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The “Rayleigh line” μ = η2, where μ = �o/�i and η = ri/ro are respectively the rotation and radius ratios
between inner (subscript i) and outer (subscript o) cylinders, is regarded as marking the limit of centrifugal
instability (CI) in unstratified inviscid Taylor-Couette flow, for both axisymmetric and nonaxisymmetric modes.
Nonaxisymmetric stratorotational instability (SRI) is known to set in for anticyclonic rotation ratios beyond that
line, i.e., η2 < μ < 1 for axially stably stratified Taylor-Couette flow, but the competition between CI and SRI
in the range μ < η2 has not yet been addressed. In this paper, we establish continuous connections between the
two instabilities at finite Reynolds number Re, as previously suggested by Le Bars and Le Gal [Phys. Rev. Lett.
99, 064502 (2007)], making them indistinguishable at onset. Both instabilities are also continuously connected
to the radiative instability at finite Re. These results demonstrate the complex impact viscosity has on the linear
stability properties of this flow. Several other qualitative differences with inviscid theory were found, among
which are the instability of a nonaxisymmetric mode localized at the outer cylinder without stratification and
the instability of a mode propagating against the inner cylinder rotation with stratification. The combination
of viscosity and stratification can also lead to a “collision” between (axisymmetric) Taylor vortex branches,
causing the axisymmetric oscillatory state already observed in past experiments. Perhaps more surprising is the
instability of a centrifugal-like helical mode beyond the Rayleigh line, caused by the joint effects of stratification
and viscosity. The threshold μ = η2 seems to remain, however, an impassable instability limit for axisymmetric
modes, regardless of stratification, viscosity, and even disturbance amplitude.
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I. INTRODUCTION

There has been considerable recent interest in the effects
of axial stratification on the Taylor-Couette problem following
the discovery in 2001 [1,2] that it leads to instabilities outside
the centrifugally unstable region. This region is conventionally
defined by Rayleigh criterion [3] as

μ < η2, where μ := �o/�i and η := ri/ro (1)

are respectively the rotation and radius ratios between inner
and outer cylinders (denoted with indices i and o, respectively).
Rayleigh derived his criterion for axisymmetric perturbations
in the inviscid limit and only comparatively recently has it been
extended to nonaxisymmetric, inviscid perturbations [4], albeit
only in the limit of large axial wave numbers. Using an inviscid,
small-gap analysis, Refs. [1,2] uncovered nonaxisymmetric
stratified instabilities that could develop when the inner
cylinder rotates faster than the outer one, despite the radial
decrease in angular momentum: the so-called quasi-Keplerian
regime, η2 < μ < 1. The new instability—later called the
stratorotational instability or SRI in Ref. [5]—was interpreted
as a resonance between boundary-trapped inertia-gravity
waves. Using the same asymptotic framework as Ref. [4],
Ref. [6] later showed that the SRI can become a radiative
instability (RI) in the limit of an infinite gap (η → 0) so that the
outer boundary “goes to infinity.” The RI mechanism relies on
a critical layer to extract energy from the base flow and radiate
an evanescent wave radially outwards. More recently, Ref. [7]
extended the instability range of stratified Taylor-Couette flow
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even further, reaching the striking conclusion that the flow
is always unstable, except for the special case of solid-body
rotation, μ = 1. Importantly, Ref. [7] relaxed the small-gap
assumption initially made in Refs. [1,2] (by using large axial
wave number asymptotics) and uncovered the role played by
a critical layer to achieve over-reflection between the two
boundary-trapped waves causing SRI.

With the exception of Ref. [8], pre-2001 laboratory exper-
iments on stratified Taylor-Couette flow were always carried
out with a fixed outer cylinder [8–12] (so μ = 0 < η2) and
the relevance of the Rayleigh line was not questioned. The
first experimental evidence of the SRI came in 2007 [13],
when nonaxisymmetric instability was clearly observed in the
centrifugally stable regime. Significantly, Ref. [13] explored
a large range of rotation ratios and suggested a continuous
connection between nonaxisymmetric modes dominating on
each side of the Rayleigh line. In contrast, Ref. [6] claimed later
that stratorotational instabilities (SRI and RI) are much weaker
than the centrifugal instability (CI) when μ < η2, implying
that (a) SRI, RI and CI are distinct, and (b) CI is always
stronger. A distinction between SRI, RI and CI certainly exists
in the inviscid limit (the optimal axial wave number is bounded
for the SRI and RI [6,7], whereas it is not for the CI [4]) but this
may not extend to the finite Reynolds numbers achievable in
experiments (consistent with Ref. [13]). Certainly having this
distinction (a) simplifies the identification of which instability
mechanism dominates at a given point in parameter space
but is not guaranteed. Also, plausibly, CI might exist beyond
the Rayleigh line in the presence of stratification (consistent
with Ref. [13]). To add to the uncertainty, statement (b) seems
inconsistent with the findings of Ref. [14], which showed that
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a RI could grow faster than a CI in the case of a stably stratified
Rankine vortex in a rotating frame.

The purpose of this paper is to shed some light on these
seemingly contradictory statements by carrying out a stability
analysis of stratified Taylor-Couette flow which bridges the
gap between experimentally relevant Reynolds numbers and
large Reynolds numbers where inviscid analysis should hold
in some fashion. The motivation for this study comes from an
ongoing program of experimental work [15–17] and the desire
to be able to interpret the mechanistic origin of the instabilities
observed there. The key questions to be addressed are as
follows:

(1) Are CI and SRI continuously “connected” (defined
at the end of Sec. III) in parameter space or are
they always distinct and thereby represent different
instability mechanisms?

(2) Can SRI every dominate CI in the centrifugally
unstable region μ < η2?

(3) Can CI exist for μ > η2 and therefore beyond the
Rayleigh line with stratification?

Viscous linear analyses already exist in the literature,
starting with the contribution of Ref. [18] based upon nu-
merous simplifying assumptions. Reference [12] considered
axisymmetric perturbations only (small-gap limit and finite
gap but no density diffusion) while Refs. [1,19,20] considered
the general case albeit only close to the marginal stability
curve. Here the focus is to consider the dispersion relation
for linear viscous disturbances over several decades of the
Reynolds number up from the marginal stability curve to at
least O(104) and sometimes O(1010). A large range of rotation
ratios is also considered in order to assess the relevance of the
Rayleigh line μ = η2 at finite Re and with stratification.

The plan of the paper is as follows. In Sec. II, we
briefly introduce the governing equations and numerical
methods. In Sec. III, we present the results of our parametric
stability analysis and discuss the effect of the different control
parameters on the dominant mode. In Sec. IV, we assess the
connection between CI and SRI at finite Re by exploring the
discontinuities of the optimal axial wave number in the (μ,Re)
plane. By doing so, we reveal several connections between the
different instabilities and show the limits of Rayleigh criterion
in viscous stratified Taylor-Couette flow. We summarize our
findings in Sec. V.

II. PROBLEM FORMULATION

A. Governing equations

The geometry of an axially infinite container is character-
ized by the radius ratio η, while rotation and shear are jointly
characterized by the rotation ratio μ [see Eq. (1)] and Reynolds
number Re, which is defined as

Re := ri�i(ro − ri)

ν
(2)

with ν the kinematic viscosity. The purely azimuthal basic
velocity profile U := r�(r)θ̂ is of the form

�(r) := A + B

r2
, (3)

with A := (μ − η2)/[η(1 + η)] and B := η(1 − μ)/[(1 +
η)(1 − η)2]. The basic density profile ρ̄(z) is linear in the axial

direction z and characterized by a constant buoyancy frequency
N := √−(g/ρ0)dρ̄/dz, based on gravity g and a reference
density ρ0. Two nondimensional parameters characterize
stratification: the Richardson and Schmidt numbers

Ri := N2

�2
i

and Sc := ν

κ
, (4)

where κ is the diffusivity of mass. For all the results presented
in this paper, the Schmidt number was set to a value of 700
appropriate for salt-in-water experiments [15–17] with only a
few exploratory calculations done with Sc = 7 appropriate
for heated-water experiments (see later in Sec. V). In the
following, we take d := ro − ri as the unit of length, ri�i as
the unit of speed, and ρ0N

2(ro − ri)/g as the unit of density.
We consider the dynamics of infinitesimal perturbations of

the velocity u′ = u′r̂ + v′θ̂ + w′ẑ in cylindrical coordinates,
pressure p′ and density ρ ′, around the linearly stratified basic
flow (3). Perturbations can be written in the form of normal
modes

(u′,v′,w′,p′,ρ ′) = [u(r),v(r),w(r),p(r),ρ(r)]ei(kz+mθ−ωt)

with complex frequency ω, integer azimuthal wave num-
ber m, and real axial wave number k. In the Boussinesq
approximation, the linearized incompressible Navier-Stokes,
advection-diffusion, and continuity equations read

isu − 2�v + drp = 1

Re

(
∇2u − u

r2
− 2im

r2
v

)
, (5)

isv + Zu + im

r
p = 1

Re

(
∇2v − v

r2
+ 2im

r2
u

)
, (6)

isw + ikp = −Ri∗ ρ + 1

Re
∇2w, (7)

isρ − w = 1

Re Sc
∇2ρ, (8)

0 = 1

r
dr (ru) + im

r
v + ikw, (9)

where Ri∗ := Ri[(1 − η)2/η2], s := m� − ω is the Doppler-
shifted frequency, Z := (1/r)d(r2�)/dr is the axial vorticity
of the basic flow, and ∇2 = d2

rr + (1/r)dr − (k2 + m2/r2).
The boundary conditions are no slip (u = v = w = 0) and
no flux drρ = 0 at the walls. Symmetries are such that
ω(k,m) = ω(−k,m) = −ω	(−k,−m), where 	 denotes the
complex conjugate. Therefore, we consider only positive k

and m without loss of generality.

B. Numerical methods

The governing equations were discretized using Chebyshev
collocation in the radial direction, leading to a generalized
eigenvalue problem for ω and (u,v,w,p,ρ). This problem
was solved using multithreaded LAPACK routines with OPEN-
BLAS. The number of Chebyshev polynomials used for each
dependent variable was set to 140 for calculations below Re =
1 × 104 and increased up to a maximum of 480 when required
at higher Re (at (Re,μ,η,Sc,m) = (104,0,0.417,700,1) and
Ri ∈ {0.25,4,25}, doubling the resolution from 140 to 280 led
to less than 1% variation in the growth rate of the most unstable
mode). The code was validated by reproducing Figs. 4 and 10
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FIG. 1. Dominance diagrams showing the azimuthal mode number m of the fastest growing mode (growth rate optimized over k) for (a)–(c)
η = 0.417 and (d)–(f) η = 0.9 and Ri = 0.25, 4, and 25 (indicated in the plot). The thick black line indicates the Rayleigh line.

from Ref. [7]. For a given m, the most unstable mode was found
by optimizing the growth rate over k, using a Newton-Raphson
method. Standard continuation methods were used to follow
local maxima of the growth rate in parameter space.

III. DOMINANCE DIAGRAMS

We start by presenting the azimuthal mode number of the
fastest growing mode in the (μ,Re) plane, for three values
Ri = 0.25, 4, and 25 and two radius ratios: a “large”-gap case
η = 0.417 (used in Refs. [15–17]) and a “small”-gap case
η = 0.9. The dominant m was obtained after optimization of
the growth rate ωi := Im(ω) over all possible sets of wave
numbers (m,k) ∈ N × R+. Results are given in Fig. 1, for a
large range of μ and Re � 1 × 104. The vertical black line
corresponds to the Rayleigh line μ = η2.

The first observation is the rise of the marginal stability
curve to higher Re indicating the stabilizing effect of strat-

ification for all μ and both η considered, consistent with
previous results in the literature. The second common feature
of all the plots is that axisymmetric (m = 0) steady vortices
(hereafter referred to as Taylor vortices) only dominate in
regions removed from the marginal stability curve. The m = 0
dominance regions near the marginal curve are distinct since
they have nonzero frequency. These oscillatory m = 0 instabil-
ities have already been found numerically in Refs. [19,21] and
experimentally in Refs. [11,12], but were not apparently seen
in Ref. [13] presumably because of their very restricted domain
of dominance. Indeed, the critical instability is most often
nonaxisymmetric, with larger m values becoming preferred as
Ri increases. In the small-gap case, the effect of the Rayleigh
line is clearly visible: the dominant m peaks to a maximum in
its vicinity and decreases on both sides. For the large-gap case
though, only m = 0,1,2 values dominate, and the Rayleigh line
only seems to mark the limit of the dominant steady m = 0
region.
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FIG. 2. Contours of optimal axial wave number kmax in the instability zone of modes m = 0, m = 1, and m = 2 for η = 0.417 and (a)–(c)
Ri = 0, (d)–(f) Ri = 0.25. The spacing between contours is 
kmax = 2 and the maximum is always in the top left corner. The Rayleigh line
μ = η2 is indicated by a thick black line. Discontinuities in kmax are indicated by thick red curves. Dashed curves for m = 0 indicate a transition
from an oscillatory (below) to a steady mode (above). The shaded regions indicate dominance of the given mode among all m (note the
dominance of m = 1 in a very narrow range of parameter space for Ri = 0 and μ ∈ [−0.8,−0.4]). Finally, the dot in the (m,Ri) = (1,0.25)
plot indicates the parameter values for the calculation of the eigenmode shown in Fig. 8(b).

The dominance diagrams show the existence of dis-
connected patches and kinks in their boundaries (e.g., for
m = 2, η = 0.417, and Ri = 4). These features suggest that
different instabilities corresponding to the same value of m

are competing for dominance. In order to assign an instability
mechanism to each dominant mode, we track the loci of the
discontinuities of kmax—the axial wave number maximizing
the growth rate—over (μ,Re) space for every fixed m in the
next section. A discontinuity in kmax indicates the coexistence
of two global maxima in the growth rate curve ωi(k) (defined as
the maximum growth rate at a given k): on either side of it, the
maxima switch dominance, giving rise to the discontinuity in
kmax. If this discontinuity always separates the two competing
instabilities in parameter space we refer to them as being

distinct instabilities having different mechanisms. Conversely,
if at some point the discontinuity terminates, indicating that the
local maxima have merged, we consider the two instabilities as
being continuously connected in parameter space and therefore
not distinct. (Formally, there is also the possibility that two
distinct instabilities cross over, momentarily having the same
ωi at kmax, but this would give rise to a discontinuity in ωr

which is never seen in this study.)

IV. EXPLORING THE DISCONTINUITIES OF THE
OPTIMAL AXIAL WAVE NUMBER IN THE (μ,Re) PLANE

Figures 2 and 3 break down each dominance diagram
into contributions from m = 0,1,2 in the large-gap case. We
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FIG. 3. Same as Fig. 2 but for (a)–(c) Ri = 4 and (d)–(f) Ri = 25. The dot in the (m,Ri) = (1,25) plot indicates the parameter values for
the calculation of the eigenmode shown in Fig. 8(a). The red crosses in the (m,Ri) = (0,4) plot indicate the parameter values used to generate
Fig. 4.

plot the contours of kmax, in order to identify the loci of
the discontinuities for each m. The region where a given m

dominates overall is shaded. Figure 2 compares the weakly
stratified case (Ri = 0.25) to the unstratified one, while
Fig. 3 compares the moderate (Ri = 4) and strong (Ri = 25)
stratifications.

A. Oscillatory axisymmetric mode as a collision
between Taylor vortex branches

For m = 0, there is no discontinuity in kmax but a dashed
curve marks the limit between oscillatory (below the line)
and steady axisymmetric vortices (above). For all values of
Ri �= 0, the critical m = 0 instability is always oscillatory,
as already found by Refs. [18,21] at large enough Sc, but
becomes subdominant to steady vortices at large enough Re.

To understand this transition better, we plot in Fig. 4 the
dependency of the frequencies ωr and growth rates ωi of
the two dominant axisymmetric modes against k for two
values of Re: one below the dashed curve (Re = 1500) and
one above (Re = 2000) (marked by red crosses in Fig. 3).
This figure shows that the oscillatory vortices are created as
Re decreases from 2000 by the collision between two steady
vortex branches. This is clearly a joint effect of stratification
and viscosity, as the “bubble” in Fig. 4(a) only appears if Re
is small enough and Ri �= 0.

B. Continuous connections between nonaxisymmetric CI and
SRI modes in the (μ,Re) plane

There are discontinuities in kmax for all nonaxisymmetric
modes, including when Ri = 0, and these are indicated by
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FIG. 4. (a) Growth rate and (b) frequency versus axial wave
number k of the two most unstable m = 0 modes for Ri = 4,
μ = −0.4, and Re = 1500 (solid line) or Re = 2000 (dashed line).

thick red curves in Figs. 2 and 3. For m = 1, the discontinuity
near the Rayleigh line disappears within the unstable regions,
at low enough Re, indicating that the instabilities on either side
are smoothly connected. For m = 2, however, the discontinuity
always seems to separate the instability region into two distinct
zones. But tracking the discontinuity further up in Reynolds
number in Fig. 5 shows that it terminates just above Re ≈ 2 ×
105 for Ri = 0.25, indicating that the competing instabilities
are again smoothly connected.
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FIG. 5. Discontinuities of kmax in the (μ,Re) plane, for η = 0.417,
m = 2, Ri = 0.25, and Re ∈ [102,108]. As evident here, the disconti-
nuity appearing in Fig. 2 below Re = 1 × 104 does not asymptote to
the Rayleigh line as Re → ∞. In fact, for 2 × 105 � Re � 3 × 106

and 0.16 < μ < 0.18 there is no discontinuity at all in kmax, which
reveals, again, a continuous connection between CI and SRI at large,
but finite Re. At even larger Re, a discontinuity reforms, permanently
separating CI from SRI as Re → ∞.

At yet higher Re, a discontinuity reappears as it must
do if the viscous analysis is to be consistent with inviscid
predictions since there CI occurs at infinite k [4], whereas
kmax remains finite for the SRI [7]. The value of μ where the
growth rates of both instabilities are equal may be computed
by suppressing the viscous term in the momentum equations
(5)–(8) for the SRI, and using the analytical expression given
in Ref. [4] for the CI in the inviscid limit (denoted with
superscript ∞): ω∞

i,CI = √−�(ri) (independent of m), where
� := (1/r3)d(r4�2)/dr is the Rayleigh discriminant. We find
that the switchover from SRI to CI dominant occurs at a
value of μ which is very close to but below η2. Indeed, ω∞

i,CI
exactly vanishes on the Rayleigh line, whereas ω∞

i,SRI does
not. Therefore, there is a very narrow range of μ < η2 where
nonaxisymmetric SRI dominates CI in the inviscid limit. But
this region is very small, which explains why Ref. [6] claimed
that CI dominates over SRI in the centrifugally unstable
region. By a continuation argument, a discontinuity in kmax

must be found at large but finite Re, which asymptotes the
inviscid value of μ where ω∞

i,SRI = ω∞
i,CI. The discontinuities

for m = 1 in Figs. 2 and 3 seem to directly approach this
limit as Re → ∞. For m = 2 and Ri = 0.25, the discontinuity
forming at Re ≈ 3 × 106 also asymptotes the inviscid limit
at larger Re. This analysis of the discontinuities of kmax

in the (μ,Re) plane establishes the continuous connection
between CI and SRI mechanisms at finite Re for m = 1
and m = 2.

C. A centrifugal instability mode localized at the outer
cylinder in the unstratified case

A simple way to attempt to differentiate between CI and
SRI is to suppress stratification: if the flow is stabilized, the
instability was a SRI; otherwise it was a CI. This motivated
us to compute the dispersion relation of modes m = 0,1,2 in
the unstratified case as well. As shown in Fig. 2, there is no
longer an instability beyond the Rayleigh line when Ri = 0, but
surprisingly, we still observe a discontinuity in kmax asymp-
toting μ = η2 at large Re for m = 1 and 2. This result was
unexpected, as we previously associated such discontinuity
to a CI and SRI competing in the inviscid limit. However,
since SRI is caused by a resonance between boundary-trapped
inertia-gravity waves [1,2], the mode dominating on the right
of the discontinuity cannot be SRI when Ri = 0. This suggests
that this previously unreported CI branch on the right of the
discontinuity for Ri = 0 is connected to a SRI as Ri increases
from zero. This new CI mode dominating to the right of the
discontinuity is localized exclusively at the outer cylinder, as
can be seen in Fig. 6(b) at Re = 1 × 106, whereas the one to
the left of the discontinuity is localized at the inner cylinder
[Fig. 6(a)]. These wall modes are reminiscent of the two
families of neutral branches which create SRI in the inviscid
limit [7]. In that limit, the outer-wall mode can only become
unstable by coupling with the inner one, under the effect of
stratification, but here we find that it may become unstable
alone with the help of viscosity. Since the discontinuity in
kmax asymptotes to the Rayleigh line as Re → ∞, this mode
never dominates the inner-wall one in the inviscid limit: there
is therefore no contradiction with the theoretical analysis of
Ref. [4].
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FIG. 6. Vertical velocity component of the two leading m = 1
eigenmodes at the discontinuity in kmax for Re = 1 × 106 and Ri = 0:
(a) left side of the discontinuity, (b) right side. Thin solid line, real
part wr ; dashed line, imaginary part wi ; thick solid line, |w|. Points
where �(rt ) − ω = 0 are indicated with a solid line at r = Re(rt ).
These correspond to turning points in the Wentzel-Kramers-Brillouin
(WKB) theories of RI [7] and SRI [6], but do not play any particular
role in the asymptotic description of CI [4]. Here we show that these
points indicate the position where the modes are localized at large
Re.

D. Radiative instability mode connecting CI to SRI
in finite gap

In Fig. 7, we compare the structure of the two modes on
the discontinuity close to the Rayleigh line for m = 1, Re =
1 × 106, and Ri = 0.25. The instability dominating to the left
(decreasing μ) of the discontinuity must tend to a CI as Re →
∞, while the instability to the right must tend to a SRI. As
a way of confirmation, the right branch has a structure which
is reminiscent of inviscid SRI: the mode is localized at the
walls and has a critical layer [see Fig. 7(b)], as described
in Ref. [7]. However, since kmax remains small, the WKB
framework of Ref. [7] does not obviously apply so there are
not the oscillatory regions described by these authors.

The structure of the left branch, however, resembles the
radiative instability mode described in Ref. [6] in the limit
where the gap and Reynolds numbers become infinite, while
μ → η2 (and kd � 1). There is a critical layer and an
oscillatory region of radially decaying amplitude in Fig. 7(a),
similar to Fig. 3 in Ref. [6]. This region is bounded to the
right by the critical point �(r+

c ) − ω = N , as in these authors’
theory for weak stratification. This critical point effectively
isolates the radiated wave from the outer cylinder, which may
explain why we were able to find a RI mode in our finite-gap
geometry, whereas Ref. [6] only refers to this instability in the
limit of an infinite gap. In the present case, the RI seems to
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FIG. 7. Same as in Fig. 6, but for the leftmost discontinuity (near
the Rayleigh line) in Fig. 2 for (m,Ri) = (1,0.25) and Re = 1 ×
106. Here we also indicate the critical points �(r±

c ) − ω = ±N with
dashed lines at r = Re(rc±) [r−

c is outside the domain in (a)].

mediate the continuous morphing from the SRI to a CI at finite
Re.

E. A helical mode propagating against the inner
cylinder rotation

Finally, in the last two sections we investigate the nature of
the modes in regions of the (μ,Re) plane created by unexpected
discontinuities of kmax, i.e., discontinuities that do not separate
CI from SRI in the inviscid limit. First we discuss the critical
m = 1 mode at large Ri = 25 in the counter-rotating regime
μ < 0 (see the solid dot in Fig. 3). Surprisingly, the azimuthal
velocity ωr/m associated with that mode is negative, whereas
it is always positive for other dominant modes. Such peculiar
behavior has not been reported before. Inspecting the structure
of this mode in Fig. 8(a) indicates that it is not a SRI, as the
amplitude of |w| is negligible near the outer wall. The turning
point rt such that �(rt ) − ω = 0 does not seem to coincide
with any particular feature of the mode structure, confirming
that asymptotic theories of CI, RI, and SRI are of little help
at this low Re = 1400. Because of the apparent absence of a
critical layer, we conclude that the mode is best classed as a
CI.

F. A centrifugal-type mode beyond the Rayleigh line
destabilized by viscosity

Finally, we discuss the discontinuity located at the right
of the Rayleigh line in Fig. 2 for (m,Ri) = (1,0.25). Since
the dominant mode is “beyond” the Rayleigh line and well
separated from the CI region by two discontinuities in kmax, it is
tempting to call this mode SRI. However, looking at the mode
in Fig. 8(b) reveals a structure which is highly reminiscent
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0

0

0 0.25 0.5 0.75 1
(r − ri)/d

(a)

(b)

FIG. 8. Vertical velocity component of the leading eigenmodes
at parameter values indicated by solid dots in Figs. 2 and 3. (a) Mode
with negative azimuthal velocity at μ = −0.3, Re = 1400, m = 1,
Ri = 25. (b) Centrifugal-type mode destabilized by viscosity beyond
the Rayleigh line, at μ = 0.375, Re = 5000, m = 1, Ri = 0.25. Solid
and dashed curves: same as in Figs. 6 and 7. Turning points rt , as
defined in Fig. 6, are shown, but critical points r±

c , as defined in Fig. 7,
are outside the domain in both (a) and (b).

of the CI found in the previous section. The only noticeable
difference is the presence of a turning point (as defined in
the previous section) exactly where |w| = 0, suggesting the
mode may extract its energy from the base flow at the critical

k
d
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FIG. 9. Positive growth rate contours (with 
 log10 ωi/�i = 0.1)
in the (μ,k) plane for Re = 5000, Ri = 0.25, and m = 1. The
Rayleigh line μ = η2 is indicated with a solid vertical line. Values
of k corresponding to local maxima of the growth rate at the given
μ are indicated with thick dashed curves, becoming solid when the
maximum is global.
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Ω
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FIG. 10. Evolution of (a) the local optimal axial wave number
kl

max and (b) its associated frequency ωl
r and (c) growth rate ωl

i versus
Reynolds number for fixed μ = 0.1 (solid line), μ = 0.3 (dashed
line), and μ = 0.375 (dash-dotted line); Ri = 0.25 and m = 1. The
wave number kl

max maximizes the growth rate globally when Re =
5000 (cf. Fig. 9).

layer, as in the RI. In order to determine whether the mode
is centrifugal or radiative, we plot isocontours of the growth
rate in the (μ,k) plane in Fig. 9. The local maxima of the
growth rate in that plane are indicated with dashed red curves,
becoming solid when the maximum is global. The plot shows
that the dominant (only) instability at μ = 0.375 is created by
the merging of two local maxima present in the “centrifugally
unstable region” μ < η2. This may explain why the mode is
reminiscent of both CI and RI.

Pursuing this further, the three distinct branches, respec-
tively dominating at μ = 0.1, 0.3, and 0.375, are followed as
Re → ∞ in Fig. 10. Each branch is a global maximum of ωi(k)
at Re = 5000 and its respective value of μ, but only a local
maximum at larger Re, hence the superscript l to denote the
associated kmax, ωr , and ωi . In Fig. 10, we observe very similar
trends for the evolution of kl

max and ωl
r between the unknown

mode at μ = 0.375 and the CI at μ = 0.1 < η2. Indeed, in both
cases, kl

max → ∞ and ωl
r/�i → 1. Both trends were predicted

analytically for (m = 1) inviscid CI by Ref. [4], and that kmax

remains finite and ωr/�i < 1 for the RI [6]. This suggests that
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the mode dominating at (μ,Re) = (0.375,5000) connects with
CI at large Re, despite being outside the so-called centrifugally
unstable region. This observation does not contradict the
theory in Ref. [4] as the growth rate of this mode tends to
zero in the inviscid limit. The conclusion is therefore that this
mode is a mixture between a CI and a RI mode, destabilized
beyond the Rayleigh line by the joint effects of stratification
and viscosity.

Our numerical results suggest that this intrusion of CI-type
mode features beyond the Rayleigh line is only possible for
nonaxisymmetric modes. That inviscid axisymmetric modes
still cannot exist beyond the Rayleigh line with stable stratifi-
cation follows from a simple extension of Rayleigh criterion
(see Appendix A). A stronger result can be proved that no
finite-amplitude axisymmetric state beyond the simple base
flow can exist past the Rayleigh line for a viscous, stratified
fluid in the thin-gap limit η → 1 (see Appendix B). But
whether a general proof exists for finite curvature, viscosity,
and stable stratification is unclear.

V. CONCLUSIONS

In this paper, we have performed a thorough linear stability
analysis of (axially) stably stratified viscous Taylor-Couette
flow motivated by ongoing experiments [15–17]. We con-
sidered both a large-gap η = 0.417 and a small-gap η = 0.9
configuration and varied the rotation ratio μ, the Reynolds
number Re, and the Richardson number Ri. This paper
bridges the gap between the numerous inviscid analyses of the
centrifugal, stratorotational, and radiative instabilities, and the
computations of instability thresholds in the viscous case, by
addressing the question of the dominant instability mechanism
at finite Re beyond the marginal stability line.

As in previous studies, we found that the first bifurcation as
Re increases above the marginal curve is always oscillatory,
and usually nonaxisymmetric. We showed that the oscillatory
m = 0 mode is created by a collision between steady Taylor
vortex branches. This is an effect of viscosity and stratification
(and large Sc too, according to Refs. [18,21]), as this collision
disappears at large Re or for Ri �= 0.

By exploring the discontinuities in the optimal axial
wave number kmax, we were able to establish a continuous
connection between CI and SRI in the (μ,Re) plane. Indeed
the optimal wave number kmax diverges for CI in the inviscid
limit, whereas it remains finite for the SRI: as a consequence,
there exists a value of μ � η2 where the growth rates of both
instabilities are equal. This leads to a discontinuity in kmax

at Re → ∞ which can be tracked down to finite Re, where
it eventually disappears as the two local maxima of ωi(k)
merge into one. The coalescence occurs within the instability
region, so it is impossible to distinguish CI from SRI at onset.
This explains why Ref. [13] observed a smooth evolution of
nonaxisymmetric patterns from the quasi-Keplerian to the
centrifugally unstable region in their experiment, whereas
Ref. [6] considered the two instabilities distinct in the inviscid
limit. As argued in Ref. [6], CI is indeed stronger than SRI
when the two instabilities compete in the inviscid limit, but
the discontinuity in kmax bends back towards low values of μ

as Re diminishes, making SRI dominant over a large portion
of the Rayleigh-unstable domain, until the two instabilities can

no longer be distinguished. We also established a connection
between CI and RI induced by viscosity, without taking the
limit of infinite gap as in Ref. [6].

In the unstratified case, we did not expect to find similar
discontinuities in kmax for m �= 0, as SRI is a resonance
between boundary-trapped inertia-gravity waves. However,
we did find two different branches competing in the vicinity
of the Rayleigh line for a given m �= 0 when Ri = 0. Each
of the competing branches corresponds to a wall mode,
localized either at the inner or the outer boundary. These are
reminiscent of the two families of branches giving birth to SRI
as they interact when Ri �= 0 [7]. But here the outer-wall mode
becomes unstable under the effect of viscosity, not because of
a coupling with the inner-wall mode. This outer-wall CI mode,
continuously connected to SRI as connected to SRI as Ri �= 0,
was previously unknown because it is always subdominant,
yet it is destabilized at finite Re and large-gap widths.

We have also found a dominant m = 1 mode propagating
against the rotation of the inner cylinder in the counter-rotating
strongly stratified case. This behavior has not been reported
before, for either one of the three instabilities studied in
this paper, since they all require 0 � ωr/m < �i to be able
to extract energy from the base flow when Re → ∞. This
is another surprising effect of viscosity on the instability
mechanism, since this mode is only dominant at low enough
Re.

Finally, we investigated the nature of an m = 1 mode
dominating beyond the Rayleigh line in the weakly stratified
case. This mode seems to have a critical layer, but since its
maximum amplitude peaks at the inner cylinder only, it is
reminiscent of a radiative mode. However, it shares features of
CI rather than RI modes as Re → ∞. In particular, the optimal
wave number diverges while the azimuthal phase speed tends
to the inner cylinder angular velocity: two properties of CI.
This, however, does not violate the generalized Rayleigh
criterion of Ref. [4] as the growth rate asymptotes zero in
the inviscid limit. At finite Re, this mode seems connected to
both CI and RI in the (μ,k) plane; therefore, we conclude that
it is a mixture of CI and RI, destabilized beyond the Rayleigh
line by the coupled effects of viscosity and stratification. This
reiterates that viscosity has a more complex impact on the
stability properties beyond just expected stabilization.

For η = 0.9, we did not systematically investigate the
discontinuities of kmax in the (μ,Re) plane. None were found
for both m = 1 and m = 2 at Ri = 0.25 in the range Re <

1 × 104 but, since a discontinuity must be present near the
Rayleigh line in the inviscid limit, we conclude that these
discontinuities form at larger Re as η → 1. This makes the
distinction between SRI and CI types even more problematic
and indicates that the effect of viscosity is heightened by
reducing the gap size. We also produced dominance diagrams
at a lower value of the Schmidt number Sc = 7, in the large-gap
case, for Ri = 4 and 25, which are qualitatively similar to
Sc = 700 and so not included. The Sc number effects are
expected to occur at even lower values of Sc, according to
Refs. [18,21].

We conclude by assessing the relevance of the Rayleigh
line: even though nonaxisymmetric centrifugal-type modes
seem to be able to grow beyond μ = η2 with the help
of viscosity and stratification, this limit appears to remain
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impassable to axisymmetric ones (whether steady or oscil-
latory). We were able to prove this result in two distinct
limits: inviscid linear disturbances in a finite gap and viscous
finite-amplitude disturbances in a thin gap. Whether a more
general result suggested by our numerical results (and previous
studies) can be proven remains an interesting question.
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APPENDIX A: RAYLEIGH CRITERION FOR STABLY
STRATIFIED INVISCID FLOW

The Euler equations linearized around the basic flow U :=
r�(r)θ̂ [Eqs. (5)–(9) with Re → ∞] for an axisymmetric
(m = 0) incompressible disturbance can be reduced down to a
second-order differential equation for u, the radial perturbation
velocity,

d

dr

1

r

d(ru)

dr
= k2(s2 − �(r))

s2 − Ri∗
u where � := 1

r3

d(r2�)2

dr

(A1)

is the Rayleigh discriminant ([22], p. 69). Multiplying by ru∗
(where u∗ is the complex conjugate of u) and integrating from
ri to ro gives

−
∫ ro

ri

1

r

∣∣∣∣d(ru)

dr

∣∣∣∣
2

dr

= k2s2

s2 − Ri∗

∫ ro

ri

r|u|2 dr − k2

s2 − Ri∗

∫ ro

ri

r�(r)|u|2 dr

(A2)

since u(ri) = u(ro) = 0. Rearranging

s2 = Ri∗
∫ ro

ri

1
r

∣∣ d(ru)
dr

∣∣2
dr + k2

∫ ro

ri
r�(r)|u|2 dr∫ ro

ri

1
r

∣∣ d(ru)
dr

∣∣2
dr + k2

∫ ro

ri
r|u|2 dr

, (A3)

and so providing �(r) > 0 for all r ∈ (ri,ro), i.e., the basic
flow is Rayleigh-stable, then all of the integrals are positive
definite which implies si = 0 and stability for all k.

APPENDIX B: UNIQUENESS OF AXISYMMETRIC STATES
BEYOND THE RAYLEIGH LINE IN THE THIN GAP LIMIT

Here we prove that the only streamwise-independent state
that can exist in rotating, stably stratified plane Couette flow
beyond the Rayleigh line is one of simple shear, implying that
no other axisymmetric state beyond the base state can exist
beyond the Rayleigh line in thin-gap stratified Taylor-Couette
flow. The proof is a straightforward extension of the unstrat-
ified result presented in Ref. [23] to include stratification. In
a rotating frame � = �ẑ where the shearing boundaries are
at y = ±1 and gravity g := −gẑ, there is the simple shear
solution U = yx̂, P = −�y2 + 1

2 Ri z2, and ρ = −z (stable
stratification). Rayleigh criterion in this context is that centrifu-

gal instability is only possible for � < 1
2 (e.g., see Ref. [24]).

The governing equations for disturbances away from this
steady state (u := utot − U,p := ptot − P,ρ := ρtot − ρ) are

∂tu + 2�ẑ × u + y∂xu + vx̂ + u · ∇u

= −∇p − Ri ρ ẑ + 1

Re
∇2u, (B1)

∂tρ + y∂xρ − w + u · ∇ρ = 1

Re Sc
∇2ρ,

∇ · u = 0. (B2)

Defining 〈( · )〉 := 1
2L

∫ L

0

∫ 1
−1( · )dydz and u = ux̂ + vŷ + wẑ,

then for streamwise-independent velocity and density fields
taking 〈ux̂ · (B1)〉, 〈(vŷ + wẑ) · (B1)〉 and 〈ρ(B2)〉 leads to
the “energy” integrals〈

1

2
u2

〉
t

= (2� − 1)〈uv〉 − 1

Re
〈|∇u|2〉, (B3)〈

1

2
(v2 + w2)

〉
t

= −2�〈uv〉 − Ri〈ρw〉

− 1

Re
〈|∇v|2 + |∇w|2〉, (B4)〈

1

2
ρ2

〉
t

= 〈ρw〉 − 1
Re Sc 〈|∇ρ|2〉, (B5)

where periodicity across z ∈ [0,L] and either nonslip or stress-
free velocity fields together with either Dirichlet (ρ = 0) or
Neumann conditions (∂nρ = 0) for the density on y = ±1
kill all boundary terms which arise. Importantly, all the cubic
nonlinear terms drop in these equations and so the kinetic
energy in the u field can be treated separately from that in v and
w. As a result, generalized energy and dissipation functionals
can be constructed as follows:

Eλ := 1

2
〈λ2u2 + v2 + w2 + Riρ2〉, (B6)

Dλ := 〈λ2|∇u|2 + |∇v|2 + |∇w|2 + Ri

Sc
|∇ρ|2〉. (B7)

Then λ2(B3) + (B4) + Ri(B5) gives

dEλ

dt
= Dλ

{
[ 2�(λ2 − 1) − λ2 ]〈uv〉

Dλ

− 1

Re

}
, (B8)

and monotonic decay of the disturbance energy is ensured if

1

Re
> max

u,v,w,ρ

[ 2�(λ2 − 1) − λ2 ]〈 uv 〉
〈 λ2|∇u|2 + |∇v|2 + |∇w|2 + Ri

Sc |∇ρ|2 〉
for any real λ. The maximum on the right-hand side can
be minimized over λ to give the best energy stability result.
Clearly, ρ = 0 is a feature of the optimizer and we can rescale
u by defining φ := −λu to get an expression for the energy
stability Reynolds number ReE as

1

ReE

:= min
λ

λ2 − 2�(λ2 − 1)

λ

× max
φ,v,w

〈φv〉
〈|∇φ|2 + |∇v|2 + |∇w|2〉 ,
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where the implication is that all streamwise disturbances
decay for Re < ReE regardless of their amplitude. The latter
maximization corresponds to 1/ReE for an unstratified, nonro-
tating layer where ReE = 1

2

√
1708 ≈ 20.7 [25] under nonslip

conditions. The minimization problem has the minimum
2
√

2�(1 − 2�) for 0 � � � 1
2 and zero otherwise for real

λ. As a result, we have

ReE =
{ √

1708
4
√

2�(1−2�)
, 0 < � < 1

2

∞, � � 0 or � � 1
2 .

So, on and beyond the Rayleigh line � = 1
2 , the (generalized)

energy of all streamwise-independent disturbances, regardless

of their amplitude, monotonically decays in time for any Re.
To guarantee that Eλ → 0 (and hence the ultimate vanishing
of all disturbance fields), we need a Poincaré inequality
Eλ < αDλ for some α = α(L) so that Eq. (B8) becomes
dEλ/dt < −β2Eλ for some constant β. Grönwall’s inequality
then gives the required result. A Poincaré inequality exists for
nonslip conditions on the velocity field and either Dirichlet
or Neumann conditions on the density field (in the latter case
only if no mean flow is allowed in the direction of gravity).
(Note that once Re = 177.2 for any �, two-dimensional
spanwise-invariant disturbances are not assured to decay [23]
so that there is no general global stability result for the basic
state beyond the Rayleigh line.)
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