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Diffusion in anisotropic fully developed turbulence: Turbulent Prandtl number
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Using the field theoretic renormalization group technique in the leading order of approximation of a perturbation
theory the influence of the uniaxial small-scale anisotropy on the turbulent Prandtl number in the framework of the
model of a passively advected scalar field by the turbulent velocity field driven by the Navier-Stokes equation is
investigated for spatial dimensions d > 2. The influence of the presence of the uniaxial small-scale anisotropy in
the model on the stability of the Kolmogorov scaling regime is briefly discussed. It is shown that with increasing
of the value of the spatial dimension the region of stability of the scaling regime also increases. The regions
of stability of the scaling regime are studied as functions of the anisotropy parameters for spatial dimensions
d = 3,4, and 5. The dependence of the turbulent Prandtl number on the anisotropy parameters is studied in detail
for the most interesting three-dimensional case. It is shown that the anisotropy of turbulent systems can have
a rather significant impact on the value of the turbulent Prandtl number, i.e., on the rate of the corresponding
diffusion processes. In addition, the relevance of the so-called weak anisotropy limit results are briefly discussed,
and it is shown that there exists a relatively large region of small absolute values of the anisotropy parameters
where the results obtained in the framework of the weak anisotropy approximation are in very good agreement
with results obtained in the framework of the model without any approximation. The dependence of the turbulent
Prandtl number on the anisotropy parameters is also briefly investigated for spatial dimensions d = 4 and 5. It is
shown that the dependence of the turbulent Prandtl number on the anisotropy parameters is very similar for all
studied cases (d = 3,4, and 5), although the numerical values of the corresponding turbulent Prandtl numbers
are different.
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I. INTRODUCTION

One of the most fundamental characteristics of diffusion
processes in various fluids is the corresponding dimensionless
Prandtl number defined as the ratio of the kinematic viscosity
of the fluid to the corresponding coefficient of diffusivity of the
studied admixture (e.g., the temperature in the problem of ther-
mal diffusion, a weak magnetic field in electrically conductive
fluid, or scalar or vector impurities in given environments). It
is well known that the values of the Prandtl numbers strongly
depend on the microscopic structure of the fluids when the
motion of the fluids is characterized by low values of the
Reynolds number (Re). However, if the fluids are maintained
in the state of fully developed turbulence, i.e., when the values
of the Reynolds number are very large (in principle, Re → ∞),
the corresponding Prandtl numbers obtain universal values
known as the turbulent Prandtl numbers [1–4].

It is also known that various universal properties of
turbulent systems can be effectively and systematically studied
by using the renormalization group (RG) technique (see, e.g.,
Refs. [2,5–7] and references cited therein). By using the RG
technique in the framework of the field theoretic formulation of
the stochastic problem of a passively advected scalar quantity
by the turbulent flow driven by the stochastic Navier-Stokes
equation the turbulent Prandtl number was calculated recently
in the second-order approximation in the corresponding per-
turbation expansion (the two-loop approximation in the field
theoretic terminology) [8,9]. The most important conclusion
obtained in Refs. [8,9] is that the second-order contribution
(the two-loop correction) to the turbulent Prandtl number
is very small in comparison to its leading one-loop value.
Namely, it was shown that the two-loop corrections are less

than 2% of the corresponding one-loop result. This rather
surprising nontrivial result has very important consequences.

However, before we shall discuss these consequences in
detail, let us note that the obtained two-loop theoretical value
of the turbulent Prandtl number Prt = 0.7040 (see Ref. [9] as
well as Ref. [10] where the numerical value of the turbulent
Prandtl number was calculated with higher precision) is in
very good agreement with its experimental estimations (see,
e.g., Refs. [1,11,12]). In addition, let us also note that, as
was shown in Ref. [13] where the two-loop RG value of the
turbulent magnetic Prandtl number was calculated, there is no
difference between the turbulent Prandtl number of the passive
scalar quantity advected by the Navier-Stokes turbulence and
the corresponding turbulent magnetic Prandtl number of the
passive weak magnetic field obtained in the framework of the
kinematic magnetohydrodynamic (MHD) turbulence.

The most important consequence of the smallness of the
two-loop corrections to the turbulent Prandtl number is the fact
that it seems that the turbulent Prandtl number is perturbatively
very stable despite the fact that the field theoretic model in
the framework of which this result is obtained represents a
model with strong coupling constant [7]. It means that, at
least in this case, the one-loop result obtained for the turbulent
Prandtl number of the passively advected scalar quantity by
the Navier-Stokes turbulence is relevant not only qualitatively
but also quantitatively with very good precision, at least,
in comparison with the two-loop result. Note that the same
conclusion is also valid for the turbulent magnetic Prandtl
number obtained in the framework of the kinematic MHD
turbulence [13] due to its equality with the corresponding
turbulent Prandtl number of the passively advected scalar field
by the Navier-Stokes turbulence at the one-loop as well as
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the two-loop level of approximation, of course, only if it is
supposed that the corresponding turbulent environments are
incompressible and fully symmetric because, e.g., when the
turbulent environments are helical, i.e., with the presence of the
spatial parity violation, the aforementioned turbulent Prandtl
numbers are different [14].

It is worth mentioning that the situation is completely
different for the problem of the passive vector advection
in turbulent environment (also known as the A = 0 model)
where the two-loop correction to the one-loop result for
the corresponding turbulent vector Prandtl number is rather
significant [10,15] (see also Ref. [16] where the two-loop
turbulent Prandtl number was studied in the framework of
the general A model of passively advected vector field).

The second nontrivial consequence of the smallness of the
two-loop corrections to the turbulent Prandtl number is the fact
that one can use the one-loop approximation for investigation
of the properties of the turbulent Prandtl number even in more
complicated situations, e.g., in the cases when some symmetry
of the turbulent systems is broken, and he or she can be sure
that, with high probability, the obtained results will describe
quite adequately the corresponding diffusion processes. This
fact is very important especially in the situations when the
two-loop calculations are very complicated and therefore can
be hardly performed.

In this respect, a typical example is the problem of the
influence of the anisotropy of turbulent environments on
the processes which take place in them. Here it is known
that the complete investigation of the problems related to the
presence of even the simplest so-called uniaxial small-scale
anisotropy in fully developed turbulence is a highly nontrivial
problem even at the one-loop level of approximation [17,18].
This is the reason why, for the time being, the only results in
the literature which are related to the theoretical investigation
of the influence of the small-scale uniaxial anisotropy on the
properties of the models of the passive quantities advected
by the Navier-Stokes fully developed turbulence are obtained
in the essentially restricted so-called weak anisotropy limit
in the framework of which only the linear corrections with
respect to the anisotropy parameters are taken into account
[19–21] [For completeness, let us note that in Ref. [19] the RG
technique based on the Wilson’s recursion relations was used;
however, the obtained results are not fully correct. On the other
hand, in Ref. [20] the problem was analyzed using the field
theoretic RG technique, and the results obtained in Ref. [19]
were corrected (see also Ref. [6])]. At the same time, it is
necessary to stress that, as was shown in the framework of the
Gaussian models of turbulent advection (the Kraichnan model,
the Kazantsev-Kraichnan model, and their generalizations),
the presence of anisotropy has a nontrivial significant impact
on the scaling properties of various correlation functions of
the corresponding advected fields (see, e.g., the survey papers
[22,23] and references cited therein, as well as more recent
field theoretical RG investigations, e.g., Refs. [24–32] and
references cited therein).

Let us also note that various forms of anisotropy are
important in many physical situations related to the turbulence
processes: for example, in modeling turbulent processes (see,
e.g., Ref. [33]), for investigation of the properties of the Earth’s
core (see, e.g., Ref. [34]), in the sound turbulence (see, e.g.,

Ref. [35]), in the problem of mixing layers (see, e.g., Ref. [36]),
in the investigation of the dissipation properties of turbulence
(see, e.g., Ref. [37]), in the problem of rotating turbulence (see,
e.g., Ref. [38]), in the problem of turbulent shearless mixing
(see. e.g., Ref. [39]), in the turbulent dynamo problem (see,
e.g., Ref. [40]), in the problem of solar wind plasma turbulence
(see, e.g., Ref. [41]), in the problem of large-scale structures
in anisotropic turbulent flows (see., e.g., Ref. [42]), and many
others. Therefore, the investigation and understanding of the
fundamental properties of the anisotropic turbulent systems
are without doubt desirable and very important.

As was already mentioned, in Refs. [19–21] the model of
a passively advected scalar quantity by the stochastic Navier-
Stokes velocity field driven by the Gaussian random force with
uniaxial small-scale anisotropy was investigated. For example,
in Ref. [21] the field theoretic RG analysis of the model was
performed in the limit of weak anisotropy within the one-
loop approximation, and it was shown that the presence of
anisotropy can have significant impact on the properties of
this turbulent systems, e.g., on the anomalous scaling of the
structure functions of the advected scalar quantity as well as
on the value of the turbulent Prandtl number. However, the
assumption used in Refs. [19–21], namely, that the anisotropy
is weak, i.e., it was supposed that only small deviations from
the isotropic case are considered, meant that only linear terms
with respect to anisotropy parameters were taken into account
in all calculations and all nonlinear corrections were neglected.

Here, however, at least two questions immediately arise.
The first question is related to the adequateness of the weak
anisotropy assumption, i.e., what restrictions on the absolute
values of the anisotropy parameters must be applied to be
sure that obtained results in the framework of the weak
anisotropy assumption represent good approximation of the
unrestricted uniaxial anisotropic model. This is a fundamental
question, the answer to which lies only in performing direct
calculations in the corresponding anisotropic model without
restrictions on the anisotropy parameters. The second question
is related to the behavior of a given anisotropic model in
the situation when the anisotropy is strong, i.e., when it is
impossible to apply the weak anisotropy assumption at all.
To find answers on both these questions is the main aim
of the present paper. Namely, we will investigate the model
of passively advected scalar quantity by the Navier-Stokes
turbulence with the presence of strong small-scale uniaxial
anisotropy. Here we will concentrate our attention on the
detailed analysis of the anisotropic properties of the turbulent
Prandtl number. Using the fact that the turbulent Prandtl
number is perturbatively stable, as was discussed above, we
will find the dependence of the turbulent Prandtl number on
the unrestricted anisotropy parameters. It will be shown that
the weak small-scale anisotropy approximation is a really
well-defined approximation when appropriate restrictions on
the absolute values of the anisotropy parameters are applied.
On the other hand, it is also shown that the presence of
the anisotropy can have a nontrivial impact on the diffusion
processes in turbulent environments, in the sense that the value
of the turbulent Prandtl number can be significantly influenced
by the anisotropy of the system.

The paper is organized as follows. In Sec. II the stochastic
model of a passive scalar field advected by the anisotropically
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driven Navier-Stokes turbulence is described and its field
theoretic formulation is given. In Sec. III the ultraviolet
(UV) renormalization of the model is discussed and the
corresponding RG analysis is performed in the leading order
of the perturbation theory. In Sec. IV the dependence of the
turbulent Prandtl number on the anisotropy parameters of the
model is investigated in detail. Obtained results are briefly
reviewed and discussed in Sec. V.

II. MODEL OF PASSIVELY ADVECTED SCALAR FIELD
BY AN ANISOTROPIC TURBULENT ENVIRONMENT AND

ITS FIELD THEORETIC FORMULATION

Consider a scalar field θ ≡ θ (x) [x ≡ (t,x)], described by
the stochastic advection-diffusion equation

∂tθ + (v · ∂)θ = ν0u0�θ + f θ , (1)

passively advected by the incompressible turbulent velocity
field v ≡ v(x) driven by the stochastic Navier-Stokes equation

∂tv + (v · ∂)v = ν0�v − ∂P + fv. (2)

The fact that the velocity field is incompressible means that it
is divergence-free (solenoidal), i.e., ∂ · v = 0.

In Eqs. (1) and (2) we have used the following standard
notation: ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , � ≡ ∂2 is the Laplace oper-
ator, ν0 is the coefficient of kinematic viscosity, ν0u0 is the
coefficient of molecular diffusivity with extracted dimension-
less reciprocal Prandtl number u0, P ≡ P (x) is the pressure,
and f θ = f θ (x) and fv = fv(x) represent random noises. Note
also that, in what follows, each quantity with subscript 0 will
always represent the bare value of the corresponding parameter
of the unrenormalized theory.

The main role of the scalar random noise f θ in Eq. (1),
which represents the source of fluctuations of the scalar field,
is to maintain the steady state of the system. In what follows,
it is taken with the Gaussian statistics, i.e., it is supposed that
it has zero mean and the correlator in the form

Dθ (x; x ′) = 〈f θ (x)f θ (x ′)〉 = δ(t − t ′)C((x − x′)/L). (3)

Here L is an integral scale, and the explicit form of the function
C is not important in what follows. The only condition which
must be satisfied by this function is that it must decrease rapidly
for |x − x′| 	 L.

On the other hand, the explicit form of the transverse
random force per unit mass fv = fv(x) in Eq. (2) is essential,
and it must be taken in a form which simulates the energy
pumping into the system on large scales. In what follows, we
assume that its statistics is also Gaussian with zero mean and
we suppose the following explicit form of the pair correlation
function:

Dv
ij (x; x ′) ≡ 〈f v

i (x)f v
j (x ′)〉

= δ(t − t ′)
∫

ddk
(2π )d

D0k
4−d−2εRij (k)eik·(x−x′), (4)

where d denotes the spatial dimension of the system and
Rij (k) is a transverse projector which describes geometric
properties of the random force. In the simplest isotropic case, it
is standardly defined as ordinary transverse projector Rij (k) =
Pij (k) ≡ δij − kikj /k2. It is advisable to write the positive

amplitude D0 in the form D0 ≡ g0ν
3
0 , where parameter g0 will

play the role of the coupling constant of the present model. It
is a formal small parameter of the ordinary perturbation theory
and is related to the characteristic ultraviolet (UV) momentum
scale 	 (or inner length l ∼ 	−1) by relation g0 � 	2ε. Here
the physical value of the formally small parameter 0 < ε � 2
is ε = 2. This parameter plays an analogous role as the
parameter ε = 4 − d in the theory of critical behavior. Note
also that in Eq. (4) the needed IR regularization is given by
the restriction of the integration from below, namely, k � m,
where m corresponds to another integral scale. We shall always
suppose that L 	 1/m in what follows.

Note that the correlation function (4) is chosen in the
form which is suitable for description of the real infrared
energy pumping to the system because for ε → 2 the function
D0k

4−d−2ε is proportional to δ(k) for an appropriate choice of
the amplitude factor D0, which corresponds to the injection
of the energy to the system through interaction with the
largest turbulent eddies. In addition, the power-like form of
the correlation function (4) allows us to apply the standard RG
technique in the analysis of the problem (see, e.g., Refs. [5–7]
for all details).

As was mentioned above, the geometric properties of the
energy pumping (4) are completely determined by the form of
the transverse projector Rij (k). The aim of the present work is
to study the model of a passively advected scalar field by the
turbulent velocity field driven by the stochastic Navier-Stokes
equation when the random force for the velocity field is not
isotropic but instead possesses uniaxial anisotropy at all scales.
To this end, we take the transverse projector Rij (k) in Eq. (4)
in the following form:

Rij (k) = (
1 + α1ξ

2
k

)
Pij (k) + α2Pis(k)nsntPtj (k), (5)

where ξ 2
k = (n · k)2/k2. Expression (5) represents the simplest

special case of a general uniaxial anisotropic transverse tensor
structure (see, e.g., Refs. [17,43,44] for details). In this respect,
let us note that Ref. [44] represents the first work where the
RG analysis of the problem of developed turbulence based
on the anisotropic Navier-Stokes equation was performed in
the weak small-scale anisotropy limit. Here ni is the ith
component of the unit vector n, which defines the direction
of the axis of the uniaxial anisotropy. At the same time, the
necessary condition for positively defined correlator (4) is
given by the requirement that the anisotropy parameters α1

and α2 satisfy inequalities α1 > −1 and α2 > −1. Note also
that the corresponding summations over dummy indices s and
t are assumed in Eq. (5).

It is worth mentioning that it is possible to introduce the
mixed correlator between the scalar noise f θ and the vector
random force fv and to study the corresponding extended
stochastic model (see, e.g., Refs. [19,20]). However, the
analysis of this extended model in the presence of the strong
small-scale uniaxial anisotropy will be studied elsewhere, and
here, for simplicity, we concentrate our attention to the model
without the mixed correlator [21].

Now, using the general theorem [45], the stochastic model
(1)–(2) can be rewritten to the equivalent field theoretic model
of the double set of fields  = {v,θ,v′,θ ′} with the action
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functional

S() = 1

2

∫
dt1 ddx1 dt2 ddx2

× [
v′

i(t1,x1)Dv
ij (t1,x1; t2,x2)v′

j (t2,x2)

+ θ ′(t1,x1)Dθ (t1,x1; t2,x2)θ ′(t2,x2)
]

+
∫

dt ddx{θ ′{−∂t − v · ∂ + ν0u0[� + τ0(n · ∂)2]}θ

+ v′[−∂t − v · ∂ + ν0(� + χ10(n · ∂)2)]v

+ ν0 n · v′[χ20� + χ30(n · ∂)2]n · v}, (6)

where Dθ (x1; x2) and Dv(x1; x2) are the correlation functions
given in Eqs. (3) and (4) for the random forces f θ and fv,
respectively. The terms with new unrenormalized parameters
τ0,χ10,χ20, and χ30, which are not present in the original
stochastic equations (1) and (2), are related to the presence
of the small-scale uniaxial anisotropy in the model, and they
must be introduced into the action to obtain multiplicatively
renormalizable field theoretic model (see, e.g., Refs. [17,43]
for details).

The pressure term −∂P , which is present in Eq. (2), is
omitted in the action functional (6) due to the transverse
character of the auxiliary field v′.

The needed bare propagators of the model (6) in the
framework of the Feynman diagrammatic technique are given
by the free part of the action functional and have the following
nontrivial form in the frequency-momentum representation
[21]:

〈θ ′(ω,k)θ (ω,k)〉0 = 1

iω + ν0u0k2 + τ0ν0u0(n · k)2
, (7)

〈v′
i(ω,k)vj (ω,k)〉0 = Pij

K3
− K5PisnsntPtj

K3
[
K3 + K5

(
1 − ξ 2

k

)] , (8)

〈vi(ω,k)vj (ω,k)〉0 = −K1Pij

K3K4
+ PisnsntPtj

K3
[
K4 + K5

(
1 − ξ 2

k

)]

×
{

K5K1

K4
+ K5

[
K1 + K2

(
1 − ξ 2

k

)]
K3 + K5(1 − ξ 2

k )

−K2

}
, (9)

where

K1 = −g0ν
3
0k4−d−2ε

(
1 + α1ξ

2
k

)
, (10)

K2 = −g0ν
3
0k

4−d−2εα2, (11)

K3 = iω + ν0k
2 + ν0χ10(n · k)2, (12)

K4 = −iω + ν0k
2 + ν0χ10(n · k)2, (13)

K5 = ν0χ20k
2 + ν0χ30(n · k)2. (14)

Their graphical representation is shown in Fig. 1.
On the other hand, the model contains two triple interaction

vertices −θ ′vj∂j θ = θ ′vjVj θ and −v′
ivj ∂j vl = v′

ivjWijlvl . In
the frequency-momentum representation they read Vj = ikj

θ θ 0 =

vivj 0 =

vivj 0 =

FIG. 1. Graphical representation of needed propagators of the
model. The end with a slash in the propagators 〈θ ′θ〉0 and 〈v′

ivj 〉0

corresponds to the field θ ′ and v′, respectively, and the end without a
slash corresponds to the field θ and v, respectively.

and Wijl = i(klδij + kj δil). Their graphical representation is
present in Fig. 2.

The formulation of the stochastic problem (1)–(5) in the
language of the action functional (6) means that the statistical
averages of random quantities are replaced with the functional
averages with weight exp S(). At the same time, the effective
apparatus of the field theoretic RG technique can be used to
analyze the universal asymptotic properties of the model.

III. RENORMALIZATION GROUP ANALYSIS OF THE
MODEL

The general RG analysis of the model can be found, e.g.,
in Refs. [21,46]; therefore it is not necessary to discuss it in
detail. We restrict our attention only to the basic facts which
are important in what follows.

The field theoretic model described by the action func-
tional (6) contains two superficially divergent one-irreducible
Green’s functions, namely, 〈v′v〉1−ir and 〈θ ′θ〉1−ir , which can
be removed by multiplicative renormalization of the bare
parameters g0,u0, ν0, τ0, and χi0,i = 1,2,3 in the following
form:

ν0 = νZν, g0 = gμ2εZg, u0 = uZu, (15)

τ0 = τZτ , χi0 = χiZχi
, i = 1,2,3, (16)

where parameters g,u,ν,τ , and χi , i = 1,2,3 are dimension-
less renormalized counterparts of the bare parameters, μ is the
so-called renormalization mass, and Zi = Zi(g,u,τ,χi ; d; ε)
are the corresponding renormalization constants which absorb
all divergences. In the framework of the minimal substraction
(MS) scheme [47], which is used in the present paper, the
divergences are realized in the from of poles in ε.

At the same time, the renormalized action functional can
be written in the following form: [21]

SR() = 1

2

∫
dt1 ddx1 dt2 ddx2

× [
v′

i(t1,x1)Dv
ij (t1,x1; t2,x2)v′

j (t2,x2)

Vj =
v′i

vj

vl

Wijl =
θ′

vj

θ

FIG. 2. The interaction vertices of the model. Momentum k is
flowing into the vertexes via the auxiliary fields θ ′ and v′, respectively.
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+ θ ′(t1,x1)Dθ (t1,x1; t2,x2)θ ′(t2,x2)
]

+
∫

dt ddx{θ ′{−∂t − v · ∂

+ νu[Z5� + τZ6(n · ∂)2]}θ
+ v′{−∂t − v · ∂ + ν[Z1� + χ1Z2(n · ∂)2]}v
+ ν n · v′[χ2Z3� + χ3Z4(n · ∂)2]n · v}, (17)

where Zi , i = 1, . . . ,6 represent a new set of independent
renormalization constants which are related to the renormal-
ization constants introduced in Eqs. (15) and (16) as

Zν = Z1, Zg = Z−3
1 , Zu = Z5Z

−1
1 , (18)

Zτ = Z6Z
−1
5 , Zχi

= Zi+1Z
−1
1 , i = 1,2,3. (19)

It means that the studied model is multiplicatively renor-
malized through six independent renormalization constants
Zi,i = 1, . . . ,6. At the same time, in the framework of the MS
scheme, each of them has the form of the following infinite
series:

Zi = 1 +
∞∑

n=1

gn

n∑
j=1

z
(i)
nj

εj
, i = 1, . . . ,6. (20)

and the ε-independent coefficients z
(i)
nj , i = 1, . . . ,6 (for given

order n of the perturbation expansion) are determined by
the requirement that the one-irreducible Green’s functions
〈v′

ivj 〉1−ir and 〈θ ′θ〉1−ir are free of UV divergences when
are written in the renormalized variables, i.e., they have no
singularities in the limit ε → 0.

The one-irreducible Green’s functions 〈v′
ivj 〉1−ir and

〈θ ′θ〉1−ir are connected to the corresponding self-energy
operators �v′v and �θ ′θ through the Dyson equations [21]:

〈v′
ivj 〉1−ir = [−iω + ν0p

2 + ν0χ10(n · p)2]δij

+ [ν0χ20p
2 + ν0χ30(n · p)2]ninj

−�v′v
ij (ω,p), (21)

〈θ ′θ〉1−ir = −iω + ν0u0p
2 + ν0u0τ0(n · p)2

−�θ ′θ (ω,p). (22)

On the other hand, the expressions for the self-energy operators
�v′v and �θ ′θ are given by the calculations of the corre-
sponding Feynman diagrams. In the one-loop approximation
each self-energy operator is determined a by single Feynman
diagram as is shown explicitly in Fig. 3.

Thus, in general, when the nth order approximation is
considered all ε-independent coefficients z

(i)
kj for i = 1, . . . ,6,

k � n, and j � k in Eq. (20) are determined from Dyson
equations (21) and (22) by the requirement that all UV
divergences vanish when the substitution e0 = eμdeZe for
e = {g,u,ν,τ,χi},i = 1,2,3 is performed which are given
explicitly in Eqs. (15) and (16). The renormalization constants
Zi can be then found up to the UV finite parts fixed by the
renormalization scheme. But, as was already mentioned, we
work here in the MS scheme in which the UV finite parts are
equal to zero.

Σθ′θ =

Σv′v =

FIG. 3. The graphical representation of the self-energy operators
�v′v and �θ ′θ via Feynman diagrams in one-loop approximation.

In the one-loop approximation, which we are interested in,
the renormalization constants have the form

Zi = 1 + g
zi

ε
+ O(g2), i = 1, . . . ,6, (23)

where we have introduced notation zi ≡ z
(i)
11 for further

convenience. They are determined by the calculation of the
one-loop Feynman diagrams shown in Fig. 3.

The coefficients zi , for i = 1, . . . ,4 related to the 1-
irreducible Green’s function 〈v′

ivj 〉1−ir are already known [18].
They have a rather complicated integral form,:

z1 = −1

8

Sd−1

(2π )d (d2 − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

(M1M2M3)3
b1, (24)

zj+1 = −1

8

Sd−1

(2π )d (d2 − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

(M1M2M3)3

bj+1

χj

,(25)

for j = 1,2,3. Here Sd = 2πd/2/�(d/2) denotes the surface
area of the d-dimensional unit sphere, �(x) represents the
Euler’s Gamma function, and Mi,i = 1,2,3 are defined as
follows:

M1 = 2(1 + χ1x
2) + (χ2 + χ3x

2)(1 − x2), (26)

M2 = 1 + χ1x
2 + (χ2 + χ3x

2)(1 − x2), (27)

M3 = 1 + χ1x
2, (28)

and the explicit form of huge coefficients bi , i = 1, . . . ,4
can be found in Appendix I in Ref. [18]. Note also that the
integration variable x in Eqs. (24) and (25) is the cosine of the
angle between the unit vector of the uniaxial anisotropy n and
the momentum k over which the integration is performed in
the framework of the one-loop calculations.

On the other hand, the one-loop coefficients z5 and z6 for
the renormalization constants Z5 and Z6 in Eq. (20), which
are related to the 1-irreducible Green’s function 〈θ ′θ〉1−ir of
the advected scalar field, are unknown and therefore must be
calculated.

First of all, it is necessary to find an analytical expression
for the self-energy operator �θ ′θ defined by the corresponding
one-loop Feynman diagram shown in Fig. 3. It can be written
in the following form:

�θ ′θ (p) = −gν

2ε

Sd−1

(2π )d (d − 1)
[p2a5 + (p · n)2a6], (29)

043102-5
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where the coefficients a5 and a6 have the following integral
representation:

ai =
∫ 1

−1
dx

(1 − x2)
d−3

2

2N1N2M1M2M3
bi, i = 5,6, (30)

where

b5 = (d − 1)M1M2N1R1

− (1 − x2){M2R1[M2(M2 + M3) + M1N3]

+ [R1R2(M2 + M3)(M2 + N2)

+α2M3N2(R2 − 2M2)]x2 − α2M3N2R2x
4}, (31)

b6 = α2M3(1 − x2)[d(1 − x2) − 1]

× [2M2N2 − R2(M3 + N3)(1 − x2)]

+R1(M1M2(1 − dx2)[M2 + N3 − R2(2 − x2)]

+R2(M2 + M3){−M2(d − 3 + 2x2)

− (M3 + N3)(1 − x2){d(1 − x2) − 1]}), (32)

and

N1 = M2 + u(1 + τx2), (33)

N2 = M3 + u(1 + τx2), (34)

N3 = u(1 + τx2), (35)

R1 = 1 + α1x
2, (36)

R2 = χ2 + χ3x
2. (37)

At the same time, Mi , i = 1,2,3 are defined in Eqs. (26)–(28).
Result (29) for the one-loop self-energy operator �θ ′θ

together with the Dyson equation (22) gives the final explicit
expressions for the one-loop coefficients z5 and z6 of the
corresponding renormalization constants Z5 and Z6:

z5 = − 1

4u

Sd−1

(2π )d (d − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

M1M2M3N1N2
b5, (38)

z6 = − 1

4u

Sd−1

(2π )d (d − 1)

∫ 1

−1
dx

(1 − x2)
d−3

2

M1M2M3N1N2

b6

τ
, (39)

When studying fully developed turbulent systems one is
usually interested in universal properties of various quantities
related to the existence of the corresponding scaling regime.
Therefore, to proceed further, the answer on the question about
the existence and stability of the Kolmogorov scaling regime
within the inertial interval of the present model must be found.
It is a nontrivial question in the framework of the models
when a uniaxial small-scale anisotropy is present because
the stability of the scaling regime can be destroyed when the
uniaxial anisotropy defined by the anisotropy parameters has
special forms. In this respect, for example, in Ref. [18] a detail
mathematical analysis of the influence of the strong small-scale
uniaxial anisotropy on the stability of the Kolmogorov regime
was performed. It was shown that there is a large region of
the values of anisotropy parameters for which the stable Kol-
mogorov regime exists which includes phenomenologically

most interesting region of relatively small absolute values of
the anisotropy parameters, i.e., the region close to the isotropic
case. The question is if the same can be said in the framework
of the enlarged model under consideration. Let us discussed it
in detail.

We start with the important conclusion that all fields of
the model, namely, v,v′,θ , and θ ′ are not renormalized in the
framework of the present model. This fact means that arbitrary
unrenormalized, e.g., connected, correlation function, i.e.,
written in unrenormalized variables, must be equal to its
renormalized counterpart, which is written in renormalized
variables. One can therefore write

WR(g,u,ν,χi,τ,μ, . . . ) = W (g0,u0,ν0,χi0,τ0, . . . ), (40)

where we have denoted as W and WR the unrenormalized and
renormalized counterparts of an arbitrary correlation function.
In addition, the dots represent all other variables which are
not influenced by renormalization (for example, anisotropy
parameters α1 and α2, coordinates and times). Now, starting
from relation (40), by applying on both sides differential
operator μ∂μ taken at fixed values of the unrenormalized
parameters, it is then an easy task to derive the basic differential
RG equation which must be satisfied by WR . One obtains⎛

⎝μ∂μ +
∑

i=g,u,χj ,τ

βi∂i − γνν∂ν

⎞
⎠WR = 0, (41)

where βi,i = g,u,χj ,τ,j = 1,2,3, and γν are the correspond-
ing RG functions called, in general, β and γ functions,
respectively [7,47]. Using definitions of the renormalization
constants in Eqs. (15) and (16) together with relations among
them, which are shown in Eqs. (18) and (19), one obtains

βg ≡ μ∂μg = g(−2ε + 3γ1), (42)

βχi
≡ μ∂μχi = χi(γ1 − γi+1), i = 1,2,3 (43)

βu ≡ μ∂μu = u(γ1 − γ5), (44)

βτ ≡ μ∂μτ = τ (γ5 − γ6), (45)

where

γi ≡ μ∂μ ln Zi, i = 1, . . . ,6. (46)

Note that γν in Eqs. (41) is equal to γ1 due to relation Zν = Z1

[see the corresponding equation in Eq. (18)]. In the one-loop
approximation, from Eq. (20) one immediately comes to the
following final compact result:

γi = −2gzi, i = 1, . . . ,6, (47)

where zi,i = 1, . . . ,6 are given by the integrals in Eqs. (24),
(25), (38), and (39). Using this result one can also write all β

functions of the model directly in terms of the coefficients zi

of the renormalization constants Zi :

βg ≡ μ∂μg = −2g(ε + gz1), (48)

βχi
≡ μ∂μχi = 2gχi(zi+1 − z1), i = 1,2,3, (49)

βu ≡ μ∂μu = 2gu(z5 − z1), (50)
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βτ ≡ μ∂μτ = 2gτ (z6 − z5). (51)

The properties of the β functions are crucial for the
existence of a stable IR scaling regime in the model, which is
driven by the corresponding IR stable fixed point of the RG
equations [7,47]. The coordinates of possible fixed points are
given by the requirement of simultaneous vanishing of all β

functions of the model:

βi(g∗,χj∗,u∗,τ∗; α1,α2,d,ε) = 0, i = g,χj ,u,τ, (52)

where j = 1,2,3 and variables with star represent coordinates
of the fixed point. On the other hand, the fixed point is IR
stable if and only if all eigenvalues of the matrix of the first
derivatives of the β functions have positive real parts.

This technique was used in Ref. [21] for finding the IR
stable fixed point of the studied model in the limit of weak
small-scale anisotropy. It was shown that weak anisotropy,
which is characterized by the assumption that the absolute
values of the anisotropy parameters are small enough (|αi | 
1,i = 1,2) to perform the linear approximation of the problem
in respect to the anisotropy parameters α1 and α2, has no
impact on the stability of the Kolmogorov scaling regime for
d = 3 and for the physical value ε = 2. As it follows from
Ref. [18], the situation can be different in the case when
unrestricted anisotropic model is investigated. However, in
this case, as was discussed above, the β functions (42)–(45)
contain integrals, therefore it is impossible to find a fixed
point by direct solving the system of Eqs. (52). Here another
possibility exists, namely, to solve directly the system of
differential equations (also called the flow equations) for
effective (running) variables ḡ,χ̄i ,ū,τ̄ , i = 1,2,3 as functions
of the scale parameter t = k/	. In our case the flow equations
read

t
dḡ

dt
= βg(ḡ,χ̄j ; α1,α2,d,ε), (53)

t
dχ̄i

dt
= βχi

(ḡ,χ̄j ; α1,α2,d,ε), i = 1,2,3, (54)

t
dū

dt
= βu(ḡ,χ̄j ,ū,τ̄ ; α1,α2,d,ε), (55)

t
dτ̄

dt
= βτ (ḡ,χ̄j ,ū,τ̄ ; α1,α2,d,ε), (56)

where j = 1,2,3, the initial conditions are taken in t = 1, and
the IR stable fixed point (if exists) is obtained in the limit
t → 0, i.e., {ḡ,χ̄1,χ̄2,χ̄3,ū,τ̄ }|t→0 = {g∗,χ1∗,χ2∗,χ3∗,u∗,τ∗}.

The technique used for solving the system of the six
differential equations (53)–(56) is analogous to the technique
used for investigation of the pure turbulent problem with the
presence of the uniaxial anisotropy in Ref. [18], which is, in
fact, described by the closed system of first four equations
(53) and (54). In Ref. [18] the technique is discussed in detail,
therefore it is not necessary to repeat it here.

From the numerical analysis of the system of differential
equations (53)–(56) it follows that the region of the anisotropy
parameters α1 and α2 where the stable Kolmogorov scaling
regime exists is the same as in the case of the pure turbulent
system described by the anisotropic stochastic Navier-Stokes
equation [18]. It means that the presence of the passively
advected scalar field in such turbulent environment does not

FIG. 4. The region of the stability of the Kolmogorov scaling
regime in the plane α1-α2 for three-dimensional case d = 3 and ε = 2.

change the stability of the Kolmogorov regime. In fact, it is an
expected result because an arbitrary passive quantity should
not have any impact on the fundamental properties of a given
turbulent flow by which it is advected. In Fig. 4 the region of
the stability of the Kolmogorov scaling regime is shown for
the spatial dimension d = 3 and the physical value ε = 2. As
follows from Fig. 4 the Kolmogorov scaling regime does not
exist for simultaneously very small values of the parameters
α1 and α2, i.e., when they are both very close to −1, and for the
large enough values of α1 and relatively small values of α2. For
our further analysis it is, however, important that there exists
rather large region around the isotropic point α1 = α2 = 0 in
all anisotropic directions where the stable IR scaling regime
takes place (see Fig. 4).

In the case, when the Kolmogorov regime exists, i.e., when
the anisotropy parameters α1 and α2 have values from the
region where the stable IR scaling regime takes place, the
physics of the model under consideration is driven by the
corresponding fixed point values of the running parameters of
the model. For example, various correlation functions of the
model exhibit well-defined scaling behavior within the inertial
interval with appropriate critical dimensions. This is, however,
out of scope of the present study.

It is also worth mentioning that the form of all β functions
of the model given in Eqs. (48)–(51) is independent of the order
of the approximation, i.e., their form is completely determined
already at the one-loop level of approximation. It means that
every time when the stable scaling regime exists all the γ

function of the model, which are usually called the anomalous
dimensions, are uniquely defined at the fixed point:

γ ∗
i = 2ε

3
, i = 1, . . . ,6. (57)

For the physical value ε = 2 they lead to the famous Kol-
mogorov 2/3 scaling law for the second order correlation
function of the velocity field.

Finally, let us note that using the RG technique means that
in fact we do not work in the ordinary perturbation theory but
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rather in the framework of an “improved” perturbation theory
with the corresponding RG resummation. In our case it means,
e.g., that although we work in the framework of the leading
order of the ordinary perturbation theory, i.e., all RG functions
of the model (β and γ functions) are found in the one-loop
approximation, the subsequent exact solving the RG equations
for the correlation functions [see Eq. (41)] will lead to results
which take into account the leading contributions given by all
orders of the perturbation expansion [7,47].

IV. ANISOTROPY AND TURBULENT PRANDTL NUMBER

A. Anisotropy and turbulent Prandtl number in spatial
dimension d = 3

The main aim of the present paper is to find the dependence
of the turbulent Prandtl number of passively advected scalar
field on the uniaxial small-scale anisotropy of the turbulent
environment described by the anisotropy parameters α1 and
α2 discussed in the previous sections. In the framework of
the one-loop approximation the turbulent Prandtl number is
directly given by the inverse fixed point value of the parameter
u:

Prt(α1,α2,d,ε) = 1/u∗(α1,α2,d,ε), (58)

where we have shown explicitly all parameters of the model
which it depends on. Note that it has sense to talk about the
well-defined universal turbulent Prandtl number only for the
values of the parameters for which the stable scaling regime
exists (see the previous section).

However, the definition of the turbulent Prandtl number
given in Eq. (58) in the anisotropic case needs some further
comment. Strictly speaking, the quantity defined in Eq. (58)
represents in fact the well-defined universal “isotropic” (in-
dependent of direction) part of the total anisotropic turbulent
Prandtl number the value of which must depend on direction.
On the other hand, the theoretical definition of the total
anisotropic turbulent Ptandtl number is a nontrivial task. For
its determination it is necessary to know the total anisotropic
turbulent coefficient of diffusion as well as the total anisotropic
turbulent viscosity values of which dependent nontrivially
on the direction and must be constructed in some well-
defined way from the corresponding renormalized diffusion
coefficients νu and νuτ and the corresponding renormalized
coefficients of viscosity ν,νχ1,νχ2, and νχ3 defined, e.g., in
action functional (17). Therefore, the question of the total
anisotropic turbulent Prandtl number is left for future studies,
and here we concentrate our attention to the analysis of the
main universal part of the turbulent anisotropic Prandtl number
(58) defined by the ratio of the “isotropic” part of the turbulent
viscosity ν to the “isotropic” part of the turbulent diffusivity
νu, which is uniquely defined and which represents the main
contribution to the total anisotropic turbulent Prandtl number,
at least, for relatively small absolute values of the anisotropy
parameters α1 and α2. In what follows we shall call it simply
the turbulent Prandtl number.

Let us also note that the turbulent Prandtl number in the
isotropic case (α1 = α2 = 0) was recently calculated up to the
second order of the perturbation expansion [8,9] where it
was shown that the value of the turbulent Prandtl number
is quite surprisingly perturbatively very stable. Namely, it

FIG. 5. The turbulent Prandtl number Prt as the function of the
anisotropy parameters α1 and α2 for d = 3 and ε = 2.

was found that the two-loop isotropic value of the turbulent
Prandtl number is Prt

(2) = 0.7040, which is very close to
the corresponding one-loop value Prt

(1) = 0.7179. Thus, the
relative difference between these two values is less than
2%. It means that, as for the investigation of the turbulent
Prandtl number of a passively advected scalar quantity, the
one-loop approximation seems to be quite accurate. This is a
nontrivial conclusion which is crucial for the relevance of the
results obtained in the present paper in the framework of the
one-loop approximation in the anisotropic case. Here it is also
important to stress that the small-scale anisotropy problems in
the two-loop approximation are so complicated that, at least
at the moment, there does not exist any two-loop calculation
even in the weak small-scale anisotropy limit.

In Fig. 5 the dependence of the turbulent Prandtl number
on the anisotropy parameters α1 and α2 is shown explicitly
for the spatial dimension d = 3 and physical value ε = 2. It
is evident that the turbulent Prandtl number rather strongly
depends on the form of the uniaxial anisotropy especially for
small values of α1 when α2 increases and in the case when
both anisotropy parameters are simultaneously very small,
i.e., when they both are closed to the value −1. However,
while in the first case the turbulent Prandtl number decreases
significantly, in the second case it increases deeper into the
experimentally estimated interval of its values [11,12].

It is also interesting that when the anisotropy parameters
are increasing simultaneously, i.e., when α1 = α2, the value
of the turbulent Prandtl number decreases slowly and it
obtains the value Prt = 0.57848 in the limit α1 = α2 → ∞.
On the other hand, when the anisotropy parameters decrease
simultaneously, the Prandtl number increases and obtains its
maximal value Prt = 0.93866 for α1 = α2 = −0.944. Note
that for lower values of α1 = α2 < −0.944 the stable IR
scaling regime does not exist (see Fig. 4). It means that,
in this special case, the possible values of the turbulent
Prandtl number in the one-loop approximation are restricted
to relatively small interval 0.93866 � Prt � 0.57848. The
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FIG. 6. The turbulent Prandtl number Prt as the function of the
anisotropy parameters α1 = α2 for three-dimensional case d = 3 and
ε = 2.

dependence of the turbulent Prandtl number on the parameters
α1 = α2 for d = 3 and ε = 2 is shown in Fig. 6.

In addition, in Figs. 7 and 8 the behavior of the turbulent
Prandtl number is shown as the function of the parameter
α1 for various values of α2 and as the function of α2 for
various values of α1, respectively. The fact that some curves are
restricted in these figures is related to the existence of regions
where the stable Kolmogorov scaling regime does not exist (see
Fig. 4). The values of the turbulent Prandtl number for various
values of the anisotropy parameters for d = 3 and ε = 2 are
shown explicitly in Table I (see the corresponding first values in
Table I).

FIG. 7. The turbulent Prandtl number Prt as the function of the
anisotropy parameter α1 for various values of the parameter α2 for
d = 3 and ε = 2.

FIG. 8. The turbulent Prandtl number Prt as the function of the
anisotropy parameter α2 for various values of the parameter α1 for
d = 3 and ε = 2.

B. Turbulent Prandtl number in the weak anisotropy limit

It is also instructive to compare our results for the turbulent
Prandtl number obtained in the framework of unrestricted
small-scale uniaxial anisotropy with the corresponding results
obtained in the framework of the so-called weak anisotropy
limit studied in Ref. [21]. This comparison can tell us
important information about the relevance of the weak small-
scale anisotropy approximation in the framework of various
turbulent problems (see, e.g., Ref. [21] where the influence
of the weak small-scale uniaxial anisotropy on the anomalous
scaling of the single-time structure functions of the passively
advected scalar field by the Navier-Stokes turbulence was
studied). For this purpose, we have also calculated the turbulent
Prandtl number in the weak anisotropy limit, i.e., in the case
when the absolute values of the anisotropy parameters are
small enough, namely, we suppose that |αi | � 0.2,i = 1,2 as
was also supposed in Ref. [21]. In Fig. 9 the dependence of
the turbulent Prandtl number is shown as the function of the
anisotropy parameters α1 and α2 in the weak anisotropy limit
of the studied model. As follows from this figure the corre-
sponding dependence is exactly linear as it is expected in the
approximation when only linear parts of all expressions with
respect to anisotropy parameters are taken into account (see
Ref. [21] for details). On the other hand, in Fig. 10 the same
dependence of the turbulent Prandtl number on the anisotropy
parameters is shown in the case when no approximation is
performed. It is evident that, in this case, the corresponding
dependence of the turbulent Prandtl number on the anisotropy
parameters is nonlinear, especially in the direction α1 = −α2.
Nevertheless, by comparing these two figures one can conclude
that the weak anisotropy approximation works quite well for
small enough anisotropy parameters.

The fact that the weak small-scale anisotropy approxi-
mation works with very good accuracy for region of the
anisotropy parameters defined by inequalities |αi | � 0.2,i =
1,2 is also demonstrated in Table II, where the turbulent Prandtl
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TABLE I. The turbulent Prandtl number for various values of the anisotropy parameters α1 and α2 for ε = 2 and for the spatial dimension
d = 3 (the first values), d = 4 (the second values), and d = 5 (the third values).

α2 = −0.8 α2 = −0.4 α2 = 0.0 α2 = 0.4 α2 = 0.8 α2 = 1.2 α2 = 1.6 α2 = 2.0

α1 = −0.8 0.8183 0.7412 0.6936 0.6613 0.6376 0.6191 0.6041 0.5917
0.8190 0.7789 0.7557 0.7399 0.7280 0.7187 0.7110 0.7045
0.8337 0.8089 0.7950 0.7854 0.7782 0.7724 0.7676 0.7636

α1 = −0.4 0.7624 0.7447 0.7107 0.6823 0.6593 0.6405 0.6247 0.6113
0.8096 0.7834 0.7630 0.7476 0.7355 0.7258 0.7176 0.7107
0.8321 0.8124 0.7992 0.7895 0.7820 0.7760 0.7709 0.7666

α1 = 0.0 – 0.7365 0.7179 0.6951 0.6744 0.6564 0.6407 0.6271
0.8023 0.7849 0.7676 0.7533 0.7415 0.7316 0.7233 0.7161
0.8304 0.8146 0.8023 0.7929 0.7853 0.7791 0.7739 0.7694

α1 = 0.4 – – 0.7190 0.7030 0.6853 0.6687 0.6537 0.6402
0.7965 0.7851 0.7706 0.7575 0.7463 0.7366 0.7282 0.7209
0.8289 0.8159 0.8047 0.7956 0.7882 0.7819 0.7766 0.7720

α1 = 0.8 – – 0.7144 0.7073 0.6932 0.6784 0.6643 0.6513
0.7917 0.7845 0.7726 0.7608 0.7502 0.7408 0.7326 0.7252
0.8275 0.8167 0.8065 0.7979 0.7906 0.7844 0.7790 0.7744

α1 = 1.2 – – – 0.7083 0.6988 0.6861 0.6731 0.6608
0.7878 0.7835 0.7738 0.7633 0.7534 0.7445 0.7364 0.7291
0.8263 0.8172 0.8080 0.7998 0.7928 0.7866 0.7813 0.7766

α1 = 1.6 – – – 0.7055 0.7022 0.6921 0.6806 0.6690
0.7854 0.7824 0.7746 0.7653 0.7561 0.7476 0.7397 0.7326
0.8253 0.8175 0.8091 0.8014 0.7946 0.7886 0.7833 0.7786

α1 = 2.0 – – – 0.6948 0.7035 0.6967 0.6868 0.6961
– 0.7811 0.7749 0.7668 0.7584 0.7503 0.7427 0.7357

0.8244 0.8176 0.8101 0.8028 0.7963 0.7904 0.7852 0.7805

numbers Prt obtained in the framework of the strong uniaxial
anisotropy studied in the present paper are compared with the
corresponding values of the turbulent Prandtl number Pr(w)

t
obtained in the framework of the weak (linear) anisotropy
approximation [21]. In addition, to make this fact more evident,
we have also calculated the relative difference ε between them,
which is defined as

ε =
∣∣∣∣∣
Pr(w)

t − Prt

Prt

∣∣∣∣∣, (59)

FIG. 9. The turbulent Prandtl number Prt as the function of the
anisotropy parameters |αi | � 0.2,i = 1,2 for d = 3 and ε = 2 in the
framework of the so-called weak anisotropy approximation [21].

and which is also present in Table II. It follows from Table II
that the weak anisotropy approximation is in fact very precise
for small absolute values of the anisotropy parameters, and,
in this case, it can be surely used for qualitative as well
as quantitative analysis of problems with the presence of
anisotropy. However, it is important to bear in mind that the
weak anisotropy approximation loses precision very quickly
when the anisotropy parameters get larger and already for
|αi | ∼ 0.5,i = 1,2 the results obtained in the framework of

FIG. 10. The turbulent Prandtl number Prt as the function of
the anisotropy parameters |αi | � 0.2,i = 1,2 for d = 3 and ε = 2
without any approximation.
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TABLE II. The turbulent Prandtl number for various relatively
small values of the anisotropy parameters |αi | � 0.2,i = 1,2 for
spatial dimension d = 3 and ε = 2. The first values represent the
turbulent Prandtl numbers in the framework of the unrestricted model
studied in the present paper (see Fig. 10), the second values which
are placed in the parentheses are the values of the corresponding
turbulent Prandtl numbers in the weak anisotropy approximation
(see Fig. 9), and the third numbers correspond to the relative
differences ε × 102[%] between these two values of the turbulent
Prandtl numbers, which are defined in Eq. (59).

α2 = −0.2 α2 = −0.1 α2 = 0.0 α2 = 0.1 α2 = 0.2

α1 = −0.2 0.7290 0.7221 0.7152 0.7084 0.7019
(0.7275) (0.7217) (0.7160) (0.7103) (0.7048)
0.21% 0.06% 0.11% 0.27% 0.41%

α1 = −0.1 0.7291 0.7230 0.7167 0.7105 0.7043
(0.7285) (0.7227) (0.7169) (0.7113) (0.7057)
0.08% 0.04% 0.03% 0.11% 0.20%

α1 = 0.0 0.7288 0.7235 0.7179 0.7121 0.7064
(0.7295) (0.7237) (0.7179) (0.7122) (0.7066)
0.10% 0.03% 0.00% 0.01% 0.03%

α1 = 0.1 0.7280 0.7236 0.7187 0.7135 0.7081
(0.7305) (0.7246) (0.7189) (0.7132) (0.7076)
0.34% 0.14% 0.03% 0.04% 0.07%

α1 = 0.2 0.7268 0.7233 0.7191 0.7145 0.7096
(0.7315) (0.7256) (0.7198) (0.7141) (0.7085)
0.65% 0.32% 0.10% 0.06% 0.16%

the weak anisotropy approximation cannot be considered as
useful and valid.

C. Anisotropy and turbulent Prandtl number in higher spatial
dimensions: d = 4 and d = 5

Finally, let us also analyze briefly the influence of the
small-scale anisotropy on the turbulent Prandtl number of the
studied model in higher spatial dimensions. Although the main
purpose for this investigation is purely theoretical, nevertheless
it can give us a nontrivial information about universality (or
nonuniversality) of the behavior of the turbulent Prandtl num-
ber as the function of the anisotropy parameters independent of
(or dependent on) the dimensionality of the studied problem.
Here let us remind that the technique used in the present paper
allows one to study the model in spatial dimensions d > 2
only.

In what follows, we concentrate our attention only on the
models with spatial dimensions d = 4 and d = 5. The first
question, which we must find answer to, is related to the
stability of the corresponding scaling regime in the presence
of the small-scale anisotropy. The regions of stability of the
Kolmogorov scaling regime in the plane α1-α2 for models with
spatial dimensions d = 4 and d = 5 for ε = 2 are shown in
Fig. 11, where they are also compared with the corresponding
region of stability of the Kolmogorov scaling regime for the
case d = 3 (see also Fig. 4). From Fig. 11 it is evident that the
region of stability of the scaling regime significantly increases
with increasing integer value of the spatial dimension.

The explicit dependence of the turbulent Prandtl number on
the anisotropy parameters α1 and α2 for ε = 2 and for d = 4

FIG. 11. The region of the stability of the Kolmogorov scaling
regime in the plane α1-α2 for the model with spatial dimensions
d = 3,4, and 5 and for ε = 2.

and d = 5 is shown in Figs. 12 and 13, respectively. Looking
at Figs. 5, 12, and 13 we can conclude that, despite the fact that
the numerical values of the turbulent Prandtl number for given
values of the anisotropy parameters are different for different
values of the spatial dimension, the general properties of its
behavior, as the function of the anisotropy parameters, are the
same. This behavior can be also seen in detail in Fig. 14, where
the turbulent Prandtl numbers for d = 3,4, and 5 are shown
explicitly as functions of the parameters α1 = α2 for ε = 2.
In addition, the comparison of the numerical values of the
turbulent Prandtl number for various values of the anisotropy
parameters in spatial dimensions d = 3,4, and 5 can be found
in Table I. From Table I it is evident that the value of the
turbulent Prandtl number for given values of the anisotropy

FIG. 12. The turbulent Prandtl number Prt as the function of the
anisotropy parameters α1 and α2 for d = 4 and ε = 2.
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FIG. 13. The turbulent Prandtl number Prt as the function of the
anisotropy parameters α1 and α2 for d = 5 and ε = 2.

parameters increases with increasing the value of the spatial
dimension.

Thus, we can conclude that the influence of the anisotropy
on the turbulent Prandtl number of the passively advected
scalar quantity is known now. However, a few intriguing
questions immediately arise here which need further in-
vestigations. The first nontrivial question is related to the
analogous problem of the passively advected weak magnetic
field in the framework of the kinematic magnetohydrodynamic
turbulence. It is known that the corresponding turbulent
magnetic Prandtl number is equal to the turbulent Prandtl
number of a passively advected scalar field if fully symmetric
and incompressible turbulent environments are considered.
This is true, at least, up to the two-loop approximation [13].

FIG. 14. The dependence of the turbulent Prandtl number Prt on
the anisotropy parameters α1 = α2 for spatial dimensions d = 3,4,

and 5 and for ε = 2.

On the other hand, it is also known that when spatial parity
is violated in these systems, i.e., the systems are helical,
then the corresponding turbulent Prandtl numbers become
different; i.e., it seems that there is a significant difference
between diffusion processes related to the passively advected
scalar and vector fields in helical turbulent environments
[14]. Thus, the question is whether the same is valid when
the corresponding turbulent environments are anisotropic,
e.g., when the small-scale uniaxial anisotropy is present in
the systems as is studied in the present paper. To answer
this question correctly the anisotropically driven kinematic
magnetohydrodynamic turbulence must be investigated in the
similar way.

Another nontrivial question is related, e.g., to the role of
the higher-loop corrections to the anisotropic turbulent Prandtl
number. Here it would be quite enough to have leastwise the
weak small-scale anisotropy results in the framework of the
two-loop approximation. However, even in this significantly
simplified case the calculations are too complicated and were
not performed yet. These questions and many others are left
for future studies.

V. CONCLUSION

In the present paper, we have used the field theoretic
RG technique in the leading order of approximation in
the framework of the perturbation theory to investigate the
turbulent Prandtl number related to the process of a passive
advection of a scalar field by the turbulent velocity field
described by the anisotropically driven stochastic Navier-
Stokes equation. The anisotropy is taken to be uniaxial and
small-scale, i.e., it is supposed that it is present at all scales
of the studied turbulent problem. At the same time, the field
theoretic RG technique is used in the form which allows one
to study the problem simultaneously for all spatial dimensions
d > 2. A detailed analysis of the influence of the presence of
the uniaxial anisotropy of the turbulent environment on the
turbulent Prandtl number is performed for the most interesting
spatial case d = 3 as well as for turbulent systems with d = 4
and d = 5.

First of all, the influence of the uniaxial small-scale
anisotropy on the stability of the Kolmogorov scaling regime
is studied. It is shown that there exist two separated regions in
the plane of the anisotropy parameters in which the stability
of the Kolmogorov scaling regime is destroyed. However, an
important fact is that there exists a rather large region around
the isotropic point in all anisotropic directions where the stable
IR scaling regime takes place for all integer spatial dimensions
d > 2 (see Figs. 4 and 11). At the same time, the region of
the stability of the Kolmogorov scaling regime as the function
of the anisotropy parameters enlarges sufficiently when the
spatial dimension of the problem increases (see Fig. 11).

Further, the influence of the uniaxial small-scale anisotropy
on the value of the turbulent Prandtl number is studied in
detail in the region where the Kolmogorov scaling regime is
stable for spatial dimension d = 3 and physical value ε = 2
of the parameter which drives the infrared form of the energy
pumping into the system. It follows from our analysis that
the anisotropically driven turbulent environments can have
a rather significant impact on the rate of the corresponding
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diffusion processes, i.e., that the value of the turbulent Prandtl
number depends quite significantly on the form as well as
on the strength of the anisotropy which is represented by the
values of the anisotropy parameters (see Figs. 5–8).

In addition, we have also performed the comparison
between the obtained results for the turbulent Prandtl number
and those obtained in the framework of the so-called weak
uniaxial small-scale anisotropy limit [21] where only linear
anisotropic corrections are taken into account. It is shown that
there exists a relatively large region of small absolute values
of the anisotropy parameters where the results obtained in
the framework of the weak anisotropy approximation are in
very good agreement with results obtained in the framework
of the model without any approximation (see Figs. 9 and 10
as well as Table II). It means that the results obtained in the
weak anisotropy limit in the framework of investigations of
various turbulent problems with the presence of anisotropy
can be considered as relevant for the quite large region of the
anisotropy parameters.

Finally, we have also analyzed the dependence of the
turbulent Prandtl number of the model on the anisotropy
parameters for larger spatial dimensions, for d = 4 and d = 5.
It is shown that the form of the dependence of the turbulent
Prandtl number on the anisotropy parameters is very similar
for all studied cases, i.e., for d = 3,4 and 5, as can be

seen in Figs. 5, 12, 13, and 14. At the same time, however,
the numerical values of the corresponding turbulent Prandtl
numbers are quite different. A comparison of the values of the
turbulent Prandtl numbers for cases d = 3,4, and 5 for various
values of the anisotropy parameters is performed in Table I.

Note also that the relevance of our one-loop results is based
on the fact that in the fully isotropic case the relative difference
between the one-loop and the two-loop values of the turbulent
Prandtl number is less than 2% [8,9]. Of course, it would be
quite interesting to have also the two-loop anisotropic results,
at least, in the weak small-scale anisotropy limit to discuss the
higher-loop tendencies in the anisotropic case. However, the
corresponding calculations are left for the future.
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