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Fingering instability and mixing of a blob in porous media
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The curvature of the unstable part of the miscible interface between a circular blob and the ambient fluid
in two-dimensional homogeneous porous media depends on the viscosity of the fluids. The influence of the
interface curvature on the fingering instability and mixing of a miscible blob within a rectilinear displacement
is investigated numerically. The fluid velocity in porous media is governed by Darcy’s law, coupled with a
convection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity
of the fluids. Numerical simulations are performed using a Fourier pseudospectral method to determine the
dynamics of a miscible blob (circular or square). It is shown that for a less viscous circular blob, there exist three
different instability regions without any finite R-window for viscous fingering, unlike the case of a more viscous
circular blob. Critical blob radius for the onset of instability is smaller for a less viscous blob as compared to its
more viscous counterpart. Fingering enhances spreading and mixing of miscible fluids. Hence a less viscous blob
mixes with the ambient fluid quicker than the more viscous one. Furthermore, we show that mixing increases with
the viscosity contrast for a less viscous blob, while for a more viscous one mixing depends nonmonotonically on
the viscosity contrast. For a more viscous blob mixing depends nonmonotonically on the dispersion anisotropy,
while it decreases monotonically with the anisotropic dispersion coefficient for a less viscous blob. We also
show that the dynamics of a more viscous square blob is qualitatively similar to that of a circular one, except
the existence of the lump-shaped instability region in the R-Pe plane. We have shown that the Rayleigh-Taylor
instability in a circular blob (heavier or lighter than the ambient fluid) is independent of the interface curvature.
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I. INTRODUCTION

Fluid flow and mixing in porous media [1,2] are active areas
of research devoted to characterize industrial and environmen-
tal processes, such as oil recovery [3], pollution remediation
[4], carbon dioxide sequestration [5–7], and chromatography
separation [8–10], to name a few. Fluid flow in porous
media can feature hydrodynamic instabilities, such as viscous
fingering (VF) or Saffman-Taylor instability [3] and Rayleigh-
Taylor instability [11], depending on the flow configuration
and physical properties of the fluids. VF is observed when
a less viscous and hence a more mobile fluid displaces a
more viscous one in porous media [3,12–15]. On the other
hand, a convective instability is featured when a heavier
fluid is placed above a lighter one with the gravity aligned
vertically downwards [11,16]. In both the cases the interface
deforms into “fingers,” which enhances mixing between the
two fluids. The buoyancy-induced convective instability is also
known as density fingering (DF), as the density gradient is
the driving force in this case. A large body of literature is
devoted to the understanding of VF and/or DF at a single
planar interface between two nonreactive [11,14,15,17–19]
and reactive fluids [16,20]. In liquid chromatography column,
the sample confined in a finite rectangular region [8] can
feature VF instability at the frontal or rear planar interface
depending on the viscosity contrast between the sample and
the displacing fluid [18]. However, in numerous cases, for
instance, in localized contaminant [4], CO2 plumes dissolved
in brine or oil, the localized fluids of different viscosity and/or
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density from the ambient fluid may not necessarily feature
planar interface [21]. In the case of pollutant contamination in
soil, the viscous or buoyant spills can be of an arbitrary initial
shape, which is drifted by groundwater flows. Similarly, in CO2

sequestration, an irregular plume of the injected supercritical
CO2 sample migrates within the subsurface water or brine of
different physical properties, such as viscosity or density [5–7].

In addition to arbitrary initial geometrical shape of the
sample, the viscosity and density of the finite sample can
also vary in a wide range depending on its composition. The
ambient fluid can be more viscous than the contaminant,
e.g., trichloroethane, methylene chloride, dichloroethylene,
chloroform, gasoline, alcohols, and methyl tertiary butyl
ether, or it can be less viscous, e.g., ethylene dibromide,
dibutyl phthalate, m-cresol, jet fuel, CO2 dissolved brine,
etc. [5,21,22]. Mixing plays an important role in many natural
and industrial processes, such as food processing [23], mantle
convection [24], bacterial locomotion [25,26], groundwater
flows in heterogeneous media [27], and chemical reaction
[2,27], to name a few. VF enhances mixing of fluids in porous
media or in microfluidics at low Reynolds number [1]. Jha
et al. [2] coupled VF with alternating injection of a finite slug
of sample and the ambient fluid to effectively increase the
mixing in porous media.

Despite having enormous importance, understanding the
flow around a sample of arbitrary shape and viscosity or
density remains poorly explored. VF in a miscible blob was
investigated both numerically [20,28] and experimentally [29].
De Wit et al. [20] reported that when a less viscous miscible
blob is very small, an ellipse deformation and no fingering are
observed. Chen et al. [28] explored the influence of velocity
divergence and the Korteweg stress on the dynamics of a less
viscous miscible circular blob through numerical simulations
of Darcy’s law for flow in a homogeneous porous medium. It
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was shown that the Korteweg stress helps in formation of an
upstream tail and stabilizes VF at the leading part of the circular
blob with an unfavorable viscosity contrast [28]. Dispersion
and miscible VF of initially circular more viscous blob within
a rectilinear displacement were analyzed experimentally by
Maes et al. [29]. VF formed at the concave interface of the
circular blob due to an unstable viscosity contrast between the
circular blob and the ambient fluid, while the convex interface
develops a downstream tail [29]. Nicolaides et al. [21]
investigated the impact of VF and permeability heterogeneity
on breakthrough and clean-up times, mixing, and dilution of
a contaminant migrating through an aquifer. They showed
that the viscosity contrast between the contaminant and the
ambient fluid plays an important role in mixing efficiency and
groundwater clean up [21]. For buoyancy-driven fingering,
Mainhagu et al. [30] have investigated experimentally the
behavior of a dense contaminant injected from a point source
in a fracture. Recently, Sajjadi and Azaiez [31] discussed heat
and mass transfer in melting porous media in the framework
of stable miscible displacements. They discussed the tendency
for the flow to circumvent a frozen square or rectangular
block. The fluid flow problem of their study is similar to the
flow past a miscible blob.

Discussion of the above literature reveals that understand-
ing of fluid mixing in rectilinear displacement of a miscible
sample of arbitrary geometrical shape having different physi-
cal properties than the carrier fluid requires more attention. We
ask the following practical question: How does the viscosity or
density gradient determine the spatial structure and temporal
evolution of the miscible blob that characterizes spreading,
mixing, and dilution of the plume in the ambient fluid?
This question has been answered by numerically integrating
a convection-diffusion equation for the solute concentration
ruling the dynamic viscosity and density of the fluids coupled
to Darcy’s law for the fluid velocity. Numerical simulations are
performed using a Fourier pseudospectral method [8,15] for a
wide range of parameter values, such as log-mobility ratio R,
Péclet number Pe, and the initial area A0 of the blob. When a
less viscous circular blob is sufficiently large, VF is observed
at the frontal interface for all values of R and Pe scanned. On
the other hand, for a more viscous blob, only a finite window
of R features VF at the rear interface above a critical value
of Pe and A0. It is observed that the critical values of Pe and
A0 for a more and less viscous blob differ. We characterize
quantitatively the mixing, spreading, and dilution of the blob
in different instability regions by measuring the variances
of the sample in time. Contrary to VF, for buoyancy-driven
convection, the spatial structure and temporal evolution of
the fingers at the interface with unstable density gradient are
identical for both heavier and lighter blobs. Our results pave
the way to the understanding of mixing of plumes of arbitrary
shape and physical properties in porous media.

This paper is organized as follows. The problem description
and mathematical formulation is described in Sec. II. This
section also describes the method of numerical solution. The
numerical results obtained are discussed in the subsequent
sections. The dynamics of a more (circular as well as square)
and less (circular) viscous miscible blob is discussed in Sec. III.
This is followed by a parametric study of various qualitative
and quantitative properties of the flow in Sec. IV. Section V

discusses the density fingering of a heavy as well as a light
miscible circular blob. The concluding remarks and the future
prospectives are mentioned in Sec. VI.

II. MATHEMATICAL FORMULATION AND
NUMERICAL SOLUTION

The mathematical formulation of the physical problem,
dimensionless formulation, and the numerical method of solu-
tion of the problem are discussed in the following subsections.

A. Physical description of the displacement flow

Consider a rectilinear displacement of a circular blob con-
sists of some solute dissolved in a solvent in two-dimensional
homogeneous porous media initially filled with the same
solvent (see Fig. 1 for the schematic of the displacement flow).
The fluids are viscous, neutrally buoyant, incompressible,
nonreactive, and miscible with each other. Dynamic viscosity
of the ambient fluid and the blob are μ1 and μ2, respectively.
The initial radius of the blob is denoted by rd , solute
concentration inside the blob is c = c2, and c = 0 outside the
blob. The ambient fluid is injected at a uniform velocity Ui

from left to right, where i is the unit vector along the x axis.
The viscosity of the fluids depends on the solute concentration
c. The dimensional length and width of the domain is L and
W , respectively.

B. Governing equations and dimensionless formulation

The fluid incompressibility is represented by the
divergence-free velocity, which satisfies Darcy’s law. The
solute concentration follows a convection-diffusion equation.
Following Pramanik et al. [32], for the dimensionless formula-
tion, we use Vc = U,Lc = W/16,τc = Lc/Vc,μ1VcLc/κ,μ1,
and c2 as the characteristic velocity, length, time, pressure,
viscosity, and concentration, respectively. Here, κ is the
permeability of the porous media. The dispersion is taken
to be anisotropic having Dx and Dy as the axial and the
transverse dispersion coefficients, respectively. The related
dimensionless equations in a reference frame moving with
the (dimensional) velocity U are [32,33]

∇ · u = 0, (1)

∇p = −μ(c)(u + i), (2)

∂c

∂t
+ u · ∇c = 1

Pe

(
∂2c

∂x2
+ ε

∂2c

∂y2

)
, (3)

FIG. 1. Schematic of the displacement of circular blob in two-
dimensional homogeneous porous media.

043106-2



FINGERING INSTABILITY AND MIXING OF A BLOB IN . . . PHYSICAL REVIEW E 94, 043106 (2016)

where u = (u,v) is the two-dimensional Darcy velocity
and μ(c) = eRc [3]. The dimensionless initial radius r =
rd/Lc, the Péclet number Pe = ULc/Dx , the anisotropic
dispersion coefficient ε = Dy/Dx , and the log-mobility ratio
R = ln(μ2/μ1) are the four dimensionless parameters of the
problem.

C. Initial and boundary conditions

Description of appropriate initial and boundary conditions
makes the mathematical formulation of the above problem
complete. We use doubly periodic boundary conditions both
for the fluid velocity and the solute concentration, i.e.,

(u,c)(0,y,t) = (u,c)(Lx,y,t), (4)

(u,c)(x,0,t) = (u,c)(x,Ly,t), (5)

along the longitudinal and transverse directions, respectively.
Here Lx and Ly correspond to the dimensionless length and
width of the computational domain.

The initial condition for the solute concentration is given
as

c(x,y,t = 0) =
{

1, inside the blob

0, outside the blob.
(6)

Although, the velocity does not have any explicit time
derivative in Eqs. (1)–(3), an initial condition for velocity u

is required to solve the convection-diffusion equation (3). An
appropriate initial condition for the velocity in the moving
reference frame is

u(x,y,t = 0) = (0,0). (7)

D. Method of solution

The stream function, ψ(x,y,t) (such that u = ∂ψ

∂y
and v =

− ∂ψ

∂x
), form of the governing equations becomes [33]

∇2ψ = −R∇c · (∇ψ + j ), (8)

∂c

∂t
+ ∂ψ

∂y

∂c

∂x
− ∂ψ

∂x

∂c

∂y
= 1

Pe

(
∂2c

∂x2
+ ε

∂2c

∂y2

)
, (9)

where j is the unit vector in the y direction. These equations
are numerically solved using a Fourier pseudospectral method
initially employed by Tan and Homsy [15] and later success-
fully used by many researchers in the studies of miscible
viscous and density fingering problems [8,10,11,17,18,32].
In order to ensure that the dynamics of the blob remains
unaffected by the influence of the periodic boundaries, the
initial radius of the blob considered in this paper satisfies
Ly/r � 32, and Lx/r � 64, i.e., the blob is situated away
from the boundaries. The number of spectral nodes chosen
for a computational domain of size 32 × 16 is 4096 × 2048.
The step size of the spatial discretization, �x = �y = 1/27,
is sufficiently small to capture the resolution of the interface
of the circular blob. Various panels in Figs. 2–8 show only
a small fraction of the numerical domain. Unlike the cases
of VF around planar interfaces, no initial perturbations are
required at the diffusive interface between the blob and the
displacing fluid to trigger the instability, as curvature naturally
ensures instability via Eqs. (8), due to the fact that ∇c and
∇ψ are not collinear at the curved miscible interface [32].
The time step used is �t = 10−4. A convergence study of the
numerical method ensures that the fingering dynamics is not
affected when using smaller time and spatial discretizations.
The accuracy and efficiency of the Fourier pseudospectral
method has been verified by calculating the total mass of the
blob, which shows a maximum 0.001% relative error. The

FIG. 2. Streamline distribution in the vicinity of the circular blob of initial radius r = 0.5 at time t = 1,2,5,10 (from top to bottom) for
R = 1.25: (a) Pe = 500, (b) Pe = 900, and (c) Pe = 1000. The red contours correspond to c = 0.01,0.50,0.99 (from outside to inside).
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pseudospectral method leads to numerical instability for large
values of Pe and R [1,15,33]. Therefore, in this paper, we
restrict our numerical experiments for the parameter ranges,
|R| � 2.5, and Pe � 1500.

III. DYNAMICS OF A MORE OR LESS VISCOUS BLOB

In a recent paper, Pramanik et al. [32] investigated viscous
fingering and deformation of a more viscous miscible circular
blob in a rectilinear displacement in homogeneous porous
media. Pramanik et al. [32] showed that three different
instability modes (viscous fingering and comet- and lump-
shaped deformation) can appear depending on the size of the
blob, log-mobility ratio, and Péclet number. Furthermore, they
mentioned the existence of a finite R window for VF of a
more viscous circular blob above a critical radius and the
critical Péclet number. The main focus of this paper is to
understand the dynamics of a less viscous circular blob in the
rectilinear displacement and compare with the corresponding
more viscous blob [32] under the same flow conditions. What
follows is, in essence, a brief summary of the results of the
R-Pe parameter space for a more viscous circular blob [32]
with some additional information. This is followed by the
discussion of the dynamics of a more viscous square blob.
Finally, we discuss in detail the dynamics of a less viscous
circular blob and compare with the corresponding more
viscous blob, wherever applicable. In this section, we confine
our focus to the case of isotropic solute dispersion, ε = 1.

A. Dynamics of a more viscous circular blob

The nature of deformation and instability depends on
various flow parameters. For a given r = 0.5,ε = 1, Pramanik
et al. [32] summarizes the stability characteristics in R-Pe
parameter space, which is divided into three instability regions:
VF and lump- and comet-shaped deformations. The observed
dyamics corresponding to each point in this parameter space
is a combined effect of R and Pe. Variation from one type
of instability to other while moving along a particular path
crossing the boundaries is associated with particular physical
consequence. The individual effect of R on the fingering
instability and the deformation of the blob has been discussed
for a fixed Pe (>Pec) by Pramanik et al. [32]. For a given
Pe, different R values are associated with different relative
velocities between the blob and the ambient fluid, which
results in different instabilities. A natural question follows:
Why does the length of the tail increases with R? The Darcy
velocity is directly proportional to the pressure gradient, and
the proportionality constant, the dynamic viscosity of the fluid,
varies locally depending on the concentration, c. Thus, for a
given ∇p, the variation of the Darcy velocity in the vicinity of
the blob depends on the space-time evolution of c. For

μ(c) = eRc, R > 0, (10)

the dynamic viscosity decreases as c decreases. Thus, the
mobility of the fluid increases away from the center of the
blob. The ambient fluid sweeps away the diffused layer
in the downstream direction, which results in formation of
downstream tail. From the viscosity-concentration relation
(10) it is evident that the mobility variation in the vicinity

of the blob increases rapidly as R increases. Therefore, the
velocity of the comet head relative to its tail increases with R,
which results in a longer tail for a larger log-mobility ratio.
This is readily evident from the streamline distribution inside
the tail (not shown here for brevity).

One can study the individual effect of Pe [i.e., effect
of diffusion (injection velocity), provided that the injection
velocity (diffusion) remains unchanged] by moving along the
lines of constant R in the R-Pe parameter space. The spatial
structure and temporal evolution of the blob corresponding
to three sets of parameters along the vertical line R = Rc

in the phase space (see Fig. 4 of Pramanik et al. [32]) are
presented in Fig. 2. To investigate the effect of different Pe,
we recall that the initial viscosity contrast between the blob
and the ambient fluid are the same for all three cases. We
assume that the displacement velocity remains the same for
all three cases. Therefore, one can explain that diffusion of the
solute concentration is responsible for the different instability
modes that are observed when Pe crosses two critical values.
The first one corresponds to the transition from comet- to
lump-shaped instability, while the second one represents the
critical value for the onset of VF. When the diffusion is faster
(Pe � 750), the destabilizing viscosity contrast is dominated
by the stabilizing action of diffusion. This deforms the blob
into a comet shape having a short and blunt tail in the
downstream direction. When the diffusion is relatively slower
(Pe � 925), the viscosity contrast becomes dominant, which
results in VF at the trailing interface [see Fig. 2(c)]. For
intermediate values of Pe, i.e., 750 � Pe � 925, the viscous
and the diffusive forces compete with each other, resulting a
lump-shaped instability to the circular blob [see Fig. 2(b)].

The discussion of this subsection (Sec. III A) helps the read-
ers to understand and relate the results of the remainder of the
paper. The discussed physical effects of this section, associated
with R and Pe, are referred to in the subsequent discussion.

B. Dynamics of a more viscous square blob

In Sec. III A we have discussed how a more viscous
miscible circular blob features three distinct instability modes
depending on R and Pe. How do these instability modes alter
in the R-Pe parameter space for an initially square blob? We
choose a square blob of diagonal length 2r having its sides
parallel to the coordinate axes. With this choice, the square
blob can be inscribed inside a circle of radius r [see Fig. 3(a)
for the schematic of the flow].

It is observed that the displacement of a more viscous
square blob and a more viscous circular blob possesses certain
dynamic similarities. For instance, VF is observed over a
finite R window when Pe > Pec. However, unlike the case
of a circular blob, the R-Pe parameter space for a square
blob features only VF and comet-shaped instabilities. The
intermediate region of lump-shaped instability disappears in
the case of square blob. Figure 3(b) shows different instability
regions in R-Pe plane for a square blob with R > 0 and
r = 0.5. This shows that the VF region increases significantly
for a square blob compared to the circular one. A careful
observation of the parameter space corresponding to both the
circular blob (see Fig. 4 in Pramanik et al. [32]) and the square
blob [Fig. 3(b)] reveals that the region II (VF) in the latter
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FIG. 3. (a) Schematic of the displacement of an initially squared
miscible blob in a homogeneous porous medium. (b) Phase plot in
R-Pe plane for r = 0.5 shows two distinct instability regions: VF (I)
and comet-shaped deformation (II). Streamlines in the vicinity of the
blob (red contour lines) are presented for Pe = 500, R = 1.25 (I),
and Pe = 900, R = 2.5 (II).

case contains both the regions II and III (VF and lump-shaped
instability) of the former. The critical Péclet number, Pec, for
the onset of VF in the former case is much smaller than that in
the latter. In particular, for r = 0.5, Pec ≈ 925 for a circular
blob and for a square blob Pec ≈ 400.

The spatiotemporal distributions of the solute concentration
of an initially squared blob are shown in Fig. 4 at different

dimensionless times. The diagonal length of the square
blob is taken to be 1. To discuss the influence of Pe (i.e.,
diffusion or injection velocity) and viscosity contrast on the
observed dynamics of viscous fingering and comet-shaped
deformation, we choose the following three parameter sets
from the R-Pe parameter plane: (a) R = 1.25,Pe = 300, (b)
R = 1.25,Pe = 900, and (c) R = 2.5,Pe = 900 (see Fig. 4).
The physical justification of the observed dynamics is similar
to that discussed in Sec. III A. The influence of Pe can be
analyzed from Figs. 4(a) and 4(b) corresponding to the first
two parameter sets. These figures confirm the existence of a
critical Péclet number, Pec, for the onset of VF as shown in
Fig. 3. On the other hand, the influence of the viscosity contrast
on the spatiotemporal dynamics of the blob is understood
by analyzing Figs. 4(b) and 4(c), which correspond to the
parameter sets (b) and (c). This figure pair confirms the finite
R window for VF in a square blob. In summary, the dynamics
of a more viscous finite blob of different initial shape (e.g.,
circular or square) has certain qualitative features in common.
It will be interesting to explore further for miscible blob of
other initial shape, in particular, of an arbitrary shape.

C. Dynamics of a less viscous circular blob

Consider the displacement of an initially circular blob,
which is less viscous than the surrounding fluid (R < 0). This
type of viscosity contrast is relevant to the dynamics of a
localized zone of CO2 saturated brine displaced by pure brine
[5], although the actual CO2 sequestration problem possesses
different physical conditions. Other fluid pairs, in the form
of different contaminant in aquifer water, are also listed in
Sec. I. We are interested in knowing whether the dynamics
of a less viscous circular blob is identical to that of a more
viscous one [32] under the identical flow conditions. In order to
compare the dynamical behaviors between these two cases, the
spatiotemporal evolution of the concentration is presented in
Fig. 5 for r = 0.5, Pe = 1000, and R = −0.5,−1.0, and −1.5.
This figure shows that instability becomes stronger and the
blob mixes quickly into the ambient fluid as the magnitude of

FIG. 4. Spatial distribution of concentration in the moving frame of reference at times t = 0,2,5,10 from top to bottom for r = 0.5,
(Pe, R) = (a) (300, 1.25), (b) (900, 1.25), and (c) (900, 2.5).
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FIG. 5. Spatial distribution of concentration at t = 1,2,4 from top to bottom for Pe = 1000, r = 0.5, ε = 1, and R = (a) −0.5, (b) −1,
(c) −1.5.

the log-mobility ratio increases. This is qualitatively similar to
the displacement of a less viscous finite slice. Given a pressure
gradient, the less viscous blob moves faster than the ambient
fluid and hence the fluid upstream to the blob in its vicinity
are attracted towards the center of the blob. This is readily
evident from the streamline distribution in the vicinity of the
blob shown in Fig. 6 for R = −1.5, r = 0.5, and Pe = 1000.
To analyze further, we summarize the stability characteristics
in the parameter space spanned by R and Pe.

The observed difference between the dynamics of a more
and less viscous circular blob raises a very intriguing question:
Does there exist any critical blob radius for VF in a less
viscous circular blob? De Wit and Homsy [20] observed ellipse
deformation and no VF in a less viscous blob of sufficiently
small size. On the other hand, Chen et al. [28] reported VF
for a less viscous blob of a given radius. This signifies that
VF in a less viscous circular blob depends on the initial size
of the blob. Here we are interested in estimating the critical
blob radius for VF in a less viscous circular blob. We are
also interested in exploring the dynamics of a less viscous
circular blob of radius smaller than the critical value. It is
observed that, similar to a more viscous blob, the critical
blob radius for VF depends on R and Pe, i.e., rc(R,Pe). A
series of numerical simulations with different values of Pe,
R, and r yield the following values: rc(−1,103) ≈ 0.1 and
rc(−2,225) ≈ 0.5. The overall qualitative dependence of rc

on the two flow parameters, R and Pe, are as follows: rc

decreases as R (or Pe) increases for a fixed Pe (or R). This
is consistent with the effect of R and Pe on the VF instablity,
which is enhanced with both these parameters. We summarize
in Fig. 7 the stability scenarios of a less viscous circular blob of
initial radius r = 0.5 in the R-Pe parameter space. For a given
Pe we vary R with increment 0.25 and perform numerical
simulations to obtain the spatiotemporal dynamics of the blob.
This procedure is followed for different Pe with increment 75.
From visual inspection of the incipient deformation of the blob,
we approximate the boundary between two adjacent stability
regions. Next, we vary R and Pe in the neighborhood of the
approximated boundaries with smaller increments than earlier.

This iterative process is repeated until satisfactory results are
obtained for the boundaries. The symbols (square and circle)
correspond to some of the data points used to calculate the

FIG. 6. Streamline distribution in the vicinity of a circular blob
of radius r = 0.5 for R = −1.5 and Pe = 1000. From top to bottom:
t = 1,2,4.
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FIG. 7. (a) Phase plot in R-Pe plane for r = 0.5 shows three
distinct instability regions: comet shaped (I), lump shaped (II), and
VF (III). Region II corresponds to transition zone between the VF
and comet-shaped instability. The symbols (� or ©) correspond to
some of the data points used to calculate the boundaries between
two adjacent stability regions. (b) Snapshots of the representative
spatial structure of solute concentration c corresponding to each
instability region are shown: VF (R = −1, Pe = 103), lump shaped
(R = −0.55, Pe = 625), and comet shaped (R = −0.35, Pe = 500).

boundaries between two adjacent stability regions. Thus, we
identify three instability regions: VF and comet- and lump-
shaped deformation, similar to a more viscous circular blob. A
noticeable difference between the instability regions of a more
viscous blob and those of a less viscous one is best observed
while moving along constant Pe lines in the parameter space.
Along these lines, for R < 0, VF is observed for R � Rc(r,Pe)
and the instability becomes stronger as |R| increases. As an
example, for r = 0.5 and Pe = 500, the critical log-mobility
ratio for VF is −0.6, i.e., Rc(0.5,500) ≈ −0.6. This is in
strong contrast with what happens for a more viscous blob that
features VF only over a finite R window (see Fig. 4 of Pramanik
et al. [32]). Another distinguished feature of a less viscous
circular blob is that for a given blob radius r , and all finite Pe
VF is observed for all R < Rc(r,Pe). This is in stark contrast
with the displacement of a more viscous blob, for which only
comet-shaped deformation is observed below Pec [32].

The lump-shaped deformation, which, to the best of the
authors’ knowledge, was never discussed in the literature
before, is one of the important results of the present study.
Here we discuss the three instability modes and the underlying

physics. We move along the line Pe = 500 in the parameter
space and successively choose R = −0.35,−0.55, and −1.50,
which correspond to the comet- and lump-shaped and VF
instabilities, respectively. Figure 8(a) shows the spatiotem-
poral evolution of the solute concentration for Pe = 500,
R = −0.35. The length of the curved diffusive interface with
unstable viscosity contrast is too small to accommodate a
single wavelength of the most unstable modes. Therefore, no
VF is observed in this case.

Physical discussion of the development of the instability
is best understood from a linear stability analysis. A linear
stability analysis of the present problem is beyond the scope of
this paper and will be addressed in our future research in a more
general setting. However, the stability analysis of miscible
rectilinear displacement at a planar interface [14,15,33] or
radial source flow [34] reveals that the wave number of the
unstable modes depends on time, in addition to other flow
parameters (R, Pe). We know that the wavelength of the
most unstable mode decreases as |R| increases. This helps
us to explain the possible origin of observed instabilities. For
R = −0.55 the initial wavelength is smaller than the length of
the unstable interface, such that part of the unstable interface
tends to protrude as a finger. However, as time passes the
wavelength of the unstable modes become too large to form
fingering instability at the curved interface of the circular
blob. Thus, the blob takes the shape of a comet after a long
time. Therefore, we say that the parameter values of Fig. 8(b)
and other similar values from region II on the parameter
space corresponds to a transition from VF to comet-shaped
deformation. For R = −1.50 the wavelength of the unstable
mode becomes sufficiently small such that the curved miscible
interface with unstable viscosity contrast contains more than
one wave, which appears in the form of fingers.

Pramanik et al. [32] have shown that the dynamics of a
more viscous blob depends not only on the curvature of the
miscible interface of the blob but also on the distribution of the
finite blob. In particular, the analysis of Pramanik et al. [32]
suggests the existence of a finite R window for VF in a more
viscous square blob in addition to a circular one (see Fig. 4 in
Pramanik et al. [32]). This has been verified in this paper and is
discussed in Sec. III B. A natural question follows: What is the
influence of the flow of the ambient fluid around the blob on
the spatiotemporal dynamics of a less viscous circular blob?
This can be explained in terms of the velocity distribution
in the neighborhood of the circular blob. Inside the blob the
velocity is larger than that outside the blob. This results in the
perturbations at the frontal interface of the circular blob that
grow rapidly in the form of viscous fingers. We recall that
the relative velocity between the circular blob and the ambient
fluid increases with |R|, hence the instability becomes stronger
(see Sec. III A). Similarly, the instability enhances when Pe
increases, since larger Pe values correspond to higher flow
rate for a given axial diffusion Dx (or small axial diffusion
for a given flow rate, see Sec. III A). On the other hand, for a
finite slice there is no passage for the displacing fluid to flow
around the slice. In summary, the perturbations grow rapidly as
the viscosity contrast increases irrespective of the shape of the
less viscous finite sample and its extent allowing or hindering
the flow of the ambient fluid past the finite sample. Thus, we
conclude that, for a less viscous localized sample of different
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FIG. 8. Spatial distribution of the solute concentration at time t = 1,2,4,10 (from top to bottom) for r = 0.5, (Pe, R) = (a) (500, −0.35),
(b) (625, −0.55), and (c) (500, −1.5).

initial shape (circular and rectangular slice, for instance), the
stability characteristics in the parameter plane spanned by R

and Pe can be divided into two categories, VF and no VF.
The no-VF region can be further subdivided into comet- and
lump-shaped instabilities when the ambient fluid flows around
the sample or only diffusive expansion of the miscible planar
interface for a finite slice. The boundaries separating two
adjacent stability regions depend on the flow parameters.

Next, we explore the influence of the blob radius on the
observed dynamics while displacing a less viscous circular
blob. We observe that the qualitative features of the different
instability modes remain mostly unaffected by changing r .
In particular, in Fig. 9 we show the influence of R and
Pe on VF and comet- and lump-shaped instabilities for a
less viscous circular blob of radius r = 0.25. This figure
depicts that for r = 0.25 region III (corresponding to VF)
shrinks, while regions I (comet-shaped deformation) and
II (lump-shaped deformation) expand with respect to the
corresponding regions for r = 0.5. One can easily derive
similar R-Pe parameter space for different blob radius other
than r = 0.5 (i.e., r >,=,<0.5). For all r , three instability
regions, mentioned in our results, will be observed apart from
the quantitaive changes. However, in the present paper the
numerical simulations are performed for r � 0.5, due to the
constaints of the numerical method (see Sec. II D).

IV. PARAMETRIC STUDY OF QUALITATIVE AND
QUANTITATIVE PROPERTIES OF THE FLOW

In order to investigate the spreading of the blob we calculate
the variance [18,32],

σ 2
x (t) =

∫ Lx

0 x2c̄(x,t) dx∫ Lx

0 c̄(x,t) dx
−

[∫ Lx

0 xc̄(x,t) dx∫ Lx

0 c̄(x,t) dx

]2

, (11)

of the transversely averaged solute concentration, c̄(x,t) =
1
Ly

∫ Ly

0 c(x,y,t)dy, for different R and Pe. For a more viscous

circular blob, Pramanik et al. [32] showed that the tailing
phenomenon enhances the spreading of the blob in the flow
direction. We compare the longitudinal spreading of a circular
blob when the viscosity of the blob is equal to (R = 0) and
more (R > 0) and less (R < 0) than that of the ambient fluid.
Figure 10 shows the temporal evolution of the axial variance
of the transversely averaged solute concentration for Pe =
1000, r = 0.5 with R = −0.5, 0, and 0.5. We show that the
spreading of the circular blob in the flow direction increases
as the viscosity contrast between the blob and ambient fluid
increases. Initially, due to VF, a less viscous blob spreads more
than a more viscous one. However, at later times the tailing

-2.0 -1.5 -1.0 -0.5 0.0
R

200

400

600

800

1000

P
e

III

I

II

FIG. 9. Phase plot in the R-Pe plane for r = 0.25 shows three
distinct instability regions: comet shaped (I), lump shaped (II), and
VF (III), similar to the case of r = 0.5. The qualitative features remain
unchanged by changing the blob radius. Quantitative behaviors of
the three regions change: for decreasing r , region III shrinks, while
regions I and II expand. The symbols (� or ©) correspond to some of
the data points used to calculate the boundaries between two adjacent
stability regions.
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FIG. 10. Temporal evolution of the axial spreading relative to the
initial extent, σ 2

x (t)/σ 2
x0, for Pe = 1000, r = 0.5.

phenomenon of the more viscous blob spreads the blob more
along the flow direction than its less viscous counterpart.

In Sec. III A we showed that the flow of the displacing fluid
around the miscible blob generates a tail in the downstream
of a more viscous circular blob. On the other hand, for a less
viscous blob VF is observed at the frontal curved interface of
the blob. The influence of these phenomena on the spreading
of the miscible blob differ completely. Here, we are interested
in characterizing the spreading of a more or less viscous blob
in the transverse direction in terms of the variance,

σ 2
y (t) =

∫ Ly

0 y2c̄(y,t) dy∫ Ly

0 c̄(y,t) dy
−

[∫ Ly

0 yc̄(y,t) dy∫ Ly

0 c̄(y,t) dy

]2

, (12)

of the longitudinally averaged concentration profile, c̄(y,t) =
1
Lx

∫ Lx

0 c(x,y,t)dx. Temporal evolution of the transverse
spreading of the circular blob relative to its initial extent in
this direction, σ 2

y (t)/σ 2
y0, is presented in Fig. 11. Here, σ 2

y0
corresponds to the initial spreading of the circular blob in
the transverse direction, i.e., σ 2

y (t = 0). It is observed that

0 5 10
t

0.5

1.0
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2.0

2.5

3.0

σ
2 y
(t

)/
σ

2 y
0

0 2 4
0.95

1.05

1.05
R = −0.5

R = 0.0

R = 0.5

FIG. 11. Temporal evolution of the transverse spreading relative
to the initial extent, σ 2

y (t)/σ 2
y0, for Pe = 1000, r = 0.5. Inset: At

time t � 4, the transverse spreading for R = 0 is more than the
corresponding values of R �= 0.

at time t � 4, σ 2
y /σ 2

y0 is larger for R = 0 than R �= 0. At
later times, the magnitude of σ 2

y depends on the sign of the
log-mobility ratio R. For R = −0.5, VF is featured at the
frontal part of the curved interface that increases σ 2

y (t). On
the other hand, for R = 0.5 comet-shaped deformation hinders
the spreading in the transverse direction. Moreover, the more
mobile ambient fluid sweeps away the transverse diffused layer
in the downstream direction. Thus, a more viscous blob is
narrowed in the transverse direction and this is characterized
from σ 2

y (t) < σy0 (see Fig. 11).
Individually, the longitudinal or the transverse variance of

the blob does not give the overall picture of the spreading and
mixing of the blob in the ambient fluid. To have an estimate
in this direction, we measure the area covered by the miscible
blob

A(t) =
∫∫

	(t)
dxdy, (13)

where 	(t) is defined as, 	(t) = {(x,y) : 0.01 � c(x,y; t) �
0.99}, and A0 = A(t = 0). The temporal evolution of the area
of the miscible blob is shown in Fig. 12(a) for the parameter
values of Fig. 11. It is observed that the less viscous circular
blob spreads over the largest area than the more viscous
and viscosity-matched blobs. For the parameter values used
here, VF at the frontal curved interface of the less viscous
blob increases the fluid-fluid interface and hence increases
the area larger than the more viscous blob, which spreads
only due to tail formation. The fluid mixing enhances due to
diffusive mixing through the fluid-fluid interface. To quantify
the mixing of the circular blob with the ambient fluid, we
calculate the degree of mixing [1], χ (t) = 1 − σ 2(t)/σ 2

max,
measured from the variance σ 2(t) ≡ 〈c2〉 − 〈c〉2 of the solute
concentration. The temporal evolution of the degree of
mixing for the parameter values of Fig. 12(a) are shown in
Fig. 12(b). It is shown that the viscosity-matched blob mixes
at a slower rate than a circular blob with viscosity mismatch.
For R = −0.5 mixing is more than that for R = 0.5, since VF
increases the fluid-fluid interface in the former than the latter.

A. Effect of anisotropic dispersion

In this section we explore the influence of dispersion
anisotropy on the mixing of the blob in the ambient fluid.
Figure 13(a) shows that, for a more viscous blob (R > 0),
the mixing increases as ε approaches to ≈0.8, and beyond
this limit mixing reduces. Transverse dispersion and hence
the diffusive mixing decreases as ε decreases. On the other
hand, fingering instability becomes stronger and fine-scale
structures are observed as ε decreases. Thus, the fluid-fluid
interface, and hence the degree of mixing, increase. Here we
discuss the effect of ε on the mixing of the circular blob at
some time, say, t = 10. For ε � 0.8 mixing due to dispersion
dominates the mixing due to VF, thus resulting an overall
increase in χ (t) as ε increases from 0.2 to 0.8. Beyond ε = 0.8
the opposite phenomenon occurs. Thus, the result of these two
opposite actions on the mixing of the blob is a nonmonotonic
dependence of χ (t) on the anisotropic dispersion ε [see inset
of Fig. 13(a)]. For R < 0, the diffusive mixing is smaller than
the fingering mixing. This results a monotonic increment in
χ (t) as ε increases [see inset of Fig. 13(b)].
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FIG. 12. For Pe = 1000 and different values of R, the temporal evolution of the (a) normalized area A(t)/A0 occupied by the blob fluid
and (b) degree of mixing χ (t) of a circular blob of radius r = 0.5.

V. BUOYANCY-DRIVEN FINGERING INSTABILITY
IN VISCOSITY-MATCHED FLUIDS

Although the driving forces for VF and DF differ, the
qualitative features of the instability and the finger patterns
are similar [35]. Moreover, under certain conditions there
exists a vertical flow equivalent to a horizontal flow [17]. This
motivates us to investigate whether the convection-induced
instability in a circular blob is equivalent to the instability
originating from fluid displacement in viscosity-matched
fluids. In this section we discuss the Rayleigh-Taylor instability
at the upper or lower interface of a circular blob in a quiescent
ambient fluid, when the dynamic viscosity of the two fluids are
equal. This flow can be represented by the following nonlinear
partial differential equations:

∇ · u = 0, ∇p = −u + ρ(c)i, (14)

∂c

∂t
+ u · ∇c = ∇2c

Ra
, (15)

in dimensionless form. Here p is the hydrostatic pressure head.
There is no applied pressure gradient that can originate flow

in the system. For dimensionless formulation we use the same
characteristic scales as in Sec. II B, except Vc = |�ρ|κg/μ,
the buoyancy-induced convective velocity. Here �ρ = ρ2 −
ρ1 represents the difference between the density of the two
fluids, g is the magnitude of the gravitational acceleration, μ

is the dynamic viscosity of the fluid, and the density of the
fluids is given by

ρ(c) =
{

c, if ρ2 > ρ1

1 − c, if ρ2 < ρ1
. (16)

We numerically solve this problem using the method discussed
in Sec. II D to analyze the dynamics of a heavy or light blob in
a quiescent fluid. Thus, Eqs. (14) and (15) are recast in terms
of the stream function as

∇2ψ = ∂ρ

∂c

∂c

∂y
, (17)

∂c

∂t
+ ∂ψ

∂y

∂c

∂x
− ∂ψ

∂x

∂c

∂y
= ∇2c

Ra
, (18)
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FIG. 13. Effect of anisotropic dispersion on the degree of mixing, χ (t), for r = 0.5, Pe = 1000, (a) R = 1, (b) R = −1. Inset: Variation of
χ with ε at time t = 8.
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(a) (b)

FIG. 14. Streamlines in the vicinity of the blob for Ra =
1000, and (a) ρ1 < ρ2, (b) ρ1 > ρ2. The blob is represented by
isocontours of solute concentration c (red). The contour values are
c = 0.01,0.5,0.99 (from outside to inside).

where Ra = VcLc/D is the solutal Rayleigh number, and D

is the constant isotropic dispersion coefficient of the solute.
Figures 14(a) and 14(b) show the streamlines distribution

in the vicinity of a heavy and light blob, respectively. These

figures show that the density-driven instability at the lower
interface (heavier blob) is identical to that at the upper
interface (lighter blob). In the former the heavier blob acquires
a downward movement under the action of gravitational
acceleration, while the lighter blob, in the latter case, climbs
upward against the gravitational force. Due to the movement
of the blob, circulations are generated on the two lateral
sides of the blob, which helps in fluid mixing. This is readily
observed from the streamlines distribution in the vicinity of the
blob.

Here we present a simple mathematical analysis to explain
the observed dynamics of a heavy or light blob. When the
density of the blob is less than the ambient fluid, we take the
coordinate transformation, X = Lx − x,Y = Ly − y, where
Lx and Ly are the dimensionless length and width of the
domain. Therefore, we have

dn

dxn
= (−1)n

dn

dXn
,

dn

dyn
= (−1)n

dn

dY n
, ∀n ∈ N. (19)

Therefore, the equations of motion in this transformed coordi-
nate system are (gravity working in the negative X direction)

∇̃ · ũ = 0, ∇̃p = −ũ − ρ(c)i, (20)

∂c

∂t
+ ũ · ∇̃c = ∇̃2c

Ra
, (21)

where ũ is the Darcy velocity in (X,Y ) coordinates and ∇̃ =
( ∂
∂X

, ∂
∂Y

). Darcy’s law in Eq. (20) can be written in component
form as

∂p

∂X
= −ũ − ρ(c),

∂p

∂Y
= −ṽ,

or, −∂p

∂x
= −ũ − ρ(c), −∂p

∂y
= −ṽ, [from Eq. (19)]

or, −(−u + ρ(c)) = −ũ − ρ(c), − (−v) = −ṽ, [from Eq. (14)]

or, u − ρ(c) = −ũ − ρ(c), v = −ṽ,

or, u = −ũ, v = −ṽ, i.e., u = −ũ. (22)

Again, the convection diffusion equation (21) gives

∂c

∂t
+ ũ

∂c

∂X
+ ṽ

∂c

∂Y
= 1

Ra

(
∂2c

∂X2
+ ∂2c

∂Y 2

)
,

or,
∂c

∂t
+ (−u)

(
− ∂c

∂x

)
+ (−v)

(
− ∂c

∂y

)
= 1

Ra

(
∂2c

∂x2
+ ∂2c

∂y2

)
, [from Eqs. (19) and (22)]

or,
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 1

Ra

(
∂2c

∂x2
+ ∂2c

∂y2

)
, (23)

which is the same as Eq. (15). Equations (22) and (23) show
that in the two cases of heavy and light blobs, the velocity are
of equal magnitude in opposite directions, and the dynamics
of the solute concentration is governed by the same equation.
Therefore, we conclude that the fingering dynamics of a heavy
blob is a mirror image to that of a light blob, as captured from
the numerical simulations.

VI. CONCLUSION

We investigate the deformation of a more or less viscous
sample (circular or square) displaced by a fluid of different
viscosity. The stability scenarios are summarized in the
parameter space spanned by R and Pe. For an initially circular
blob, three instability modes are observed for both R > 0 and
R < 0. The most striking difference between a more and a
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less viscous circular sample is the finite R window for VF.
In the latter case there does not exist any such R window
for VF. For a less viscous blob, beyond the critical value of
the log-mobility ratio, VF enhances with the magnitude of R.
This qualitative property of the instability in a less viscous
circular blob is similar to that of a less viscous finite slice. The
critical blob radius for VF is smaller for R < 0 than its R > 0
counterpart. It is observed that the mixing of a less viscous blob
with the ambient fluid increases with the viscosity contrast,
while the mixing of a more viscous circular blob depends
nonmonotonically on R. Furthermore, the degree of mixing
of more viscous blob has nonmonotonic dependence on the
dispersion anisotropy, while, for a less viscous blob, mixing
increases monotonically as ε decreases.

We further analyze the instability in the rectilinear displace-
ment of an initially square blob. It is shown that for a more
viscous blob the lump-shaped instability mode disappears.
Moreover, in the case of a square blob, the VF region is
larger than that for a circular blob which inscribes the square
blob. The critical Péclet number, Pec, for VF is smaller for
a square blob than the corresponding circular blob. However,
the critical log-mobility ratio, Rc, remains almost the same for
both the circular and the corresponding square blob. When the

viscosity of the square sample is less than the displacing fluid,
there exist two instability modes similar to its more viscous
counterpart. The region of VF is larger for a less viscous
square sample compared to the corresponding circular one.
Finally, we have shown that the Rayleigh-Taylor instability
in a circular blob in a quiescent fluid is independent of the
curvature of the unstable interface, which completely differs
from its VF counterpart. We believe our finding will motivate
more theoretical and experimental studies in the context of
hydrodynamic instabilities in porous media. Moreover, the
effect of shear stress on these types of instabilities would be
more interesting to the fluid dynamists and physicists.
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