layer of fluid that is uniformly heated from below and cooled
from above. The thermal driving of the turbulent convection
in the layer is then established by the temperature difference
between the top and the bottom, �T = Tbottom − Ttop, and is
directly proportional to the dimensionless Rayleigh number
Ra. The properties of the working fluid are determined by
the Prandtl number Pr, defined as the ratio of the kinematic
viscosity ν to the thermal diffusivity κ . Turbulent heat
and momentum transfer are quantified by the dimensionless
Nusselt number, Nu, and Reynolds number, Re, respectively.
In a nutshell, one seeks Nu and Re as functions of Ra and Pr.

One of the oldest scaling theories that was aimed at
predicting Nu(Ra) at fixed Pr dates back to Malkus [4,5],
and it is based on a marginal stability argument for the
turbulent mean profiles. More recently, scaling theories by
Shraiman and Siggia [6,7] and Grossmann and Lohse (GL)
[8,9] have been developed. The central idea of the GL theory is
a decomposition of the thermal and kinetic energy dissipation
into contributions from the bulk and the boundary layers in the
vicinity of the plates. These contributions have to be weighted
with the volume fractions that are occupied by the boundary
layers of the temperature and velocity fields. The theory is
adapted to doubly diffusive convection [10] and horizontal
convection [11].

In astrophysical systems, thermal convection is often tightly
coupled to magnetic fields (and rotation), which is known
as magnetoconvection [12]. Examples are sunspots in the
solar chromosphere [13] or the x-ray flaring activity of some
young neutron stars, which are termed magnetars [14]. Less
spectacular, but not less important, are numerous industrial
applications ranging from materials processing, such as crystal
growth by the Czochralski method [15] or dendritic solidifi-
cation in alloys [16], to fusion technology [17]. In the case
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of a strong prescribed magnetic induction B0, the secondary
magnetic induction b, which is generated by flow-induced
eddy currents, remains very small. While a strong vertical
external field can then damp and even suppress the convective
fluid motion [18], convection rolls can be stabilized when
the magnetic field is applied in the horizontal direction [19].
From a standard magnetohydrodynamic (MHD) perspective,
the turbulence of coupled velocity and magnetic fields is then
constrained. This regime is known as the quasistatic regime
of MHD: the Lorentz force enters the momentum equation,
while the induction equation, which describes the temporal
evolution of the magnetic induction field b, is neglected [20].

The aim of the present work is to extend the GL theory of
turbulent transport to the case of magnetoconvection. Initial
attempts in this direction have been reported by Chakraborty
[21]. He showed that an Ohmic dissipation rate, εB , has to be
incorporated beside the thermal and kinetic energy dissipation
rates, εT and ε. One is thus left with eight different regimes
of boundary-layer- and/or bulk-dominated dissipation rates.
Together with free parameters for the viscous boundary-layer
thickness and a critical Reynolds number for the crossover
from low to high Prandtl numbers [9], one ends up with at least
ten parameters to fit. Furthermore, dimensionless parameters
have to be added that relate the electrical conductivity σ

either to the kinematic viscosity or the thermal diffusivity and
quantify the strength of the outer magnetic field. In view of
this significant extension of the parameter space, one has to
seek regimes of magnetoconvection that can be studied with a
reduced set of fit parameters.

We will therefore restrict the turbulent magnetoconvection
to a specific parameter range. In view of a comparison
with laboratory experiments of magnetoconvection, which
are typically conducted in liquid metals, one can restrict the
Prandtl number range to

Pr = ν

κ
� 10−2. (1)

Also, the range of the magnetic Prandtl number Pm can be
limited to

Pm = ν

η
= Rm

Re
� 10−5 (2)

2470-0045/2016/94(4)/043108(7) 043108-1 ©2016 American Physical Society

https://doi.org/10.1017/S0022112099007545
https://doi.org/10.1017/S0022112099007545
https://doi.org/10.1017/S0022112099007545
https://doi.org/10.1017/S0022112099007545
https://doi.org/10.1103/PhysRevE.94.043108


ZÜRNER, LIU, KRASNOV, AND SCHUMACHER PHYSICAL REVIEW E 94, 043108 (2016)

with the diffusivity of the magnetic induction η = 1/(μσ ),
and μ being the permeability. In many laboratory flows,
the magnetic Reynolds number Rm will thus remain small,
Rm � 1. This regime is termed the quasistatic case of
magnetohydrodynamics. The magnetic field lines cannot be
bent significantly by the fluid motion since the magnetic
diffusion time scale is very short. This excludes some
astrophysical applications such as interstellar turbulent gases
in which Pm � 1 [22].

Similar to standard GL theory, our predictions have to be
fitted to one reference dataset. Our adjustment of the free
coefficients will be based on an experiment by Cioni et al. [23],
which, to the best of our knowledge, is the only experiment that
was operated at a sufficiently high Rayleigh number. Further
data records by Burr and Müller [24] and Aurnou and Olson
[25] have been conducted at smaller Rayleigh numbers and will
be discussed only briefly. In addition, our own direct numerical
simulations of magnetoconvection in the quasistatic regime
will be included to obtain (at least one) data point with known
Reynolds and Nusselt numbers at given Rayleigh, Hartmann
(the dimensionless measure for magnetic-field strength, which
will be defined in Sec. II), and Prandtl numbers.

The outline of the work is as follows. In the next section,
the set of magnetoconvective equations of motion is discussed,
and the characteristic scales, dimensionless parameters, and
dissipation rates are defined. In addition, the numerical method
and a short description of the datasets will be presented. This
section is followed by a derivation of the nonlinear equations
for Nu and Re. Finally, the free parameters of the scaling
theory are fitted to data records. The results are summarized
and discussed briefly at the end of the work.

II. EQUATIONS AND PARAMETERS

A. Quasistatic equations of magnetoconvection in Boussinesq
approximation

We solve the three-dimensional Boussinesq equations for
turbulent magnetoconvection in a rectangular cell of height H

and side lengths L in the quasistatic limit. The equations for
the velocity field u(x,t) and the temperature field T (x,t) are
given by

∇ · u = 0, (3)

∂u
∂t

+ (u · ∇)u = − 1

ρ0
∇p + ν∇2u

+ gα(T − T0)ez + 1

ρ0
( j × B0), (4)

∂T

∂t
+ (u · ∇)T = κ∇2T . (5)

The pressure field is denoted p(x,t), T0 is a reference
temperature, ρ0 is the constant mass density, and B0 = B0ez

is the magnetic field. The Ohm law for the current density is
given by

j = σ (−∇φ + u × B0), (6)

FIG. 1. Magnetoconvection flow. The outer magnetic induction
B0 = B0ez, the acceleration due to gravity g = (0,0, − g), the
temperature difference, and the characteristic large-scale velocity are
indicated.

where the electric potential φ follows from ∇ · j = 0. The
Rayleigh number is given by

Ra = gα�T H 3

νκ
, (7)

and the Hartmann number by

Ha = B0H

√
σ

ρ0ν
=

√
Q. (8)

The square of Ha is also known as the Chandrasekhar number
Q. The variables g, σ , and α denote the acceleration due to
gravity, the electrical conductivity, and the thermal expansion
coefficient, respectively. In a dimensionless form, length scales
are expressed in units of H , velocities in units of the free-fall
velocity Uf = √

gα�T H , temperature in units of the outer
difference �T , and magnetic induction in units of B0. The
configuration is sketched in Fig. 1.

B. Direct numerical simulations

Equations (3)–(6) are solved for a closed Cartesian cell with
a second-order finite-difference scheme. The projection-type
scheme is nearly fully conservative. The advection-diffusion
equation is solved by semi-implicit scheme in which nonlinear
terms are treated explicitly and diffusion terms implicitly. The
program applies MPI and Open MP. More details are found
in [26]. For the fit, we will use two series of direct numerical
simulations (DNS):

Series 1: Ra = 105,Pr = 0.025,20 � Ha � 50. The aspect
ratios are �x = Lx/H = 1 and �y = Ly/H = 1. The grid is
nonuniform and contains 1283 points.

Series 2: Ra = 106,Pr = 0.025,50 � Ha � 200. The as-
pect ratios are �x = Lx/H = 1 and �y = Ly/H = 1. The grid
is nonuniform and contains 1283 points.

The boundary conditions are as follows: all walls are
electrically insulated walls, i.e., the electric current forms
closed loops inside the fluid volume. No-slip boundary
conditions hold for the velocity at all walls. The top and
bottom walls are isothermal with prescribed temperatures Ttop

and Tbottom > Ttop, respectively, the side walls are thermally
insulated (∂T /∂n = 0). The grid is clustered at the top and
bottom walls to resolve the Hartmann layers and first-order
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quantities. We have also performed grid-sensitivity studies to
make sure that the Nusselt number remains constant plane-by-
plane (plane at constant height z).

C. Dissipation rate balances

In correspondence with classical Rayleigh-Bénard convec-
tion, we can derive exact relations for the mean kinetic energy
dissipation rate, ε, the mean magnetic dissipation rate, εB , and
the mean thermal dissipation rate, εT . The fields are defined as

ε(x,t) = ν

2
(∂iuj + ∂jui)

2, (9)

εB(x,t) = η

2μρ0
(∂ibj − ∂jbi)

2, (10)

εT (x,t) = κ(∂iT )2, (11)

with i,j = x,y,z. Since B0 is constant, Eq. (10) contains
derivatives of the induced magnetic induction b only, which
arises from the eddy currents j . In the statistically stationary
regime, we obtain

ε + εB = ν3

H 4

(Nu − 1)Ra

Pr2 , (12)

εT = κ
(�T )2

H 2
Nu. (13)

The Nusselt number, which quantifies the turbulent heat
transfer, is given by

Nu = 1 + H 〈uzT 〉
κ�T

. (14)

The global momentum transfer in the magnetoconvective
system is quantified by the Reynolds number, which is defined
as

Re =
〈
u2

i

〉1/2
H

ν
. (15)

In both definitions, 〈·〉 stands for volume-time average or
ensemble average. While the thermal balance remains un-
changed in comparison to the classical Rayleigh-Bénard case,
the kinetic energy balance differs by the addition of εB on the
left-hand side of Eq. (12). It results from the Joule dissipation
in the presence of a magnetic field. For completeness, we also
list the definition of the magnetic Reynolds number,

Rm = UH

η
= μσUH, (16)

where U is again given by the root-mean-square velocity, U =
〈u2

i 〉1/2.

III. EXTENSION OF THE SCALING THEORY
OF GROSSMANN AND LOHSE

The central idea of the scaling theory is to combine
Eqs. (12) and (13) with a decomposition of dissipation rates
into contributions coming from the bulk and the boundary
layers (BL) [8,9]. The following modifications are made to
predict Nu(Ra, Pr, Ha) and Re(Ra, Pr, Ha) for our case at
hand:

(i) The relevant boundary layer for the velocity field is the
Hartmann layer [20] (see also the Appendix),

δv = H

Ha
, (17)

while the thermal boundary-layer thickness remains δT =
H/(2 Nu). Contrary to the original GL theory, we do not have
the free parameter a that appears in the Prandtl-Blasius-type
expression, δv = aH/

√
Re.

(ii) We limit the study to low Prandtl numbers as already
mentioned in the Introduction. Thus the modification for the
limit of large Prandtl numbers, which has been developed in
[9], and the related parameter Rec are not necessary here. This
saves a second fit parameter.

(iii) It is well known from the linear stability analysis [18]
that the critical Rayleigh number Rac scales as

Rac = π2Ha2. (18)

If Ha is too big at a given Ra, convection is suppressed
completely.

The mean energy dissipation rates will be composed of
a boundary-layer contribution and a bulk contribution. This
results in

ε = εbulk + εBL, (19)

εB = εB,bulk + εB,BL, (20)

εT = εT,bulk + εT,BL. (21)

The dimensional estimates of the different contributions are
given by

εbulk ∼ U 3

H
= ν3

H 4
Re3, (22)

εBL ∼ ν
U 2

δ2
v

δv

H
= ν3

H 4
Re2Ha, (23)

εB,bulk ∼ η

μρ0

Rm2B2
0

H 2
= ν3

H 4
Re2Ha2, (24)

εB,BL ∼ η

μρ0

Rm2B2
0

δ2
v

δv

H
= ν3

H 4
Re2Ha3, (25)

εT,bulk ∼ (�T )2U

H
= κ

(�T )2

H 2
Re Pr, (26)

εT,BL ∼ κ
(�T )2

H 2

√
Re Pr . (27)

The bulk scalings of the kinetic and thermal dissipation rates
in (22) and (26) are the same as in the original GL theory [9].
The argumentation in [9] that leads to (27) remains valid for
the present case. However, the scaling relation in (23) differs
from the original case. Instead of the original BL expression
δGL
v = aL/

√
Re, we insert the Hartmann layer thickness (17).

For the new estimates in (24) and (25) we use the definition
of εB , which is given in (10), and we measure the induced
magnetic field b in units of RmB0.

Following Grossmann and Lohse [9], we introduce inter-
polation functions to account for changes of the scaling laws
in different parameter regimes. Once δT becomes smaller than
δv , the dominant velocity in the thermal BL changes from U to
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UδT /δv . This is accounted for by replacing Re with Ref (xT )
in (26) and (27), where

f (xT ) = 1(
1 + xn

T

)1/n
(28)

with the argument xT = δv/δT = 2 Nu/Ha and n = 4. For this
interpolation function, it follows that f (xT → 0) → 1 and
f (xT → ∞) → 1/xT .

Close to the critical Rayleigh number, the bulk of the fluid
becomes laminar and εbulk scales with Re2 rather than Re3 as
in (22) for the turbulent regime. This change is modeled by
multiplying (22) with

g(x∗) = 1

f (1/x∗)
(29)

with the argument x∗ = Re/Re∗. From the definition of f , it
follows that g(x∗ → 0) → 1/x∗ and g(x∗ → ∞) → 1. The
Reynolds number Re∗ marks the range in which the transition
from fully developed turbulence to the weakly nonlinear
time-dependent regime of velocity dynamics takes place.
Combining all pure scaling laws with the interpolations as
just described gives

(Nu − 1)Ra

Pr2Re2 = c1Re g

(
Re

Re∗

)

+ c2Ha + c3Ha2 + c4Ha3, (30)

Nu − 1 = c5Re Prf

(
2 Nu

Ha

)
+ c6

√
Re Prf

(
2 Nu

Ha

)
, (31)

with the seven a priori unknown model parameters Re∗ and
c1–c6, which have to be determined from a data record. The set
of implicit equations can then be solved to obtain expressions
Nu(Ra,Ha,Pr) and Re(Ra,Ha,Pr). While it is not possible to
find a full solution analytically, Re can be calculated from (31)
as a function of Nu, Ra, Ha, and Pr:

Re =
(√

c2
6 + 4c5(Nu − 1) − c6

)2

4c2
5Prf

(
2 Nu

Ha

) . (32)

Inserting (32) into (30) gives an equation independent of Re.
However, this new equation cannot be solved analytically for
Nu.

The stabilizing effect (iii) of large Ha is included here in the
following way: assuming we have found an analytical expres-
sion Nu − 1 = N (Ha,Ra,Pr), we can enforce the transition to
the nonconvective regime at Ra = Rac by multiplying N with

h(xc) = 1 − f (xc), (33)

where xc = Ra/Rac. The function h(xc) obeys the properties
h(xc → 0) → 0 and h(xc → ∞) → 1 − 1/xc → 1, which
ensures that Nu → 1 in the purely diffusive equilibrium. The
crossover function connects these two states smoothly, so that
at Ra = Rac we have h(1) ≈ 0.16 instead of an abrupt jump
to zero. Since we cannot determine N directly, we transform
Nu − 1 = h(xc)N into (Nu − 1)/h(xc) = N , and in the Re-
independent equation we replace Nu − 1 by (Nu − 1)/h(xc).
This gives the same result of Nu = 1 in the nonconvective

regime once the equation is solved for Nu by numerical
methods. Thus the final model equations are (32) and

(Nu − 1)Ra

ζ 2Pr2h(Ra/Rac)
= c1ζg

(
ζ

Re∗

)

+ c2Ha + c3Ha2 + c4Ha3, (34)

with

ζ =

(√
c2

6 + 4c5(Nu − 1)

h(Ra/Rac)
− c6

)2

4c2
5Pr f

(
2 Nu

Ha

) . (35)

Now (34) can be used to determine the seven model parameters
Re∗ and c1–c6 by fitting the equation to a data set (Nu, Ra,
Ha, Pr). However, examining (34) shows that it is invariant
for the following transformations:

c1 → α6c1, c2 → α4c2, c3 → α4c3,

c4 → α4c4, c5 → α2c5, c6 → αc6, Re∗ → Re∗/α2

for any α ∈ R. This means that the optimal values for the model
parameters are ambiguous. To fix this ambiguity, we need at
least one data point (Re, Nu, Ra, Ha, Pr), which includes the
Reynolds number. Then (32) can be used to calculate c6 as a
function of c5:

c6 = Nu − 1√
Re Prf

(
2 Nu

Ha

) − c5

√
Re Prf

(
2 Nu

Ha

)
. (36)

With this step, the optimal values of all remaining six model
parameters Re∗ and c1–c5 are unique. It is absolutely clear
that six parameters, which have to be adjusted, is still a
large number. Nevertheless, one has to keep in mind that
the number of free parameters has already been reduced
significantly. We are not aware of any publications that report
magnetoconvection data sets including Re. Therefore, we are
using our own numerical simulations to determine data points
(Re, Nu, Ra, Ha, Pr) for evaluating (36).

IV. RESULTS

Our numerical simulations are used to evaluate (36). After
substituting (36) into (34), the resulting equation is fitted to
the experimental data of Cioni et al. [23] in terms of Re∗

and c1–c5, utilizing the Levenberg-Marquardt method [27].
The experimental data have been obtained for convection in
liquid mercury at a Prandtl number of Pr = 0.025. Our DNS
are conducted at the same Prandtl number. With the known
optimal model parameters, we can calculate Nu by solving
(34) numerically for given Ra, Ha, and Pr, and subsequently
we obtain Re from (32). The optimal model parameters
are Re∗ = 56 000, c1 = 0.053, c2 = −2.4, c3 = 0.014, c4 =
−3.7 × 10−6, and c5 = 0.0038. From (36) we get c6 = 0.47.
The Ra-Ha phase diagrams for Nu and Re calculated with these
parameter values for Pr = 0.025 are shown in Fig. 2. The top
panel of the figure shows the magnitude of the Nusselt number
as a function of Ha and Ra. The bottom figure displays the
Reynolds number depending on both parameters. Also added
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FIG. 2. Phase diagrams of (a) Nu and (b) Re on the Ra-Ha plane for Pr = 0.025. The symbols represent the data of our numerical simulations
(squares) and the experiments by Cioni et al. [23] (circles) used for fitting the model parameters. The lines in the diagrams mark the position
of the crossovers introduced in the model: Below δT = δv , the scaling of the thermal BL dissipation changes, Re = Re∗ marks the transition
range from a weakly nonlinear to a fully turbulent bulk flow, and Ra = π2Ha2 indicates the onset of convection. Regimes I–IV are marked as
described in the text.

are the experimental and DNS data. In Fig. 2, we also display
the Chandrasekhar limit above which Nu = 1 and Re = 0.

Furthermore, the line is displayed for which δv = δT . Above
this line, the Hartmann layer thickness will be smaller than the
thermal boundary layer thickness. This characteristic line is
crossed by a second line that shows Re = Re∗. As mentioned
already in Sec. III [see Eq. (18)], on the left side of this line the
convection flow is not fully developed turbulent, but it is in a
weakly nonlinear and time-dependent convection regime. All
data that are to the right of this line can be considered as fully
turbulent convection data. It can be seen that only a few data
points of [23] cross this threshold. These two lines, therefore,
split the parameter space into four subregions:

Region I: weakly nonlinear flow and strong magnetic field.
Region II: fully developed turbulent flow and strong

magnetic field.
Region III: fully developed turbulent flow and weaker

magnetic field.
Region IV: weakly nonlinear flow and weaker magnetic

field.
A few points about the quality of the fit should be addressed

now. First, we mention that the size of the error bars of all fit
coefficients (except c6) is of the order of 100%. In the case of
the coefficient c2, this error level is even exceeded (see also

the following paragraphs). This is caused by the sparse record
of data points. As can be seen in the figure, the data of Cioni
et al. [23] are collected for three different Hartmann numbers

FIG. 3. Dependence of the coefficients c1–c5 when fixing the
sixth coefficient Re∗. Negative values of c2 and c4 are indicated by a
dashed line.
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FIG. 4. Uncertainty of (a) Nusselt and (b) Reynolds number results in parameter space. The relative errors, �Nu/Nu and �Re/Re, are
shown in a logarithmic scale. The data are obtained by varying the fit coefficients c1, . . . ,c5 and Re∗ independently of each other within their
error bars. Regimes I–IV and their borders are marked as in Fig. 2, and the purely conductive regime has been masked.

that cover a small range. Also, these data reach only to the
beginning of regime II. Regimes III and IV do not contain any
data points. Stevens et al. [28] demonstrated in their recent
update of GL theory that the uncertainties in the coefficients
can be significantly reduced when the data cover a wide range
of parameters. Furthermore, these three Hartmann numbers
are much larger than those from our DNS. The additional data
by Burr and Müller [24] or by Aurnou and Olson [25] have
been conducted close to the onset regime of convection. Their
experimental data are thus in the weakly nonlinear rather than
in the fully turbulent range, and they will not be used for our
study.

Secondly, it is observed that two fit coefficients, c2 and
c4, are negative. Although c4 ∼ 10−6 and thus is practically
zero, the corresponding term in (34) can give a non-negligible
contribution to the scaling due to Ha3. The coefficient c2 with
the biggest error bar needs further consideration. Figure 3
displays the five coefficients in dependence of a fixed Re∗.
To get this figure, we repeated the fits at each fixed value of
the crossover Reynolds number. It is seen that the results for
c1–c5 are nearly insensitive for Re∗ � 2 × 104. Beyond this
value, the coefficient c2 changes sign, which is indicated by
a dashed line in the plot. The eventual value of c2 falls into a
range in which small variations of Re∗ cause large changes of
c2 (including sign changes).

The magnitude of Re∗ ∼ 5 × 104 in our fit corresponds to
a Rayleigh number of Ra ∼ 109. This estimate follows from
recent numerical studies in liquid-metal convection without
magnetic field [29]. It falls thus consistently in the range for
which convection develops into the fully developed turbulent

regime, which is also known as the hard convective turbulence
regime [30]. At the moment, we can only speculate that the
inclusion of more data could lower the value of Re∗, as is
expected in low-Pr convection (see, e.g., [31,32]).

Thirdly, in order to quantify the impact of the error bars
of the fit coefficients on Nu(Ha, Ra) and Re(Ha, Ra), we
proceeded as follows. The six coefficients c1, . . . ,c5 and Re∗

were chosen randomly and statistically independently within
their error bars. With these 6-tuples, the parameter dependence
Nu(Ha, Ra) and Re(Ha, Ra) is reconstructed for 118 different
cases. The superposition of these individual realizations results
in a relative error around the original value in Fig. 2. The
magnitudes of the relative error of both the Nusselt and
Reynolds numbers are plotted in logarithmic units in Fig. 4.
The relative error of Nu is highest along the border between
regime I and II, but it does not exceed 40%. On the other hand,
the relative uncertainty of Re rises for smaller Ra and reaches
more than 100% for Ra below 106.

V. SUMMARY

We have presented an extension of the scaling theory
of Grossmann and Lohse [8,9] to a convection layer in
the presence of a vertical magnetic field. The discussion is
restricted to magnetoconvection at low Prandtl and magnetic
Prandtl numbers. In this regime, the quasistatic approximation
is applied that allows a significant reduction of the number of
free parameters in the flow at hand and thus an application
of the ideas of GL theory. Below the Chandrasekhar limit,
four different convection regimes are identified. On the one
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hand, they follow from the ratio of the Hartmann and thermal
boundary layer thicknesses. On the other hand, the regions
result from the critical Reynolds number Re∗, beyond which
the convection flow is assumed to be fully turbulent.

In contrast to standard Rayleigh-Bénard convection, the
database is very small. In fact, there is only one dataset from
Cioni and co-workers, which can be used to fit the free parame-
ters. The remaining data [24,25] fall into a completely different
section of the parameter plane. In particular, they remain close
to the Chandrasekhar limit and cannot be used for turbulent
magnetoconvection. This limits the predictive capabilities of
our scaling results and calls for additional experimental and
numerical data, which are planed in the near future.
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APPENDIX: HARTMANN LAYER

The Hartmann problem [33] describes an isothermal
pressure-driven plane Poiseuille channel flow subject to a
vertical homogeneous magnetic field (see also [20]). The
starting point is Eq. (4) for T = T0. One seeks a steady
solution ux(z) in the quasistatic regime. This results in the
inhomogeneous differential equation

ρ0ν
d2ux(z)

dz2
− σB2

0ux(z) = −G, (A1)

with ∂p/∂x = −G = const. The Hartmann layer thickness
(17) arises as the characteristic length scale in the problem,
and it is given by

δv =
√

ρ0ν

σB2
0

= H

Ha
. (A2)
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