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Multiscaling in superfluid turbulence: A shell-model study

Vishwanath Shukla1,* and Rahul Pandit2,†
1Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris, France

2Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
(Received 5 August 2015; published 3 October 2016)

We examine the multiscaling behavior of the normal- and superfluid-velocity structure functions in three-
dimensional superfluid turbulence by using a shell model for the three-dimensional (3D) Hall-Vinen-Bekharevich-
Khalatnikov (HVBK) equations. Our 3D-HVBK shell model is based on the Gledzer-Okhitani-Yamada shell
model. We examine the dependence of the multiscaling exponents on the normal-fluid fraction and the mutual-
friction coefficients. Our extensive study of the 3D-HVBK shell model shows that the multiscaling behavior of
the velocity structure functions in superfluid turbulence is more complicated than it is in fluid turbulence.
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I. INTRODUCTION

The study of turbulence in quantum fluids is an important,
challenging problem, which has witnessed a spurt of activity
because of advances in experimental techniques [1–11].
This has led, in turn, to intense theoretical and numerical
investigations; however, much remains to be done to obtain a
good understanding of superfluid turbulence (see the excellent
reviews in Refs. [12–17]).

Superfluidity occurs in a wide variety of systems, such as
4He II, 3He-B, Bose-Einstein condensates (BECs) of bosonic
atoms in traps, and neutron stars. No single theory covers all
these systems; and there is no theory that can cover all the
length and time scales that are required to describe superfluid
turbulence in quantum fluids. Furthermore, turbulence in such
systems is influenced by the quantum properties that are
manifested at the macroscopic scale. For example, liquid he-
lium, below the superfluid transition temperature Tλ = 2.17 K,
can sustain rotational motion only through the formation of
quantum vortices, around which the circulation of the velocity
is quantized. The following three important phenomenological
approaches have been used to investigate the properties of such
turbulence: (a) The first uses the Gross-Pitaevskii equation
(GPE), which provides a good hydrodynamical description
with resolved quantum vortices; the GPE approach works well
at low temperatures and for weakly interacting bosons [18].
(b) The second uses the vortex-filament model, in which quan-
tized vortices are regarded as filaments in three dimensions
(3D), because the vortex core size a � 10−10 m (in, e.g.,
helium II); thus, the filaments can be treated as classical objects
in many physically relevant situations, e.g., when the mean
intervortex separation �v � a or the radius of curvature of
the filaments [19–21]. (c) The third approach uses the two-
fluid, Hall-Vinen-Bekharevich-Khalatnikov (HVBK) model,
wherein we ignore the the distinction between individual,
quantized vortices and deal with an effective, coarse-grained
model (this HVBK model is valid only for length scales
� � �v) [22–25].
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It is important to investigate how various statistical prop-
erties of classical-fluid turbulence are modified in turbulence
in quantum fluids [16,26]. In particular, it behooves us to test
theoretical ideas, developed for turbulence in classical fluids, in
superfluid systems and then to use them to analyze experiments
on quantum turbulence. For statistically homogeneous and
isotropic, 3D, classical-fluid turbulence, the phenomenological
1941 theory of Kolmogorov (K41) predicts, for the fluid energy
spectrum, E(k) ∼ k−5/3, for wave numbers k in the inertial
range 2π/L � k � 2πηd , where L is the large length scale
at which energy is injected into the system and ηd is the
small scale at which viscous dissipation becomes significant,
energy cascades, à la Richardson [27], from the injection
scale L to small length scales of the order of ηd , as large
eddies break down into successively smaller daughter eddies.
This K41 theory ignores small-scale intermittency, in both
spatial and temporal domains; such intermittency appears
clearly in experiments and in direct numerical simulations
(DNSs) and leads to the multiscaling of structure functions.
The characterization of energy spectra and such multiscaling
[27] often uses the longitudinal velocity v structure function
Sp(r) ≡ 〈[δv(r)]p〉, where δv(r) ≡ [v(x + r) − v(x)] · [r/r],
which scales as Sp(r) ∼ rζp for r ≡| r | in the inertial
range ηd � r � L. The multiscaling exponents ζp, which
characterize multiscaling, are nonlinear, monotone increasing
functions of p [27]. Simple scaling is obtained if ζp depends
linearly on p, as in the K41 approach [28–30] that yields
ζK41
p = p/3.

Experimental investigations of turbulent flows in liquid
helium, in the temperature range between 1.4 and 2.3 K,
which covers both the superfluid- and the classical-turbulence
regimes, reveal some similarity between ordinary and su-
perfluid turbulence. A Richardson-type cascade leads to a
power-law form for E(k) that is consistent with the K41
form; in addition, there are signatures of intermittency, even at
temperatures below Tλ [2].

DNSs play an important role in studies of structure-
function multiscaling in fluid turbulence [27,31,32]. Such
DNSs have achieved impressive spatial resolutions (see, e.g.,
Refs. [27,31]). By contrast, DNS studies of superfluid turbu-
lence, whether at the level of the Gross-Pitaevskii equation
(Refs. [33,34] and references therein) or via the Hall-Vinen-
Bekharevich-Khalatnikov (HVBK) equations (Refs. [25,35]
and references therein), have only achieved modest spatial
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resolutions. Furthermore, the large number of parameters in
these equations, e.g., the mutual-friction coefficients, the ratio
of the normal-fluid density to the superfluid density, and the
Reynolds number, pose a significant challenge for systematic
studies of the multiscaling of normal-fluid- and superfluid-
velocity structure functions. It has been suggested, therefore,
that shell models for the 3D-HVBK equations [36–38] be used
first to study such multiscaling in detail.

Ever since their introduction in the early work of Obukhov
[39], Desnyansky and Novikov [40], and Gledzer, Ohkitani,
and Yamada (GOY) [41,42], shell models have played valuable
roles in elucidating the multiscaling properties of structure
functions of fluid turbulence [27,43–50]. Over the years, such
shell models have been used to study magnetohydrodynamic
(MHD) turbulence [51–56], Hall-MHD turbulence [57–60],
fluid turbulence with polymer additives [61], fluid turbulence
in two dimensions [62], fluid turbulence in dimensions in
between two and three [63], turbulence in binary-fluid mixtures
[64] and in rotating systems [65], and, as mentioned above,
turbulence in superfluids [36–38]. Shell models have also
been used to initiate studies of the dynamic multiscaling of
time-dependent structure functions [66–68].

We build on the shell-model studies of Refs. [36–38] to
explore the dependence of the multiscaling exponents here
on the parameters of the 3D-HVBK model. It has been noted
in Ref. [38] that, given current computational resources, a
systematic study of this parameter dependence lies beyond the
scope of a well-resolved DNS of the 3D-HVBK equations;
however, such a study is possible if we use shell models for
these equations. Our study extends the work of Refs. [36–38]
by obtaining a variety of results, which we summarize, before
we present the details of our study.

Our study of the 3D-HVBK shell model shows that the
multiscaling behavior of the shell-model counterparts of
velocity structure functions in superfluid turbulence is more
rich than that reported so far [38]. Our calculations show,
for the first time, the presence of a temperature range in which
inertial-range intermittency is either absent or negligibly small.
Moreover, intermittency changes significantly, when we vary
the parameters in the HVBK model. We find that, in the limits
when the normal-fluid fraction is either small (pure superfluid)
or large, the equal-time multiscaling exponents are close to
their classical-fluid-turbulence values [38], thus suggesting
that the classical-fluid-type intermittency is recovered.

In addition, we find that there are two regions, with
intermediate values of the normal-fluid fraction, in which
the multiscaling exponents are larger than those observed
for the classical-fluid-turbulence or even Kolmogorov’s 1941
predictions [27]; between these two regions there is a region in
which the multiscaling exponents are close to their K41 values.
Therefore, we classify the temperatures below Tλ into different
multiscaling regimes in order to systematize the variation of
intermittency. We have also investigated the dependence of
the multiscaling exponents on the mutual-friction coefficient,
with equal proportions of superfluid and normal-fluid compo-
nents; here, our results show that, for small (weak-coupling
limit) and large (strong-coupling limit) values of the mutual-
friction coefficient, the multiscaling exponents tend to their
classical-fluid-turbulence values, whereas, in an intermediate
range, there are deviations from the classical-fluid-turbulence

behavior; in particular, the multiscaling exponents are larger
than their classical-fluid-turbulence counterparts for high-
order structure functions (order p � 3).

The remainder of this paper is organized as follows. In
Sec. II we describe the shell model and the numerical methods
we use. Section III is devoted to our results. We end with
conclusions in Sec. IV.

II. MODELS AND NUMERICAL SIMULATIONS

The simplest form of the incompressible, 3D-HVBK
equations [23,35,69] is

ρs

Dus

Dt
= −ρs

ρ
∇p + ρsσ∇T + Fs

mf , (1a)

ρn

Dun

Dt
= −ρn

ρ
∇p − ρnσ∇T + Fn

mf + νn∇2un, (1b)

with Dui/Dt = ∂ui/∂t + ui · ∇ui , the incompressibility con-
dition ∇ · ui = 0, and the superscript i ∈ (n,s) denoting the
normal fluid (n) or the superfluid (s); p, σ , and T are the
pressure, specific entropy, and temperature, respectively; ρn

(ρs) is the normal-fluid (superfluid) density; and νn is the
kinematic viscosity of the normal fluid. The mutual-friction
terms, which model the interaction between the normal and
superfluid components, can be written as Fs

mf = −(ρn/ρ)fmf

and Fn
mf = (ρs/ρ)fmf in Eqs. (1a) and (1b), respectively, where

fmf = B

2

ωs

|ωs| × (ωs × uns) + B ′

2
ωs × uns, (2)

with uns = (un − us) the slip velocity and B and B ′ the
coefficients of mutual friction. In most of our studies we set
B ′ = 0, so fmf = −B

2 |ωs|uns, which is the Gorter-Mellink form
[70].

We use the following shell model for the 3D-HVBK
equations; it is based on the GOY shell model for a fluid
[36], [

d

dt
+ νnk

2
m

]
un

m = NL
[
un

m

] + Fn
m + f n

m, (3)

[
d

dt
+ νsk

2
m

]
us

m = NL
[
us

m

] + F s
m + f s

m, (4)

where

NL[um] = ı[akmum+1um+2 + bkm−1um−1um+1

+ ckm−2um−1um−2]∗. (5)

Here, as in the GOY model, we have a logarithmically
discretized Fourier space with shell-m wave numbers k =
k0λ

m, where k0 = 2−4 and λ = 2, and kinematic viscosities
νn and νs for the normal fluid and the superfluid, respectively.
Of course, νs must vanish in a superfluid but, in practical
numerical simulations, νn � νs > 0 for numerical stability.
The ∗ denotes complex conjugation. The logarithmic dis-
cretization of Fourier space allows us to achieve very high
Reynolds numbers, even with a moderate number of shells. In
the GOY-shell-model equations, direct interactions are limited
to the nearest- and next-nearest-neighbor shells. In contrast, if
we write the Navier-Stokes equation in Fourier space, every
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Fourier mode of the velocity is directly coupled to every other
Fourier mode. The normal and superfluid dynamical variables
are, respectively, the complex, scalar, shell velocities un

m(km)
and us

m(km) and f n
m and f s

m are the external forcing terms. The
coefficients a = 1, b = −1/2, and c = −1/2 are chosen to
conserve the shell-model analogs of energy and helicity in the
limit of vanishing viscosity and the absence of external forcing.
The shell-model analogs of the mutual-friction terms, which
model the interaction between the normal and the superfluid
components, are

F s
m = ρnB

1/2
s

2ρ

(
un

m − us
m

)
(6)

and

Fn
m = −ρsB

1/2
s

2ρ

(
un

m − us
m

)
. (7)

The shell-model superfluid and normal-fluid enstrophies are,
respectively,

s =
N∑

m=1

1

2
k2
m

∣∣us
m

∣∣2
(8)

and

n =
N∑

m=1

1

2
k2
m

∣∣un
m

∣∣2
. (9)

The total energy is

ET = En + Es ≡ 1

2

N∑
m=1

(∣∣un
m

∣∣2 + ∣∣us
m

∣∣2)
, (10)

where En and Es are the normal-fluid and superfluid energies,
respectively. Other statistical quantities that we use in our study
are as follows: The helicity is

Hi =
N∑

m=1

1

2

(
a

c

)m
∣∣ui

m

∣∣2

km

, (11)

the energy spectra are

Ei(km) = 1

2

∣∣ui
m

∣∣2

km

, (12)

the root-mean-square velocities are

ui
rms =

(∑
m

∣∣ui
m

∣∣2

)1/2

, (13)

the Taylor microscale is

λi =
[ ∑

m Ei(km)∑
m k2

mEi(km)

]1/2

, (14)

the Taylor-microscale Reynolds number is

Rei
λ = urmsλi/νi, (15)

the integral length scale is

�I =
∑

m Ei(km)/km∑
m Ei(km)

, (16)

and the large-eddy-turnover time is

T i
eddy = 1

k1u
i
1

, (17)

and here and henceforth i ∈ (n,s).
The equal-time, order-p structure functions for the shell

model are

Si
p(km) ≡ 〈[

ui
m(t)ui∗

m (t)
]p/2〉 ∼ k

−ζ i
p

m , (18)

where the power-law dependence is obtained only if k−1
m lies in

the inertial range. The structure functions defined above show
period-three oscillations because of three cycles in the static
solutions of the GOY model for the Navier-Stokes equation
[45]. Therefore, we use the modified structure functions
[44,45]

�i
p ≡ 〈∣∣Im[

ui
m+2u

i
m+1u

i
m − 1

4ui
m−1u

i
mui

m+1

]∣∣p/3〉 ∼ k
−ζ i

p

m ,

(19)

which filter out these oscillations effectively. The Sabra-model
variant [37,38] of the 3D-HVBK equations does not show
such oscillations. We expect that the multiscaling exponents
ζ i
p, i ∈ (n,s), satisfy the following convexity inequality for any

three positive integers p1 � p2 � p3 [27]:

(p3 − p1)ζ i
2p2

� (p3 − p2)ζ i
2p1

+ (p2 − p1)ζ i
2p3

. (20)

We obtain smooth energy spectra, without period-3 oscilla-
tions, by using Ei(km) = �i

2(km)/km, i ∈ (n,s).
To obtain a turbulent, but statistically steady, state, we force

both the superfluid and the normal-fluid components with the
forces

f n,s
m = (1 + ı) × 5 × 10−3δ1,m, (21)

where δ1,m is the Kronecker δ. We use the second-order, slaved
Adams-Bashforth scheme to integrate the 3D-HVBK shell-
model Eqs. (3) and (4) [44,71]. To study the multiscaling
behaviors of structure functions here, we design the following
three sets of runs:

(1) G1–G21: In these runs, we use the values of ρn/ρ and
B, which have been measured at different temperatures in
experiments on helium II [72,73]; we list them, along with
other parameters, in Table I. We use νn = 10−9, νs = 10−11

and the time step �t = 10−6.
(2) B1–B19: We vary ρn/ρ between 0.05 and 0.95 and keep

B = 1.5 fixed.
(3) R1–R12: We vary B between 0.1 and 10 and keep

ρn/ρ = 0.5 fixed.
In the runs B1–B19 and R1–R12, we use νn = 10−7, νs =

10−9, and the time step �t = 10−5.
We use the initial condition un,s

m = (1 + ı)kme−k2
m , for

1 � m � N , in the run PG. In the runs G1–G21, B1–B19,
and R1–R12, we use the initial values un,s

m = u
n,s
0 k

1/2
m e−k2

meiϑm ,
for 1 � m � N , where ϑm is a random phase distributed
uniformly on [0,2π ). We include the GOY-shell-model run
PG (νn = 10−9) for the purpose of comparison with the runs
G1–G21. We use the boundary conditions ui

−2 = ui
−1 = ui

0 = 0
and ui

N+1 = ui
N+2 = 0, i ∈ (n,s). We report results for N = 36

shells; Ref. [36] uses N = 18 and Ref. [38] presents data with
N = 36.
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TABLE I. Parameters for our 3D shell-model run (classical-fluid-
turbulence) PG and 3D-HVBK shell-model runs G1–G21: T is the
temperature, ρn/ρ is the normal-fluid density fraction, and B is
the mutual-friction coefficient. λn (λs) is the Taylor microscale for
the normal-fluid (superfluid); Ren

λ (Res
λ) is the Taylor-microscale

Reynolds number for the normal-fluid (superfluid). For the runs
G1–G21 we obtain statistical quantities by averaging in time over
439 Teddy, where the large-eddy-turnover time for the normal fluid
(superfluid) is T n

eddy � 22.80 (T s
eddy � 22.80).

T (K) ρn/ρ B λn λs (108) Ren
λ (1010) Res

λ

PG 0.50 3.1
G1 1.60 0.162 1.193 0.28 0.21 3.2 2.4
G2 1.65 0.193 1.144 0.29 0.22 3.2 2.4
G3 1.70 0.229 1.100 0.29 0.22 3.3 2.5
G4 1.75 0.268 1.059 0.30 0.22 3.3 2.5
G5 1.80 0.313 1.024 0.31 0.23 3.4 2.6
G6 1.85 0.364 0.996 0.26 0.20 2.9 2.2
G7 1.90 0.420 0.980 0.29 0.23 3.3 2.5
G8 1.95 0.482 0.981 0.30 0.24 3.4 2.6
G9 2.00 0.553 1.008 0.29 0.23 3.3 2.6
G10 2.02 0.595 1.04 0.28 0.23 3.2 2.6
G11 2.04 0.629 1.07 0.28 0.23 3.1 2.6
G12 2.06 0.666 1.13 0.27 0.23 3.1 2.6
G13 2.08 0.705 1.21 0.27 0.23 3.0 2.6
G14 2.10 0.741 1.298 0.27 0.23 3.0 2.6
G15 2.12 0.788 1.476 0.27 0.23 3.0 2.7
G16 2.14 0.842 1.790 0.27 0.24 3.0 2.7
G17 2.16 0.907 2.420 0.27 0.25 3.1 2.8
G18 2.170 0.950 3.154 0.27 0.26 3.1 2.9
G19 2.172 0.961 3.538 0.27 0.26 3.1 2.9
G20 2.174 0.973 4.227 0.28 0.26 3.1 3.0
G21 2.176 0.988 6.391 0.28 0.27 3.1 3.0

III. RESULTS

We now present the results of our study of superfluid and
normal-fluid turbulence in the 3D-HVBK shell model. We
begin with energy spectra and then examine the parameter
dependence of the exponents that characterize the multiscaling
of structure functions.

In Table I we list the values of λi , Rei
λ, and T i

eddy that
we obtain from our 3D classical-fluid-turbulence and HVBK
shell-model simulations PG and G1–G21, respectively. Figure 1
compares En(km) (full curves) and Es(km) (dashed curves),
compensated by k5/3, for four representative values of ρn/ρ

[runs G1 (purple curves with +), G7 (green curves with circles),
G14 (sky-blue curves with ∗), and G21 (brown curves with ×)].
The inertial ranges of En(km) and Es(km) exhibit scaling that is
consistent with a k−5/3 power-law form (orange dashed line);
of course, this exponent is not exactly −5/3 if the structure
functions display multiscaling. The run PG (yellow curve
with squares) shows the energy spectrum for classical fluid
turbulence. The coupling between the normal and superfluid
components modifies the classical-fluid energy spectrum; the
spectra for the two components, in the inertial range lie on top
of each other; and, in the dissipation range, En(km) is pulled
up towards Es(km) by virtue of the mutual-friction-induced
tendency of locking between un and us (see Ref. [25]).

k
100 105 1010

k5/
3 E

(k
)

10-60

10-40

10-20

100

PG
NF, ρ

n
/ρ=0.16

SF
NF, ρ

n
/ρ=0.42

SF
NF, ρ

n
/ρ=0.74

SF
NF, ρ

n
/ρ=0.99

SF

FIG. 1. Log-log (base 10) plots of the spectra En(km) (full curves)
and Es(km) (dashed curves), compensated by k5/3, from our shell-
model runs: PG (yellow curves); G1 (purple curves); G7 (green curves);
G14 (sky-blue curves); G21 (brown curves); and NF (SF) stands for
normal-fluid (superfluid). We have shifted these spectra, relative to
each other, so spectra for different values of ρn/ρ are separated clearly
from each other; we do so by multiplying the spectrum for run G1 by
10−3 for run G7 by 10−6, for run G14 by 10−9, and for run G21 by
10−12.

We study the multiscaling behaviors of the velocity struc-
ture functions for the 3D-HVBK shell model by calculating
the multiscaling exponents ζ n

p and ζ s
p, for the normal fluid and

superfluid components, respectively, by using the Eqs. (19) for
�i

p. In Table I in the Supplemental Material [74], we list the
values of these exponents, which we have obtained from �i

p,
for p = 1 to 6, i ∈ (n,s). Each row of this table has two lines;
the first and second lines contain, respectively, the values of
ζ n
p and ζ s

p. Table I in the Supplemental Material [74] shows
that ζ n

p = ζ s
p, for p = 1 to 6, for the runs G1–G21, because

of the mutual-friction-induced locking of the normal fluid and
superfluid velocities in the inertial range.

In Fig. 2 we show the plots of ζ n
p versus the order p for

various values of ρn/ρ; the analogous plots for the superfluid
component are similar because of the locking between the
two components. The orange solid line is the K41 prediction
ζK41
p = p/3, and the purple solid line shows the multiscaling

exponents ζ c
p for classical (superscript c), 3D fluid turbulence.

The multiscaling exponents ζ i
p, i ∈ (n,s), which we determine

from the 3D-HVBK shell model, show deviations from ζ c
p;

these deviations depend on the values of ρn/ρ and B. For the
run with ρn/ρ = 0.27 and B = 1.059 at T = 1.75 K , the ζ n

p ’s
(green dashed line in Fig. 2) lie roughly between ζK41

p and
ζ c
p. We obtain similar results for the cases ρn/ρ = 0.55 and

ρn/ρ = 0.71; however, the differences among ζ n
p and ζK41

p and
ζ c
p depend on p. Moreover, for the run with ρn/ρ = 0.36 and

B = 0.996 at T = 1.85 K , the ζ n
p ’s (light blue dot-dashed line

in Fig. 2) is close to ζK41
p = p/3. The run with ρn/ρ = 0.91

and B = 2.42 at T = 2.16 K (magenta dotted line with circles)
the ζ n

p ’s lie almost on top of ζ c
p (purple solid line).

To understand the dependence of the multiscaling expo-
nents ζ i

p, i ∈ (n,s), on ρn/ρ (which includes the variation
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p
0 1 2 3 4 5 6

ζ
n p

0

0.5

1

1.5

2
p/3
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ρ

n
/ρ=0.27

ρ
n
/ρ=0.36

ρ
n
/ρ=0.55

ρ
n
/ρ=0.71

ρ
n
/ρ=0.91

FIG. 2. Plots versus order p of the multiscaling exponents: ζ n
p

for the shell-model runs G4 (green curve), G6 (sky-blue curve), G9
(brown curve), G13 (yellow curve), and G17 (magenta curve). PG is
the classical-fluid-turbulence run (purple curve) and ζK41 = p/3 is
denoted by the orange line.

of B with temperature), we plot, in Fig. 3, ζ n
p , for p = 1

to 6, versus ρn/ρ from our runs G1–G21. Figure 3 shows
that, depending on the values of ρn/ρ, the behavior of the
exponents ζ n

p can be classified roughly into the following
six regions I–V (demarcated by gray dashed vertical lines
on the plot). Region I (ρn/ρ � 0.175): The values of ζ n

p are
close to the classical-fluid-turbulence exponents ζ c

p. Region II
(0.175 < ρn/ρ < 0.3): ζ n

p > ζ c
p, for p � 3 and, for p = 1,2,

ζ n
p � ζ c

p. Region III (0.32 � ρn/ρ � 0.4): a narrow region
for which ζ n

p � ζK41
p . Region IV (0.4 < ρn/ρ � 0.65): ζ n

p

show significant deviations from both ζ c
p and ζK41

p . Region V

ρ
n
/ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ζn p
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FIG. 3. Plots of ζ n
p , for p = 1 to 6, versus ρn/ρ, from our shell-

model runs G1–G21. For reference, we show the value of the classical-
fluid-turbulence exponent ζ c

p , for order p, by a horizontal, dashed
line; different colors indicate different values of the order p. The
black dot-dashed lines indicates ζK41

p = p/3.
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FIG. 4. Log-log plots of (a) the skewness Si and (b) the flatness
F i

4 , i ∈ (n,s), for our shell-model runs G1 (ρn/ρ = 0.16), G4 (ρn/ρ =
0.27), G6 (ρn/ρ = 0.36), G9 (ρn/ρ = 0.55), G13 (ρn/ρ = 0.70), and
G21 (ρn/ρ = 0.99) for the six regions identified in Fig. 3. PG is our
classical-fluid-turbulence run.

(0.65 < ρn/ρ < 0.75): ζ n
p shows a tendency to move towards

ζ c
n . Region VI (ρn/ρ � 0.75): ζ n

p � ζ c
p.

In Fig. 4 we plot [Fig. 4(a)] the skewness factor Si =
�i

3(k)/[�i
2(k)]3/2 and [Fig. 4(b)] the flatness factor F i

4 =
�i

4(k)/[�i
2(k)]2, i ∈ (n,s), for six different values of ρn/ρ in

the six regions identified above. For ρn/ρ = 0.36, both Sn(k)
[Fig. 4(a)] and Fn

4 (k) [Fig. 4(b)] show a clear k-independent
plateau region, thereby providing strong proof that, in the
range 0.32 � ρn/ρ � 0.4, the multiscaling exponents of the
� structure functions are close to their K41 values. This
behavior indicates the presence of a temperature range (region
III in Fig. 3) for superfluid helium in which inertial-range
intermittency is either absent or negligibly small; however,
it is also evident from the apparent similarity of Fn

4 (k),
computed for the runs G1 (green curve with circles) and
G21 (cyan curve with triangles) with those for run PG
(the Navier-Stokes-GOY shell model) in Fig. 4 that, in
the temperature ranges corresponding to regions I and VI,
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FIG. 5. Plots of ζ n
p , for p = 1 to 6, versus ρn/ρ, from our shell-

model runs B1–B19. For reference, we show the value of the classical-
fluid-turbulence exponent ζ c

p by a horizontal dashed line; different
colors indicate different values of the order p. The black, dot-dashed
lines indicates ζK41

p = p/3. In the shell-model runs B1–B19, we keep
the mutual-friction coefficient fixed at B = 1.5.

classical-fluid-type intermittency is recovered. It is interesting
to note the flattening of Fn

4 (k), towards the high-k end of the
inertial range, for the runs G4 (blue cure with asterisks), in
region II, and G9 (yellow curve with squares), in region IV;
here, ζ n

p show significant deviations from both ζ c
p and ζK41

p .
The flatness F i

n(k) (or its variant that can be computed by using
a high-pass filter on the velocity signal [27,61]) also exhibits
significant growth at large wave numbers for all the cases we
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FIG. 6. Plot of ζ n
p , for p = 1 to 6, versus ρn/ρ, from the shell-

model runs R1–R12. For reference, we show the value of the classical-
fluid-turbulence exponent ζ c

p by a horizontal dashed line; different
colors indicate different values of the order p. The black, dot-dashed
lines indicates ζK41

p = p/3. In the shell-model runs R1–R12, we keep
the normal-fluid density fraction fixed at ρn/ρ = 0.5.

have studied; this signifies the presence of strong intermittency
at small length scales.

We now examine the dependence of the multiscaling
exponents ζ i

p, i ∈ (n,s), on ρn/ρ, while keeping the coefficient
of mutual friction B = 1.5 fixed, in runs B1–B19. These
runs allow us to classify the behavior of ζ i

p, i ∈ (n,s), as
a function of ρn/ρ, more clearly than the runs G1–G21. In
Table II in the Supplemental Material [74], we list the values
of ζ i

p, i ∈ (n,s), which we extract from �i
p [Eq. (19)], for

p = 1 to 6, i ∈ (n,s). Each row of this table has two lines;
the first and second lines contain the values of ζ n

p and ζ s
p,

respectively. For these runs ζ n
p � ζ s

p. In Fig. 5 we plot ζ n
p versus

ρn/ρ for p = 1 to 6 in runs B1–B19. These plots show two
regions (0.1 < ρn/ρ < 0.3 and 0.4 < ρn/ρ < 0.65) with clear
bumps, where the values of ζ n

p deviate significantly from both
ζK41
p (< ζn

p ) and ζ c
p(< ζn

p ). We classify roughly the behaviors

Run B
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f cv
x

-0.05

0

0.05

0.1
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Run R
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x
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fn
cvx

(a)

(b)

FIG. 7. Plots of (a) f n
cvx for the runs B1–B19 (B = 1.5) and (b)

f n
cvx for the runs R1–R12 (ρn/ρ = 0.5), where f i

cvx = (p3 − p1)ζ i
2p2

−
(p3 − p2)ζ i

2p1
− (p2 − p1)ζ i

2p3
, i ∈ (n,s), and we take p1 = 1, p2 =

2, and p3 = 3. The multiscaling exponents ζ i
p , i ∈ (n,s), satisfy the

convexity constraint, if f i
cvx > 0, for any three positive integers p1 �

p2 � p3. The x-axis label in the above plots indicates the run index,
e.g., B1.
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of these ζ n
p into six regions I–VI (demarcated by gray dashed

vertical lines in Fig. 5), which we describe below. Region
I (ρn/ρ � 0.1): ζ n

p � ζ c
p. Region II (0.1 < ρn/ρ < 0.3): ζ n

p

differs significantly from both ζ c
p and ζK41

p , with ζ c
p < ζn

p

and ζK41
p < ζn

p . Region III (0.3 � ρn/ρ � 0.4): ζ n
p � ζK41

p .
Region IV (0.4 < ρn/ρ < 0.65): ζ n

p differs significantly from
both ζ c

p and ζK41
p , with ζ c

p < ζn
p and ζK41

p < ζn
p . Region V

(0.65 � ρn/ρ < 0.75): ζ n
p shows a tendency to move towards

ζ c
n . Region VI (ρn/ρ � 0.75): ζ n

p � ζ c
p.

We also explore the dependence of the multiscaling expo-
nents ζ i

p, i ∈ (n,s), on the mutual-friction coefficient B, while
keeping the normal-fluid-density fraction ρn/ρ = 0.5 fixed. In
our 3D-HVBK shell-model runs R1–R12, we systematically
vary the values of B; we list the values of ζ i

p, i ∈ (n,s)
obtained from �i

p [Eq. (19)], for p = 1 to 6, in Table III
in the Supplemental Material [74]. Each row of this table has
two lines; the first and second lines contain, respectively, the
values of ζ n

p and ζ s
p. In Fig. 6 we plot ζ n

p versus B, for p = 1 to
6, for the runs R1–R12; the exponents ζ n

p deviate significantly
from their classical-fluid-turbulence counterparts ζ c

p, in the
range 1 � B � 3, with ζ n

p > ζ c
p, for p � 3, ζ n

1 < ζc
1 , and ζ n

2
marginally larger than ζ c

2 . As B → 0.1 (small values) and
B → 10 (large values) the multiscaling exponents ζ n

p � ζ c
p,

because, in the limit B → 0, the normal fluid and superfluid
are uncoupled, and for very large values of B, the coupling is
so strong that single-fluid-turbulence results emerge.

We have checked explicitly that all the values of ζ n
p and ζ s

p,
which we have reported above, satisfy the convexity inequality
Eq. (20). We illustrate this in the plots of Fig. 7.

IV. CONCLUSIONS

We have carried out extensive numerical simulations of the
3D-HVBK shell model, specifically to study the multiscaling
of structure functions in superfluid turbulence, because such
multiscaling has been studied much less than its counterpart
in classical-fluid turbulence. Experimental investigations of
turbulence in liquid helium, below the superfluid transition
temperature Tλ, have provided evidence for multiscaling,
in the inertial range [2,9,75]. These experiments have also
motivated our study. Direct numerical simulations of models
for superfluids, e.g., the Gross-Pitaevskii equation and the
HVBK two-fluid equations, have not been able to cover
the large range of length scales that are required to obtain
reliable data for high-order structure functions. Shell models,

based on the HVBK two-fluid equations, have been used to
study the statistical properties of 3D superfluid turbulence
in both 4He [36,38] and 3He-B [36,37]; these studies have
elucidated the natures of energy spectra and fluxes for both
forced statistically steady and decaying superfluid turbulence.
The only detailed investigation of the multiscaling behavior of
structure functions here is an HVBK shell-model study [38].
This study has shown that, for ρn/ρ � 0.1 and ρn/ρ � 0.9,
the multiscaling exponents are close to those in classical-fluid
turbulence; whereas, in the range 0.25 � ρn/ρ � 0.5, high-
order multiscaling exponents deviate significantly from, and
are smaller than, their classical-fluid-turbulence counterparts.

Our detailed study of the 3D-HVBK shell model has
shown that the multiscaling of structure functions in superfluid
turbulence is more complex than that reported in Ref. [38].
However, our results agree with those of Ref. [38] in that,
for ρn/ρ � 0.1 and ρn/ρ � 0.75, the multiscaling exponents
are close to the classical-fluid-turbulence values. Moreover,
we find that there are two regions, with 0.1 < ρn/ρ < 0.3
and 0.4 < ρn/ρ < 0.65, where the multiscaling exponents are
larger than their classical-fluid-turbulence and K41 counter-
parts, i.e., ζ i

p > ζ c
p and ζ i

p > ζK41
p , i ∈ (n,s). In the range 0.3 �

ρn/ρ � 0.4, these exponents are close to the K41 prediction,
i.e., ζ i

p � ζK41
p . We have also investigated the dependence of

the multiscaling exponents on the mutual-friction coefficient
B, with ρn/ρ = 0.5 fixed; our results show that, for small
(weak-coupling limit) and large (strong-coupling limit) values
of B, the multiscaling exponents tend to their classical-fluid-
turbulence values, whereas, in the range 1 � B � 3, there
are deviations from the classical-fluid-turbulence behavior
ζ i
p > ζ c

p for p � 3. We hope our extensive study of the
multiscaling of structure functions in the 3D-HVBK shell
model will stimulate detailed experimental and DNS studies
of such multiscaling in quantum-fluid turbulence in different
quantum fluids.
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