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Mesoscopic approach to subcritical fatigue crack growth
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We investigate a model for fatigue crack growth in which damage accumulation is assumed to follow a power
law of the local stress amplitude, a form that can be generically justified on the grounds of the approximately
self-similar aspect of microcrack distributions. Our aim is to determine the relation between model ingredients
and the Paris exponent governing subcritical crack-growth dynamics at the macroscopic scale, starting from a
single small notch propagating along a fixed line. By a series of analytical and numerical calculations, we show
that, in the absence of disorder, there is a critical damage-accumulation exponent γ , namely γc = 2, separating
two distinct regimes of behavior for the Paris exponent m. For γ > γc, the Paris exponent is shown to assume
the value m = γ , a result that proves robust against the separate introduction of various modifying ingredients.
Explicitly, we deal here with (i) the requirement of a minimum stress for damage to occur, (ii) the presence of
disorder in local damage thresholds, and (iii) the possibility of crack healing. On the other hand, in the regime
γ < γc, the Paris exponent is seen to be sensitive to the different ingredients added to the model, with rapid healing
or a high minimum stress for damage leading to m = 2 for all γ < γc, in contrast with the linear dependence
m = 6 − 2γ observed for very long characteristic healing times in the absence of a minimum stress for damage.
Upon the introduction of disorder on the local fatigue thresholds, which leads to the possible appearance of
multiple cracks along the propagation line, the Paris exponent tends to m ≈ 4 for γ � 2 while retaining the
behavior m = γ for γ � 4.
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I. INTRODUCTION

Fracture phenomena are quite common in nature and play
a fundamental role in many situations of interest for science
and technological applications [1,2]. Despite many advances in
materials science and applied mechanics over the past decades,
the full description of such problems remains a great challenge
to physicists and engineers [3]. However, it is a well-known
fact that the presence of cracks within a material can magnify
by several times the effect of the external stresses applied,
causing a strong reduction in its strength and inducing rupture
at a stress very much lower than that needed to break the atomic
bonds in a flawless, regular arrangement [3,4].

Scaling arguments developed by Griffith [5] show that a
single crack, after reaching some critical length, will propagate
spontaneously within the material, causing its catastrophic
failure. Below that critical length, many kinds of external
mechanisms occurring on relatively slow time scales can
dominate the crack dynamics, defining a subcritical regime
of crack growth [1]. Among those mechanisms, we highlight
the occurrence of fatigue as the result of a progressive accu-
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mulation of damage throughout the material when submitted
to cyclic load [1,3,6].

In general, subcritical fatigue crack propagation is well
described by an empirical law largely used in engineering
practice, known as the Paris (or Paris-Erdogan) law [7], which
states that the growth rate of a linear crack under cyclic load
follows a power law of the stress-intensity factor, with an
exponent m,

da

dN
= C(�K)m ∼ am/2. (1)

Here a is the crack half-length, N is the number of loading
cycles applied to the material, da/dN is the crack-growth
rate (proportional to the crack-tip speed), �K ≡ g�σ0

√
πa

is the amplitude of the stress-intensity factor of the crack,
�σ0 and g being the stress amplitude and a geometrical
factor, respectively, while m (the Paris exponent) and C are
parameters that may depend on both the material properties and
the experimental conditions. Numerous experiments have con-
firmed the validity of this law over several orders of magnitude
for a wide variety of materials and loading conditions [1,3].

Despite its simplicity and practical importance, a systematic
understanding of this law on physical grounds is still lacking,
especially as regards the determination of an explicit relation
between the Paris exponent m and microscopic parameters
of a given material. An intermediate step was taken by
three of the authors of the present paper [8], who were
able to show that the Paris law indeed emerges from a
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damage-accumulation rule defined by a power law of the
external stress amplitude, with a characteristic exponent γ ,
whose relation with the Paris exponent m can be determined
via a combination of analytical and numerical calculations.
Although such a damage-accumulation rule can be justified
by invoking self-similarity concepts [9], a first-principles
calculation of the damage-accumulation exponent γ for a given
material remains challenging. Nevertheless, assuming such
a damage-accumulation rule on phenomenological grounds,
it is possible to show [8] that, in the absence of disorder,
there is a critical damage-accumulation exponent γ , namely
γc = 2, separating two distinct regimes of behavior for the
Paris exponent m. For γ > γc, the Paris exponent assumes
the value m = γ , while for γ < γc a different linear relation,
m = 6 − 2γ , is verified.

Our aim in this paper is to further explore the consequences
of the dynamics associated with a power-law damage accumu-
lation rule, both in the uniform limit and in combination with
disorder in the local rupture thresholds. Regarding disorder,
some progress has already been made in Ref. [10] by a mapping
to a random-fuse problem, which was solved numerically. Here
we combine results from linear-elastic fracture mechanics with
an independent-crack approximation to perform a thorough
study of the effects of disorder on the relation between the
damage-accumulation exponent γ and the Paris exponent
m. We also investigate the effects of introducing a healing
mechanism that lowers the local damage throughout the
material as time passes. We present evidence that the relation
m = γ for γ > γc is robust against the separate introduction
of various modifying ingredients, but that in the regime γ < γc

the Paris exponent is sensitive to the different ingredients added
to the model, with rapid healing or a high minimum stress for
damage leading to m = 2 for all γ < γc, while disorder leads
to m ≈ 4.

The paper is organized as follows. The basic ingredients of
the model are presented in Sec. II, with the next two sections
dedicated to investigating the uniform limit in the absence
of healing. The behavior of the model in the presence of
disordered local damage thresholds in discussed in Sec. V.
Healing effects in the uniform limit are introduced and
discussed in Sec. VI. The final section summarizes our
findings.

II. THE BASIC MODEL

In the present section, we define the model and discuss
schematically the dynamics of crack growth. The next sections
deal with particular cases and extensions.

Following Ref. [8], we assume that a single thin elliptic
crack is initially produced in an infinite two-dimensional
sample of a linear-elastic material. The sample is subject to
cyclic loading, with an external stress σ0 transverse to the
major axis of the crack. We further assume that the crack
grows only along its major axis, so that crack propagation
becomes essentially a one-dimensional problem, as shown in
Fig. 1.

Along the crack line, we discretize space so that the crack
grows by the rupture of elements of fixed length δr , and we
assume that, when the crack has length 2a, the element at
position x experiences a stress given by σ (x + δr; a). This

0σ

0σ

Pa

x

FIG. 1. A very thin elliptical crack of half-length a propagating
along the direction of its major axis in a two-dimensional sample of
material subject to an external stress σ0. The crack propagation line is
indicated by the dashed line, and x is the coordinate of a given point
P relative to the midpoint of the crack.

assumption prevents the appearance of divergences in the stress
field around the crack tip, and, to a first approximation, it is
consistent with the fact that linear-elasticity theory must break
down in the immediate vicinity of the crack tip, giving rise to
a fracture process zone or plastic zone [1,11]. We assume
in this work that the size of the fracture process zone is
smaller than the discretization length δr . We also assume that
the relaxation time of the material is much shorter than the
period of the loading cycle, so that crack propagation can be
investigated within a quasistatic approximation, according to
which the system always reaches its equilibrium state between
two successive crack-growth events.

In the continuum limit, and within linear-elasticity theory,
the local stress σ (x; a) along the crack line is given by [4]

σ (x; a) = σ0
|x − x0|√

(x − x0)2 − a2
, (2)

where σ0 is the external stress applied to the material, x is the
coordinate of the point of interest, x0 is the coordinate of the
midpoint of the crack, and 2a is the crack length (see Fig. 2).

Sufficiently close to the crack tips, we obtain an asymptotic
expression for σ (x; a),

σ (x; a) � K√
2π (|x − x0| − a)

, (3)

defining the stress intensity factor K = σ0
√

πa for this
particular geometry.

We postulate that cyclic loading with an external stress
amplitude �σ0 ≡ σ0,max − σ0,min leads to fatigue damage
accumulation in each element along the crack line according
to the rule

δF (x; a) = f0δt(a)[�σ (x; a)]γ , (4)

where δF (x; a) is the damage increment in the element
located at position x during the time interval δt(a) when the
crack remained with length 2a, �σ (x; a) is the corresponding
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FIG. 2. Sketch of the stress field σ (x; a) along the propagation
line of the crack, whose midpoint is at x0 = 0. Except for the presence
of the crack, the medium is homogeneous. The cutoff value σp stands
for the stress attributed to plastic effects within a zone around the
crack tip, whose linear dimension is assumed here to be smaller
than δr .

local stress amplitude, γ is a phenomenological damage
accumulation exponent, and f0 is a constant setting the time
scale, being proportional to the inverse duration of the loading
cycle; see Fig. 3 for an illustration.

Therefore, the damage at position x when the crack is about
to grow from length 2a is given by the relation

F (x; a) = F (x; a′) + δF (x; a), (5)

in which 2a′ is the previous crack length. When the crack
always advances symmetrically with respect to the midpoint
of the initial crack, we have a′ = a − δr .

A heuristic motivation for the power-law dependence of the
damage increment can be formulated by invoking concepts
of self-similarity and fractality commonly observed in spa-
tial patterns related to crack propagation and fragmentation
processes [9,12–16], and assuming that the most important
contribution to damage accumulation comes from the local
stress amplitude.

Finally, we assume that an element at position x ruptures
when the corresponding accumulated damage reaches a

x

0

F(x;a)

F

δF
rδa 

thr

FIG. 3. Schematic diagram representing the damage-
accumulation process for a given element at position x in a
configuration with crack half-length a. The damage accumulated
F (x; a) is depicted by a life-bar with the level labeled in red
that can receive a damage increment δF until it reaches the
damage-accumulation threshold Fthr.

threshold Fthr(x). In the uniform limit, Fthr(x) ≡ Fthr for all
x, elements break sequentially, starting from the initial crack
tips, and the crack advances symmetrically. In the general case,
as shown below, elements far from the crack tip can suffer early
rupture, leading to irregular crack growth and to the presence
of multiple cracks. In all cases, we focus on the growth of the
initial crack—or main crack—which may involve secondary
cracks when these coalesce with the main crack.

The main crack advances when the accumulated damage in
one or both elements at the crack tips reaches the correspond-
ing threshold. Equations (4) and (5) allow the calculation of
the number of cycles since the last growth event and of the
updated accumulated damage along the crack line.

III. THE UNIFORM CASE

When all fatigue thresholds are equal, i.e., in the uniform
limit, the monotonic behavior of the stress amplitude function
�σ (x; a) (see Fig. 2) ensures the existence of a single crack
along the whole rupture process. Furthermore, the crack
always advances symmetrically, with elements at both crack
tips breaking simultaneously. As already shown in Ref. [8],
the iteration of Eqs. (4) and (5), along with the crack-growth
condition, lead to a crack growth dynamics reproducing the
Paris law, as illustrated in Fig. 4.

In the thermodynamic limit (i.e., for system sizes L → ∞),
the relation between the Paris exponent m and the damage-
accumulation exponent γ is a piecewise-linear function

m(γ ) =
{

6 − 2γ, γ � γc;
γ, γ > γc,

(6)

with

γc = 2.

This follows from both analytical calculations for γ > γc (see
below) and from a finite-size scaling analysis of numerical
calculations, according to

m(γ ; L) − γc =
{
L−y F−(|γ − γc|Ly), γ < γc,

L−y F+(|γ − γc|Ly), γ > γc.
(7)

Here the system size L is the number of discretized elements up
to which the calculations are iterated,F± are scaling functions,
and y is an exponent to be determined from the best data
collapse of properly rescaled plots according to Eq. (7). As
shown in Fig. 5, this finite-size-scaling hypothesis is nicely
reproduced by numerical data for all values of γ .

The critical value γc = 2 of the damage-accumulation
exponent is related to the divergence of the stress integral
along the crack line, as shown by the analytical calculations
presented below. It separates two regimes, one dominated
by damage accumulation mostly around the crack tip, which
happens for γ 
 1, and one in which damage accumulation
occurs more uniformly along the crack line, as in the limiting
case γ → 0.

An alternative method to obtain the thermodynamic limit
from the numerical results comes from an analysis of crack-tip
velocity versus crack length for a single value of γ , according
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FIG. 4. Top: numerical dependence of the Paris exponent m on
the damage-accumulation exponent γ for system sizes ranging from
L = 103 to 105. The solid line corresponds to an extrapolation of the
results to the thermodynamic limit assuming the finite-size scaling
hypothesis given by Eq. (7). Bottom: typical curves of da/dt as
a function of a/a0 for several values of the damage-accumulation
exponent γ .

to the finite-size scaling hypothesis

L−m/2 da

dt
∼

( a

L

)m/2
, (8)

where now m is chosen so as to produce the best data collapse
of the rescaled curves, as illustrated in Fig. 6. This yields
a continuous curve (not shown in Fig. 4), which agrees quite
well with the previous piecewise linear prediction, except in the
neighborhood of γc, where logarithmic corrections to a simple
power-law behavior are expected to be relevant. Nevertheless,
this alternative method turns out to be less susceptible to
statistical fluctuations, and it will be used to evaluate the Paris
exponent in the presence of disorder (see Sec. V).

Analytical calculations

A few analytical results for the uniform limit can be derived
from a recursion relation obtained by eliminating δt(a) using

FIG. 5. Scaling plots of the dependence of m on γ and L,
following Eq. (7), for different system sizes ranging from L = 103 to
105. Top: γ < γc = 2. Bottom: γ > γc = 2.

Eqs. (4) and (5) in order to compute the accumulated damage
at the crack tip for each crack length.

In the uniform limit, as both crack tips always advance a
single element at a time, after n iterations the crack length is
2an, with

an = a0 + nδr.

Here a0 represents the initial size of the crack, which we
assume to be larger than the minimum crack size associated
with �Kthr, the threshold value of the stress-intensity factor
at which a fatigue crack propagates at a detectable rate. For
smaller sizes, crack growth proceeds at a very slow rate (see,
e.g., Ref. [6], Chap. 2), below one atomic length per loading
cycle, and our mesoscopic approach is inapplicable. Therefore,
we expect that our results only apply to the Paris regime of
fatigue crack propagation.

If we define

Fn ≡ F (an+1,an−1),
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FIG. 6. Top: scaling plots of the dependence of da/dt on a and L

for different system sizes ranging from L = 102 to 105, with γ = 1.
Bottom: mean-square error of the data collapse as a function of the
rescaling parameter m, showing a minimum very close to m = 4.
The mean-square error is calculated by summing squares of relative
deviations of rescaled ordinates for all rescaled values of abscissas,
between all possible pairs of data sets.

combining Eqs. (4) and (5) with the crack-growth condition
leads to the time elapsed between consecutive rupture events,

δt(an) = Fthr(1 − Gn)

f0 [�σ (an+1; an)]γ
, (9)

and to the rescaled recursion relation

Gn ≡ Fn

Fthr
=

n∑
k=1

gnk(1 − Gk−1), n > 0, (10)

with G0 = 0 and

gnk ≡
[
�σ (a0 + (n + 1)δr; a0 + (k − 1)δr)

�σ (a0 + kδr; a0 + (k − 1)δr)

]γ

. (11)

Notice that gnk is related to the ratio between the stress
amplitudes at two different times in the rupture process, and
that the asymptotic behavior of the rescaled accumulated
damage Gn at the crack tip must be taken into account in

FIG. 7. Typical behavior of the stress amplitude amplitude ratio
gnk for a few values of the damage-accumulation exponent γ . Top:
γ = 1. Bottom: γ = 4.

order to estimate the crack-growth rate

da

dN
∼ δr

δt(a)
∼ 1

δt(a)
.

The asymptotic behavior of Gn is related to the asymptotic
behavior of gnk , which is given by

gnk ∼
⎧⎨
⎩

(2δr/a0)γ /2, kδr � a0 � nδr;
(2/k)γ /2, a0 � kδr � nδr;
(n − k + 2)−γ /2, a0 � kδr ≈ nδr.

(12)

Notice that gnk assumes its largest values for k approaching n,
as shown in Fig. 7.

If Gn approaches a value G∗ smaller than unity as n → ∞,
it follows from Eqs. (10) and (12) that we can write

G∗ ≈ (1 − G∗)
∞∑

k=1

(n − k + 2)−γ /2 ≡ (1 − G∗)s∞(γ ), (13)

with

s∞(γ ) =
{
ζ
(

γ

2

) − 1, γ > 2;
∞, γ � 2,

(14)

where ζ (x) is the Riemann zeta function.

043003-5



ARAÚJO, VIEIRA, ANDRADE, JR., AND HERRMANN PHYSICAL REVIEW E 94, 043003 (2016)

Therefore, for γ > 2 we have

G∗ ≈ s∞(γ )

1 + s∞(γ )
⇒ dan

dt
≈ a

γ/2
n

1 − G∗ ∼ a γ/2
n , (15)

yielding m = γ . However, this analysis breaks down for
γ < 2, since G∗ approaches unity as γ → 2+.

Nevertheless, for γ → 0+ we can write

[�σ (x; an)]γ = exp{ln[�σ (x; an)]γ }
≈ 1 + ln[�σ (x; an)]γ ,

from which, by using Eqs. (10) and (12), we obtain, for n > 1,

Gn ≈ 1 + ln

(
gn,1

gn−1,1

)
(16)

and

gn,1

gn−1,1
≈ 1 − γ

(
a0

δr

)2

n−3. (17)

Therefore, as γ → 0+ we have

δt(an) ∼ 1 − Gn

a
γ/2
n

∼ − ln

(
gn,1

gn−1,1

)
∼ γ a−3

n (18)

so that we obtain a Paris exponent m = 6, in agreement with
the numerical results. Notice, however, that the multiplicative
coefficient in the Paris law expression, which in this limit is
proportional to γ −1, diverges as γ → 0, in agreement with the
expectation of sudden rupture when the damage threshold is
reached simultaneously at all points.

IV. THE UNIFORM CASE WITH A MODIFIED
DAMAGE-ACCUMULATION RULE

In analogy with modifications of the Paris law suggested
by crack-closure phenomena, related to factors such as
plasticity, roughness, and oxidation, which imply an effective
reduction of the stress-intensity amplitude [6,17], the damage-
accumulation rule can be modified to accommodate a threshold
stress amplitude needed to induce local damage. This can be
done by rewriting Eq. (4) in the form

δF (x; a) = f0δt(a)[�σeff(x; a)]γ , (19)

with an effective stress amplitude

�σeff(x; a) = �σ (x; a) − b�σ0, (20)

the coefficient b (0 � b � 1) giving the strength, relative to
the external stress amplitude �σ0, of the threshold stress
amplitude below which no damage accumulation occurs.
Notice that for b = 0 we recover the case investigated in
Sec. III, whereas b = 1 leads to no damage accumulation
infinitely far from the crack tips.

A similar analysis to the one performed in Sec. III shows
that Eqs. (9) and (10) now read

δt(an) = Fthr (1 − Gn)

f0[�σeff(an+1; an)]γ
(21)

and

Gn =
n∑

k=1

hnk(1 − Gk−1), (22)

with the gnk of Eq. (10) replaced by

hnk ≡
[
�σeff(a0 + (n + 1)δr; a0 + (k − 1)δr)

�σeff[a0 + kδr; a0 + (k − 1)δr]

]γ

, (23)

whose asymptotic behavior is given by

hnk ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
(1−b)

√
2a0δr

a0−b
√

2a0δr

]γ

, kδr � a0 � nδr;

[
(1−b)

√
2k

k−b
√

2k

]γ

, a0 � kδr � nδr;

(n − k + 2)−γ /2, a0 � kδr ≈ nδr.

(24)

Thus, Eq. (15) remains valid for γ > γc, and we still have
m = γ , with γc = 2 irrespective of the value of b.

On the other hand, in the limit of small damage-
accumulation exponent (γ → 0+), the expansion in Eq. (16)
becomes

Gn ≈ 1 + ln

(
hn1

hn−1 1

)
, n > 1. (25)

Now we have to distinguish between the cases 0 � b < 1 and
b = 1. If 0 � b < 1, then

hn,1

hn−1,1
≈ 1 − γ

(
a0

δr

)2 1

(1 − b)
n−3, (26)

so that

1 − Gn ∼ γ a −3
n , (27)

whereas if b = 1 we have
hn,1

hn−1,1
≈ 1 − 2γ a−1

n , (28)

and thus

1 − Gn ∼ γ a−1
n . (29)

Therefore,

m(γ → 0) =
{

6, 0 � b < 1,

2, b = 1.
(30)

Numerical calculations suggest that for 0 < γ < 2, a Paris
regime still exists, but with a nonlinear relation between m

and γ if 0 < b < 1; see Fig. 8.

V. INTRODUCING DISORDER IN
THE FATIGUE THRESHOLDS

In this section, we turn our attention to a description of crack
growth in a heterogeneous medium by introducing disorder in
the fatigue thresholds. We assume that the element at position
x along the crack line has a fatigue threshold Fthr(x) chosen
randomly from the uniform probability distribution

P (Fthr) = 1

�F
θ (F2 − Fthr)θ (Fthr − F1), (31)

where θ (x) is the Heaviside step function and �F ≡ F2 − F1

gauges the disorder strength, with the additional condition
that, in appropriate units, F1 + F2 = 2. We also assume that
the fatigue thresholds at different elements are uncorrelated.

In the presence of disorder, elements far from the crack tips
may reach their fatigue thresholds, giving rise to secondary
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FIG. 8. Top: numerical dependence of the Paris exponent m on
the damage-accumulation exponent γ , within the modified version of
the model, for a few values of the threshold-stress-range parameter b

and system size L = 105. Notice that the linear relation m = γ seems
to be recovered for γ > 2, but a nonlinear relation seems to emerge
for γ < 2 if 0 < b < 1. Bottom: finite-size behavior of m against
γ for b = 0.5. The continuous curve is a polynomial guess for the
infinite-size behavior. Blue stars indicate the results obtained by the
alternative finite-size-scaling scheme employing Eq. (8).

cracks, as illustrated in Fig. 9. In such a case, we focus on the
growth of the initial or main crack, noting that it may coalesce
with secondary cracks as the growth dynamics proceeds.

After the rupture of n elements, we label the configuration
of the system as

{ak,xk}n, (32)

where ak is the half-length of the kth crack, which is centered
at position xk with respect to the midpoint of the initial crack.
We assume that between rupture events, an element at position
x is subject to damage accumulation following

δF (x; {ak,xk}n) = f0δt({ak,xk}n)[�σ (x; {ak,xk}n)]γ , (33)

where δt({ak,xk}n) is the time elapsed between the nth
and the (n + 1)th rupture events, and �σ (x; {ak,xk}n) is the

FIG. 9. Schematic diagram representing a configuration of the
system with random fatigue thresholds. In this case, we observe the
presence of multiple cracks (each one indicated by a sequence of dark
elements) along the propagation line.

corresponding stress amplitude at position x. This is analogous
to Eq. (4), so that, in the notation of Sec. IV, we take b = 0.

As a rupture event involves the element requiring the least
time to reach its fatigue threshold, the analog of Eq. (5) allows
us to write δt({ak,xk}n) as

δt({ak,xk}n) = min
x

{
Fthr(x) − F (x; {ak,xk}n−1)

f0[�σ (x; {ak,xk}n)]γ

}
. (34)

It should be emphasized that, as soon as the first secondary
crack appears, the stress amplitude �σ (x; {ak,xk}n) is no
longer given by the analog of the simple form in Eq. (2).
Due to the lack of an analytical solution for the stress field
of multiple thin cracks, even in the simplest case in which
the cracks are arranged along the same line, we resort to
an independent-crack approximation, to be detailed below,
whenever it is necessary to deal with secondary cracks, except
in the case γ = 0, which we now present in detail.

A. The case γ = 0

In this limit, damage accumulation is independent of the
local stress amplitude, so that the problem is similar to a 1D
percolation process, and it is possible to obtain analytical
results. In this subsection only, in order to simplify the
calculations, we assume that the initial crack is a notch of
length a0 at the left end of the medium. The case of a central
initial crack was briefly discussed in Ref. [10].

The probability of finding the main crack with length a at
time t is given by

P (a|a0,t) = [p(t)]a−a0 [1 − p(t)], (35)

in which p(t) is the probability that an element has reached
its fatigue threshold before time t , the factor 1 − p(t) being
the probability that the element at the (right) tip of the main
crack remains intact at time t . Since for γ = 0 we have
F (x; {ak,xk}n) = f0t , it follows that

p(t) = min

{
1,

t − t1

T
θ (t − t1)

}
, (36)

where t1 = F1/f0 and T = �F/f0 are parameters related to
the disorder distribution.
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For a semi-infinite medium, the average length of the main
crack at time t is given by

〈a〉t =
∞∑

a=a0

aP (a|a0,t ) = a0 + p(t)

1 − p(t)
, (37)

so that, eliminating t from Eqs. (36) and (37), the average tip
velocity of the main crack can be written, for t1 < t < t2 ≡
F2/f0, as

〈v〉t = d

dt
〈a〉t ∼ 〈a〉2

t , (38)

implying a Paris exponent m = 4 instead of m = 6 as in the
uniform limit.

It is also possible to study finite systems containing L

elements, and have access to the distribution of waiting times
between rupture events, as well as to the distribution of
avalanche sizes. An avalanche is defined as a sudden event in
which the crack tip advances by more than a single discretized
elements, while the avalanche size is the number of elements
by which the main crack grows in a single event. (Notice
that an avalanche involves stress rearrangements by changing
the configuration of the cracks in the system. In the limit
of γ = 0, this stress rearrangement is irrelevant for damage
accumulation, and avalanches are just random nucleations.
This is not the case for any γ > 0, and avalanche events
will be correlated.). Toward that end, we must consider the
probability that the main crack has length a and, upon rupture
of the element at its tip, happening between times t and t + dt ,
advances �a elements having waited a time between �t and
�t + d(�t) since it last advanced. Denoting this probability
by ρ

L
(�a,�t,t |a) dt d(�t), we have

ρL(�a,�t,t |a) = (a − a0)(a − a0 + 1)

T 2
[p(t − �t)]a−a0−1

× [p(t)]�a−1{[1 − p(t)](1 − δ�a,L−a)

+ δ�a,L−a}, (39)

δi,j being the Kronecker delta symbol. Here,
[p(t − �t)]a−a0−1 is the probability that a − a0 − 1 elements
are broken at time t − �t , d(�t)/T is the probability that the
previous growth event of the main crack has occurred between
times t − �t and t − �t + d(�t), dt/T is the probability
that the new growth event of the main crack occurs between
times t and t + dt , and [p(t)]�a−1 is the probability that
the first �a − 1 elements to the right of the element at the
crack tip are broken before time t . The terms between curly
brackets in Eq. (39) distinguish the case in which the crack
stops before reaching the right end of the medium, which
occurs with probability 1 − p(t), from the case in which
catastrophic failure occurs, corresponding to �a = L − a.
The prefactor on the right-hand side of Eq. (39) ensures
normalization.

The marginal probabilities for avalanche sizes and waiting
times are obtained from ρL(�a,�t,t |a) by integrating over the
appropriate variables. The marginal probability for avalanche

sizes �a is given by

PL(�a|a) =
∫ t2

t1

dt

∫ t−t1

0
d(�t)ρL(�a,�t,t |a)

= (a−a0 + 1)

[
1 − δ�a,L−a

(�a + a − a0 + 1)(�a + a − a0)

+ δ�a,L−a

L − a0

]
, (40)

while the marginal probability for waiting times between
consecutive jumps is

PL(�t |a) =
L−a∑
�a=1

∫ t1+�t

t1

dtρL(�a,�t,t |a)

= (a − a0 + 1)

T

(
1 − �t

T

)a−a0

. (41)

The mean values of avalanche sizes, 〈�a〉a,L, and waiting
times, 〈�t〉a,L, can be computed from the above marginal
probabilities, yielding

〈�a〉a,L = (a − a0 + 1)
[(

HL−a0 − Ha−a0

)(
1 − δa,a0

)
+HL−a0δa,a0

]
, (42)

where Hn is the harmonic number of order n, and

〈�t〉a,L = T

a − a0 + 2
. (43)

Figure 10 compares these last results with numerical simu-
lations implementing the crack-growth dynamics in the limit
γ = 0.

The ratio between those mean values yields an estimate of
the crack-growth rate, proportional to the the crack-tip velocity
of the main crack, which we define as

〈v〉a,L = 〈�a〉a,L

〈�t〉a,L

= (a − a0 + 2)(a − a0 + 1)

T

× [(
1 − δa,a0

)(
HL−a0−Ha−a0

) + δa,a0HL−a0

]
. (44)

Thus, in the limit of large crack lengths (L 
 a 
 a0), we
obtain

〈v〉a,L ∼ a2 ln

(
L

a

)
, (45)

leading to a Paris law with exponent m = 4, apart from loga-
rithmic corrections depending on the system size. Numerical
simulations of the model are in good agreement with the
analytical calculations, as shown in Fig. 11.

B. The case γ > 0

In this subsection, we study the properties of the disordered
model in situations in which the damage-accumulation expo-
nent is nonzero, a case in which a fully analytical treatment
is impossible. The approach we employ is therefore mostly
numerical, and based on an independent-crack approximation
that neglects the correlations between the multiple cracks
emerging along the propagation line during the breaking
process.

Our approximate results can be compared with another
approach, the fuse model [18,19], which is equivalent to
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FIG. 10. Rescaled mean values of waiting times (top) and
avalanche sizes (bottom) between consecutive jumps of the main
crack for the disordered version of the model with γ = 0. Numerical
results are in good agreement with the analytical results from
Eqs. (42) and (43), indicating power-law behaviors of both quantities
as functions of the length of the main crack, in the limit of infinite
system size.

fracturing a discretized scalar version of linear-elastic theory,
appropriate for the loading mode and the two-dimensional
geometry we assume here. Within the fuse model, we can
compute numerically the finite-size value of the local stress in
multicrack configurations.

The independent-crack approximation (ICA) consists in
writing the stress (and thus also the stress amplitude) in the el-
ement located at position x when the multicrack configuration
is {ak,xk}n as

σ (x; {ak,xk}n) � σ0 +
N∑

k=1

[σ1(x; xk,ak) − σ0],

x /∈
N⋃

k=1

(xk − ak,xk + ak), (46)

in which σ0 is the applied external stress, ak is the half-length
of the kth crack, which is centered at position xk with respect
to the midpoint of the initial crack (which we assume again to
be located at the center of the system), and σ1(x; xk,ak) is the

FIG. 11. Rescaled mean crack-growth rate defined as the ratio
between the mean values of avalanche size and the waiting time
between consecutive jumps for the disordered version of the model
with γ = 0. Numerical results are in good agreement with the
analytical prediction of Eq. (44), indicating a Paris exponent equal to
m = 4 in the limit of infinite system size.

stress field that would be produced by the kth crack if it were
the only crack in the system. The −σ0 factors inside the square
brackets on the right-hand side of Eq. (46) ensure that very far
from any cracks, the external stress is recovered. Inside any of
the cracks, the stress is zero.

To get an idea about the accuracy of the ICA, we compare its
predictions with those of the fuse model for the case in which
there are two symmetric cracks with length 2a whose centers
are separated by d elements. The numerical comparison
is shown in Fig. 12, and it indicates good qualitative and
quantitative agreement, with a relative error of at most a few
percent.

We now discuss the results obtained by implementing
the disordered crack-growth model according to the ICA
with γ > 0, presenting comparisons with the random-fuse
model whenever appropriate. In our simulations, we performed
averages over up to 100 000 disorder realizations, with system
sizes ranging from L = 25 to 29. We varied the damage-
accumulation exponent γ and the disorder strength �F . The
single-crack stress fields σ1(x; xk,ak) were calculated from
Eq. (2).

First we note that it can be shown (see Ref. [8]) that
for γ < 2 any amount of disorder leads to the appearance
of secondary cracks, while for γ > 2 those appear only for
stronger disorder, such that F1/F2 � 1 − 1/ζ ( 1

2γ ), which, in
terms of the disorder strength �F , corresponds to

�F > �Fmin � 2

2ζ
(

1
2γ

) − 1
. (47)

The value of �Fmin increases monotonically from 0 at γ = 2
to 2 as γ → ∞, which implies that, for large values of
γ , secondary cracks appear only if the disorder distribu-
tion allows the presence of arbitrarily small local damage
thresholds.

For all values of γ , both the average crack jump (avalanche
size) �a and the average waiting times between consecutive
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FIG. 12. Top: comparison between the stress along the propaga-
tion line of the system calculated exactly (black circles) and by the
independent-crack approximation (red squares) for a sample of length
L containing two cracks of length 2a separated by a distance d . Both
calculations were performed for the fuse model, which is equivalent to
fracturing a discretized scalar linear-elastic theory (see the main text).
The independent-crack approximation uses the stress field calculated
within the fuse model as if each crack would be separately present
in the system. Bottom: relative error between the exact result and the
independent-crack approximation for the stress at the crack tip, as a
function of the separation d between cracks of length 2a.

jumps �t seem to follow power laws of the main crack length
2a, namely 〈�a〉a,L ∼ aα and 〈�t〉a,L ∼ a−β , as shown by
the finite-size scaling plots of Figs. 13 and 14. The results for
the corresponding exponents α and β are in good agreement
with those predicted by the random-fuse model. Notice that
α quickly becomes negligible for γ > γc, indicating that in
this regime the formation of secondary cracks is rare, except
in the presence of strong disorder (�F > �Fmin). As for the
β exponent, it seems to be approximately given by γ /2 for
γ > 2, while approaching β = 1 as γ → 0.

Predictions of the ICA for the average crack growth rate
of the main crack are shown in the finite-size scaling plots
of Fig. 15, exhibiting the power-law behavior associated
with the Paris law. The values of the Paris exponent are
chosen so as to yield the best data collapse of the curves

FIG. 13. Top: scaling plot of the average main crack jump 〈�a〉a,L

as a function of the rescaled crack half-length a/L, for different
sample sizes ranging from L = 25 to 29 and two values of the damage-
accumulation exponent γ and the disorder strength �F . Bottom:
dependence of the power-law exponent α on the damage accumulation
exponent γ for different degrees of disorder, as predicted by the
ICA (left) and comparison between predictions of the ICA and the
random-fuse model for �F = 1 (right).

corresponding to different system sizes for the same values
of the damage-accumulation exponent γ , with the help of
Eq. (8). The dependence of the macroscopic Paris exponent m

on the damage-accumulation exponent γ , for different degrees
of disorder, is shown in Fig. 16, together with the results found
for the homogeneous case [8] and the random-fuse model
[10].

Notice that, in all the cases studied, we observed a strong
tendency of the Paris exponent for γ � 2 to display a value
m(γ ) � 4, irrespective of the disorder strength. This can be
understood on the basis of the observation that, already in
the uniform limit, γc = 2 separates a growth regime in which
damage accumulation happens mostly around the crack tips
(γ > 2) from another regime where damage accumulation ac-
cumulates more uniformly along the propagation line (γ < 2).
It is thus not surprising that, upon the introduction of
random damage thresholds, this last regime is dominated
by disorder effects, rather than by the relatively small vari-
ations in damage accumulation along the propagation line,
therefore leading to m = 4, as in the γ → 0 limit. On the
other hand, for γ � 4 the Paris exponent m(γ ) assumes
values very close to the uniform-limit result γ , as already
observed in the random-fuse calculations [10]. The region
2 � γ � 4 is plagued by large statistical fluctuations and
corrections to scaling, making it difficult to locate within this
picture.
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FIG. 14. Top: scaling plot of the average waiting time between
successive jumps of the main crack, 〈�t〉a,L, normalized by the
average rupture time T , as a function of the rescaled half-length
a/L, for different sample sizes ranging from L = 25 to 29 and a
few values of the damage-accumulation exponent γ and �F = 1.
Bottom row: Dependence of the power-law exponent β on the
damage accumulation exponent γ for different degrees of disorder,
as predicted by the ICA (left) and comparison between predictions of
the ICA and the random-fuse model for �F = 1 (right).

FIG. 15. Scaling plot of the main crack-growth rate da/dt as
a function of the crack rescaled half-length a/L, for different
system sizes (from L = 25 to 29) and a few values of the damage-
accumulation exponent γ . The disorder strength is fixed at �F = 1.
Curves for γ = 5 are offset for clarity. To minimize statistical
fluctuations, crack-growth rates were calculated from the numerical
derivative of the half-crack length with respect to the average time
in which the crack became trapped in a configuration with the
corresponding length. Averages were taken over n = 105 disorder
realizations.

FIG. 16. Top: dependence of the Paris exponent m on the damage-
accumulation exponent γ for the disordered model, according to
the independent-crack approximation. Bottom: comparison between
the results obtained by the independent-crack approximation and
the random-fuse model for the same relation m × γ , with disorder
strength �F = 1. Notice the good agreement except in the vicinity
of γ = 2.

VI. HEALING EFFECTS IN THE UNIFORM LIMIT

We finally return briefly to the uniform limit, and we
introduce the possibility of damage healing with a charac-
teristic time τ . Explicitly, we assume that, up to time t , the
accumulated damage on the element located at position x is
given by [20]

F (x; t) = f0

∫ t

0
dt ′[�σ (x; t ′)]γ e−(t−t ′)/τ , (48)

where f0 is a constant setting the time scale, �σ (x; t) is
the stress amplitude at position x and time t , and γ is the
damage amplification exponent. Healing mechanisms during
fatigue crack growth are known to be relevant, for instance,
in materials such as asphalt [21] and also in self-healing
composite materials such as epoxy, with the incorporation
of microencapsulated healing agents such as dicyclopenta-
diene [22]. The healing time τ is treated here as another
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phenomenological parameter, which presumably depends on
the temperature and possibly on the concentration of a healing
agent.

Taking into account that �σ (x; t) does not vary between
crack-growth events, the last equation leads to a recursion
relation for the damage at a given location when the crack has
length 2a,

F (x; a) = e−δt(a)/τF (x; a − δr) + δF (x; a), (49)

with

δF (x; a) = f0τ [�σ (x; a)]γ (1 − e−δt(a)/τ ), (50)

where the symbols have the same meaning as in Sec. II, and we
have used the fact that in the uniform limit, the crack always
grows by the breaking of the elements at the crack tips. Notice
that as τ → ∞, we recover Eqs. (4) and (5).

The time interval δt(a) during which the crack has length
2a is determined from the condition F (a + δr; a) = Fthr. For
the time during which the crack remains with the initial notch
size 2a0, this yields

δt(a0) = −τ ln

(
1 − Fthr

f0τ [�σ (a0 + δr; a0)]γ

)
, (51)

FIG. 17. Behavior of the rescaled rupture time (red curves)
and the Paris exponents (black curves) as functions of the healing
characteristic time τ , rescaled by the corresponding minimum value,
for γ = 1 (top) and γ = 4 (bottom).

indicating the existence of a minimum value of τ below which
the crack cannot grow. This minimum value is given by

τmin = Fthr

f0[�σ (a0 + δr; a0)]γ
. (52)

For a fixed value of τ , this result is compatible with the
existence of a minimum stress amplitude around which the
fatigue lifetime diverges [22].

Using the previous equations, we can numerically inves-
tigate the crack-growth dynamics and its dependence on the
parameters γ and τ . It turns out that the Paris exponent m

is independent of τ for γ � 2, but it becomes τ -dependent
for γ < 2. In this last regime, m is equal to 6 − 2γ for
τ → ∞, but it approaches the value 2 as τ approaches
τmin. Figure 17 shows, for γ = 1 and 4, the behavior of
m as a function of τ for a finite sample with L = 215

elements. Also shown is the τ dependence of the rupture
time trup, normalized by its value in the limit τ → ∞. Notice
the seemingly logarithmic divergence of trup as τ → τmin,
a prediction whose experimental verification would require
an estimate of the healing time τ in terms of material and
environmental parameters. At the moment, to the best of our
knowledge, such estimates are not available.

VII. CONCLUSIONS

In summary, we investigated various extensions of a model
for subcritical fatigue crack growth in which damage accu-
mulation is assumed to follow a power law of the local stress
amplitude. In all cases, our main interest was in determining the
effects of model ingredients on the Paris exponent governing
subcritical crack-growth dynamics at the macroscopic scale,
starting from a single small notch propagating along a fixed
line.

In the uniform limit, we showed that a number of analytical
and numerical results can be established regarding the de-
pendence of the Paris exponent on the damage-accumulation
exponent, the threshold stress range required to induce local
damage, and the characteristic time of damage healing. There
is a critical value of the damage accumulation exponent,
namely γc = 2, separating two distinct regimes of behavior
for the Paris exponent m. For γ > γc, the Paris exponent is
shown to assume the value m = γ , a result that proves robust
against the introduction of various modifying ingredients. On
the other hand, in the regime γ < γc the Paris exponent is
seen to be sensitive to the different ingredients added to the
model, with rapid healing or a threshold stress amplitude
b = 1 leading to m = 2 for all γ < γc, in contrast to the linear
dependence m = 6 − 2γ observed for very long characteristic
healing times and b = 0.

The introduction of disorder on the local fatigue thresholds
leads to the possible appearance of multiple cracks along
the propagation line, and the Paris exponent tends to m � 4
for γ � 2, while retaining the behavior m = γ for γ > 4.
The independent-crack approximation employed for all cal-
culations in the presence of disorder yields results in good
agreement with the more computationally expensive random-
fuse calculations, suggesting that it can be reliably applied
to further extensions of the model. An interesting candidate
would be an investigation of the combined effects of disorder
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and healing, a situation that is closer to what occurs in real
materials.

It is possible to compare the results obtained from the
present approach with those derived in recent years (see, e.g.,
Refs. [23–27]) based on the extension of ideas of incomplete
self-similarity as applied directly to the macroscopic Paris
law (see, e.g., Refs. [28,29] and references therein). These
works point not only to the effect, on the Paris exponent,
of characteristic lengths (usually the sample thickness) or of
plasticity properties of the fracture-process zone ahead of the
crack tip [28], but also to the fact that the fractal character
of the crack profile leads to modifications of the asymptotic
behavior of the stress field around the crack tip, which also
affects the Paris law. Specifically, this changes the dependence
of the stress field on the distance r to a thin crack tip, which now
diverges as r (D−2)/2, D being the fractal dimension of the crack
profile [30]. Notice that this makes the stress field decay more
slowly with r than the r−1/2 behavior of a linear (D = 1) crack.
This is reminiscent of the behavior of a damage-accumulation
rule with γ < 2, for which, as discussed in Sec. III, damage
is more uniformly distributed along the crack line. Therefore,
a possible interpretation of the present approach is that, via

the introduction of the damage-accumulation exponent γ , it
encapsulates various effects such as the plasticity properties
ahead of the crack tip and the fractal nature of the crack profile,
allowing the use of linear-elastic fracture mechanics to provide
an effective description of fatigue crack dynamics.

Incidentally, the question remains as to whether it is
possible to relate the phenomenological, mesoscopic damage-
accumulation exponent γ to atomistic or structural features of
real materials. We are currently investigating the possibility
of employing molecular dynamics or phase-field methods to
approach this issue.
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