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Origami-based design holds promise for developing new mechanical metamaterials whose overall kinematic
and mechanical properties can be programmed using purely geometric criteria. In this article, we demonstrate
that the deformation of a generic degree-four vertex (4-vertex) origami cell is a combination of contracting,
shearing, bending, and facet-binding. The last three deformation mechanisms are missing in the current rigid-
origami metamaterial investigations, which focus mainly on conventional Miura-ori patterns. We show that
these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns as well as
extraordinary kinematical and mechanical properties, including self-locking, tridirectional negative Poisson’s
ratios, flipping of stiffness profiles, and emerging shearing stiffness. This study reveals that the 4-vertex cells
offer a better platform and greater design space for developing origami-based mechanical metamaterials than the
conventional Miura-ori cell.
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I. INTRODUCTION

One of the recent interests in origami research is to
translate the principles of paper folding into the designs of
novel mechanical metamaterials [1–8]. Such metamaterials
are essentially periodic assemblies of origami units so that
their overall unusual mechanical properties are defined by
the intricate folding geometry rather than the constituent
materials. Auxetic effects [1,2,5], nonlinear stiffness [2–4,9],
and multistability [5,7,10–14] have been reported. These
unorthodox properties are programmable via synthesizing the
folding crease pattern; combined with the foldability and
scalability of origami, they offer the origami-based mechanical
metamaterials with promising application potentials [15–18].

The aforementioned properties of origami metamaterials
mainly originate from the kinematics of rigid folding. Rigid-
foldable origami retains 1 degree of freedom for folding even
if its facets are assumed to be rigid panels connected by perfect
hinges. The most elementary rigid-foldable unit for building
origami metamaterials is the degree-four vertex (for short,
4-vertex) [19], which consists of four rigid sectors connected
by four folds that meet at a point. The current state of the art in
rigid-origami metamaterials is mainly based on a very special
4-vertex: the Miura-ori and its close relatives [1,2,4,5,8].
Miura-ori design is constrained by two conditions: one is being
flat-foldable so that the origami can be folded to a flat state,
and the other is having two collinear crease lines. Such strong
constraints simplify the geometry but limit the deformation
of Miura-based metamaterials to contraction and extension
only. On the other hand, several recent studies systematically
investigated the folding kinematics and multistability of 4-
vertices [13,19], which illustrates the potentials of extending
the metamaterial research from Miura-ori to generic 4-vertices.

Here we present a framework of translating the fold-
ing kinematics of the constituent generic 4-vertex to the
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deformation mechanisms and mechanical properties of the
overall origami metamaterial. Specifically, we demonstrate
that the deformation of a generic 4-vertex origami cell is a
combination of in-plane and out-of-plane shearing, bending,
contracting, and facet-binding; the first two have not been dis-
covered in rigid-origami metamaterials before. We show that
these deformation mechanisms are partially passed down to
three types of nongeneric 4-vertex cells: general flat-foldable,
single collinear, and Miura-ori cells. Furthermore, we show
that the newly discovered deformation mechanisms of the
constituent cell provide the origami sheets and stacked blocks
with extraordinary properties. In terms of kinematics, the
design space for constructing metamaterial is significantly
expanded by introducing rich and new deformation patterns
and large ranges of achievable maximum deformation. In terms
of mechanical properties, the shear deformations can induce
tridirectional negative Poisson’s ratios and can qualitatively
alter the stiffness profiles (including generating shearing
stiffness). It is worth noting that while the focus of this study
is on metamaterials, the approach is fundamental and generic,
and thus the outcome will advance and impact the overall field
of origami research.

II. GEOMETRIES AND DEFORMATION MECHANISMS

We start with a generic 4-vertex (G-4) cell without any
geometric constraints. It consists of four rigid parallelogram
facets connected by four folds; its geometry is characterized
by two length parameters (a,b) and four sector angles αi(i =
1,2,3,4) [see Fig. 1(a)]. Assuming that

∑
αi = 360◦ and αj <∑

αi �=j to avoid triviality [19], there are three independent
sector angles (say, α1,α2, and α4). A partially folded state of
the cell is described by the dihedral angles ρi between adjacent
facets [ρi ∈ (0◦,180◦) for “mountain,” ρi ∈ (180◦,360◦) for
“valley,” ρi = 180◦ for an unfolded state, and ρi = 0◦ or 360◦
for a fully folded state]. To describe its deformation, four
auxiliary planes (I–IV) are constructed [Fig. 1(b)]. In this
research, to facilitate the study on cell deformation, without
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FIG. 1. Geometries and deformations of 4-vertex origami cells.
(a) Initial flat states of a G-4 cell and three nongeneric cells. (b) Partly
folded state of a G-4 cell, where each auxiliary plane is spanned by
two edges, namely, I (1–3, 1–4), II (3–7, 3–8), III (2–6, 4–5), and IV
(2–7, 4–8); height H is defined as the distance from vertex 0 to plane
III. (c) L and W , (d) ϕs , (e) D, and (f) ϕ13 and ϕ24 as functions of
ρ1. For the four types of cell, the lengths a and b are set to be the
same a = b = 1. G-4 cell: α1 = 36◦, α2 = 160◦, α4 = 72◦; GFF and
SC cells: α = 36◦, β = 72◦; Miura-ori cell: α = 36◦.

loss of generality, we assume that α1 is the smallest sector
angle, fold 4 has the opposite type (say, “valley” fold) from
the rest (i.e., ρ4 is the unique fold, which calls for α1 + α4 < π

[19]), and fold 1 is capable of fully closing to 0◦ (i.e., ρ1 is the
binding fold).

We categorize the 4-vertex cells into four types based on
whether the cells possess flat-foldability (α1 + α3 = α2 + α4)
or single collinearity (α1 + α2 = α3 + α4). The G-4 cell
cannot be folded flat nor has collinear creases; the general
flat-foldable (GFF) cell possesses flat-foldability; the single-
collinear (SC) cell has a pair of collinear creases; and the
Miura-ori cell has both characteristics. For convenience, we
assign α1 and α4 (for simplicity, denoted by α and β,
respectively) as the independent angles of the GFF and SC
cells, α1 (denoted by α) as the independent angle of the
Miura-ori cell [Fig. 1(a)].

The following geometric quantities are defined to examine
the cell deformation [Fig. 1(b)]: the length L, width W , and
height H of a cell; the angle ϕS between the length and width
directions; the dihedral angles ϕ13 between the auxiliary planes
I and III and ϕ24 between planes II and IV; and the distance D

between planes I and II. Hence, changing L and W indicates the
contraction of a cell; ϕS is a measure of the possible in-plane

TABLE I. Deformation mechanisms of 4-vertex cells, sheets, and
blocks, where “c” stands for contracting, “i-s” for in-plane shearing,
“o-s” for out-of-plane shearing, “b” for bending, and “f-b” for facet-
binding.

Types c i-s o-s b f-b

G-4 Cell � � � � �
Sheet � � � �

GFF Cell and sheet � �
Block � � �

SC Cell and sheet � � �
Block � � �

Miura-ori Cell and sheet �
Block �

shear of a cell; changing ϕ13 and ϕ24 represents the out-of-plane
shear of a cell; the relationship between ϕ13 and ϕ24 illustrates
the relative bend of a cell; and D is used to quantify whether
facet-binding happens at a nonflat state.

We calculate the above quantities for the four types of cell
through vector operations (Appendix A). Figures 1(c)–1(f)
show these quantities as a function of ρ1, from the initial
flat state ρ1 = 180◦ to the fully folded state ρ1 = 0◦. For the
G-4 cell, the following phenomena are observed: (1) L and
W decrease with ρ1, indicating the contraction of the cell;
(2) ϕS changes with ρ1, suggesting an in-plane shear; (3) ϕ13

and ϕ24 changes with ρ1, revealing an out-of-plane shear; (4)
ϕ13 is different from ϕ24 or 180◦ − ϕ24, implying a relative
bend between the left and right halves of the cell; (5) D does
not return to zero when ρ1 = 0, manifesting that the G-4 cell
cannot be further folded to a flat state when ρ1 fully closes,
i.e., facet-binding happens at a nonflat state. In summary, the
deformation of the G-4 cell is a combination of contracting, in-
plane and out-of-plane shearing, bending, and facet-binding.

Figures 1(c)–1(f) also reveal that the above-mentioned
deformation mechanisms are partially passed down to the
no-generic 4-vertex cells. The GFF cell inherits the contracting
and out-of-plane shearing but loses the in-plane shearing (ϕS

keeps constant), bending (ϕ13 always equals π − ϕ24), and
facet-binding (D returns to zero); the SC cell inherits the
contracting, in-plane shearing, and facet-binding but loses the
out-of-plane shearing and bending (ϕ13 and ϕ24 keep constant
and identical); and the most studied Miura-ori cell inherits
only the contracting, which explains why the other deformation
mechanisms have never been discovered in Miura-based meta-
materials. Table I summarizes the deformation mechanisms of
the four types of cell.

III. CONSTRUCTIONS OF 4-VERTEX ORIGAMI
METAMATERIALS

The above-uncovered deformation mechanisms motivate
us to develop origami metamaterials with generic 4-vertices
and to explore their extraordinary properties. In this section,
we introduce the construction of 4-vertex origami sheets and
blocks. Taking the 4-vertex cell as a unit, origami sheets
can be assembled by repeating identical cells along the L
and W directions (see Fig. 2). Waitukaitis et al. [13] have
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FIG. 2. Construction of origami sheets and blocks.

pointed out that such tessellation would introduce three new
vertices, namely, a rotated vertex, a “complementary vertex”
with sector angles {π − αi}, and a rotated complementary
vertex. However, these newly generated vertices remain the
same type as the original vertex and do not change the
folding kinematics of the original vertex (including the unique
fold, the binding fold, and the binding angle) [13]. Hence,
deformation mechanisms of the original vertex will not be
affected, and the newly generated vertices will not acquire
additional mechanisms or lose certain mechanisms.

Note that although the GFF and SC cells inherit only some
of the deformation mechanisms from the G-4 cell due to
the additional constraints on sector angle assignments, their
geometries are much simplified and can be explicitly expressed
(Appendix B). More importantly, through similar techniques
as [1], it is feasible to further integrate two GFF or SC cells
along their zigzag crease lines into a stacked unit based on the
following relationship (Appendix C):

bB = bA,
aB

aA

= cos αA

cos αB

,
cos αA

cos αB

= cos βA

cos βB

, (1)

where the subscripts A and B denote the bottom cell A and top
cell B, respectively. Taking αB as the independent variable of
the top cell, and without loss of generality, we let αB � αA so
that cell A can be either nested into or bulged out from cell
B, corresponding to two topologically different stacked units
(see Fig. 2). Folding of the stacked unit is still a 1 degree-of-
freedom motion, because the folding angles of cell B can be
uniquely determined by those of cell A. Repeating the stacked
units in L, W, and H directions yields the corresponding GFF
or SC stacked blocks. Note that Miura-ori cells can also be
stacked up with degenerated stacking conditions [1], but the
G-4 cells are geometrically incompatible to be stacked together
due to the bending deformation.

IV. KINEMATICS OF 4-VERTEX ORIGAMI
METAMATERIALS

We now investigate how the newly discovered deformation
mechanisms contribute to the kinematics of the 4-vertex
sheets and blocks. We first point out that as component
units, the 4-vertex cells’ contracting, shearing, and facet-
binding deformations can be accordingly passed on to the
corresponding sheets. However, bending is lost when repeating
the G-4 cell into a G-4 sheet because the out-of-plane shear
is counteracting the bending such that planes I and II remain

FIG. 3. Self-locking phenomena in (a) G-4 and SC sheets, (b)
GFF block, and (c) SC block. The binding facets are indicated by
dotted rectangles, and the corresponding self-locking mechanisms
are denoted.

parallel during folding. Similarly, the contracting, shearing,
and facet-binding are further passed on to the GFF, SC, and
Miura-ori stacked blocks [20]. However, the GFF block is no
longer flat-foldable and regains the facet-binding mechanism.
Table I also displays the deformation mechanisms of the 4-
vertex sheets and stacked blocks; video illustrations are given
in the Supplemental Material [21]. Particularly, facet-binding
will induce self-locking in certain 4-vertex sheets and stacked
blocks due to two different mechanisms: in-cell facet-binding
and intercell facet-binding. We show that self-locking of the
G-4 and SC sheets is due to in-cell facet-binding, i.e., two
facets in each cell bind together to prevent the whole sheet from
further folding [Fig. 3(a)]. The GFF block has two self-locking
states [Fig. 3(b)]: self-locking in the nested-in configuration is
attributed to intercell facet-binding, i.e., one facet of the top
cell and one facet of the bottom cell in each stacked unit bind
together, which prevents the whole block from further folding;
self-locking in the bulged-out configuration is because the
bottom cell is folded into a flat state and all the four facets
bind together, which is still the effect of in-cell facet-binding.
The SC block also has two self-locking states [Fig. 3(c)]:
self-locking in the nested-in configuration is due to a combined
action of the two mechanisms; self-locking in the bulged-out
configuration is induced by two separate in-cell facet-bindings.
See detailed analysis in Appendix D. Note that while [1]
provided an example of self-locking, here we present a generic
and basic mechanism analysis.

Moreover, we demonstrate that the GFF and SC sheets
and blocks feature larger ranges of maximum achievable
deformation than the previously investigated Miura-ori design.
In length and width directions, we examine the maximum
achievable strains, defined as

ε̂L := (Lf − L0)/L0, ε̂W := (Wf − W0)/W0, (2)

where L0 and W0 are the initial length and width of the
sheet or block, respectively, and Lf and Wf are the final
length and width of the sheet (block) when the binding fold
is fully folded, respectively. Moreover, we examine �ϕ̂13 :=
(ϕ13)max − (ϕ13)min in GFF sheets and blocks to reveal the
maximum achievable out-of-plane shearing deformation, and
�ϕ̂S := (ϕS)max − (ϕS)min in SC sheets (blocks) to manifest
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FIG. 4. Maximum achievable deformations of the GFF and SC sheets and blocks: (a)–(c) ε̂L, ε̂W , and �ϕ̂13 in GFF design, respectively;
(d)–(f) ε̂L, ε̂W , and �ϕ̂S in SC design, respectively. The Miura-ori design is located on the dashed lines α = β.

the maximum achievable in-plane shearing deformation.1

These quantities are evaluated in the whole design space,
shown in Fig. 4. Considering the assumptions that α1 = α

is the smallest sector angle and ρ4 is the unique fold, only
the variable range surrounded by α = β, α+β = 180◦, and
0 < α< 90◦ is studied.

For both cases, the Miura-ori design locates just on the
dotted line α = β. Figure 4 reveals that in the length and width
directions, the maximum achievable strain of the Miura-ori
sheet block) is programmable only in the length direction,
while it is fixed at 100% in the width direction regardless of
the value of α. However, the maximum achievable strains of the
GFF/SC sheet (block) can be programmed in both the length
and width directions from 0 to 100%. Moreover, the Miura-ori
sheet (block) does not possess shearing deformability (�ϕ̂13 ≡
90◦ and �ϕ̂S ≡ 0). Nevertheless, the GFF designs could reach
any out-of-plane shearing deformation between �ϕ̂13 = 0◦
and �ϕ̂13 = 90◦, and the SC designs could reach any in-plane
shearing deformation between �ϕ̂S = 0 and �ϕ̂S ≈ 60◦. Such
enlargement of the maximum achievable deformation ranges
is beneficial to the development of origami metamaterials.

1The subscripts “max” and “min” indicate the maximum and
minimum value of the angle during the whole folding process.

V. MECHANICS OF 4-VERTEX ORIGAMI
METAMATERIALS

We now discuss the mechanical properties of the 4-vertex
sheets and blocks. We first focus on the Poisson ratios of the
GFF, SC, and Miura-ori sheets, which can be calculated as

νHL =−dH/H

dL/L
, νWL = −dW/W

dL/L
. (3)

Figure 5 displays the values of νHL and νWL with respect to
ρ1. For the SC and Miura-ori sheets, νHL remains positive
and νWL remains negative during the whole folding process.
However, for the GFF sheet, although νWL still stays negative,
νHL experiences a flip from positive to negative due to the out-
of-plane shear. Hence, there exists an interval in which the GFF
sheet exhibits a negative Poisson’s ratio in three directions.
Such tridirectional auxetic effects have been reported on
Tachi-Miura polyhedron tubes [5] and stacked Miura blocks
[1] but have never been discovered in single-layer origami
sheets. We also extend Poisson’s ratio study to stacked blocks
(Appendix E). We notice that similar flipping of Poisson’s
ratio is reserved in the bulged-out GFF block but are lost in
the nested-in configuration.

Then we discuss the effects of the new deformation
mechanisms on the stiffness properties. In rigid origami, the
elastic energy is stored only in the crease hinges, which allow
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FIG. 5. Poisson’s ratios νHL and νWL of the three types of sheet
(with the same geometric parameters as those in Fig. 1). Insets
illustrate the states of the 2 × 2 GFF sheets before, at, and after
flipping.

the rigid facets to rotate. Assigning k0 as the linear torsional
stiffness per unit length at each crease, the torsional spring
constant (Ki) at each crease corresponding to the dihedral
angle (ρi) can be calculated by multiplying k0 with the crease
length. The total spring energy of a 4-vertex cell with respect
to the folding process is


 = 1

2

4∑
i=1

Ki

(
ρi − ρ0

i

)2
, (4)

where ρ0
i is the initial dihedral angle corresponding to the ini-

tial stress-free configuration (ρ0
1 ). Then the tangential stiffness

of the origami sheet can be determined via a variation principle.
The stretching stiffness in the length and height directions are
given by KL = d2
/dL2 and KH = d2
/dH 2, respectively.
Particularly, due to the emerging shearing deformation, we also
investigate the in-plane and out-of-plane shearing stiffness de-
fined as GI = d2
/dϕS

2 and GO = d2
/dϕ13
2, respectively.

Stiffness of the staked blocks can be determined using similar
arguments (Appendix F).

Figure 6 displays the normalized stretching and shearing
stiffness of the GFF, SC, and Miura sheets with respect to
the folding process. The key observation is that the shearing
deformation generates finite in-plane shearing stiffness GI in
the SC sheet [Fig. 6(c)] and finite out-of-plane shearing stiff-
ness GO in the GFF sheet [Fig. 6(d)]. Such shearing stiffness
has never been observed or reported on other types of rigid
origami. Moreover, such shearing stiffness comes only from
rigid folding, indicating that the corresponding metamaterials
are able to withstand shear deformation without bending or
twisting of the facets or creases, which is significantly different
with other shear behavior reported in [2,3], where facet and
crease material deformation is a necessity. Note that due to
the loss of corresponding shear deformation, the GFF and
Miura-ori sheets cannot feature in-plane shearing stiffness
from rigid folding, and the SC and Miura-ori sheets cannot
feature out-of-plane shearing stiffness either; in other words,
they can bear shear deformation only if material deformation
is allowed.

In addition, we see that the out-of-plane shearing defor-
mation qualitatively alters the stiffness profiles in the GFF

FIG. 6. Normalized stretching and shearing stiffness of the three
types of sheet (with the same geometric parameters as those in Fig. 1):
(a) (KLa)/k0, (b) (KH a)/k0, (c) GI/(k0a), and (d) GO/(k0a) as
functions of ρ1.

sheet. At the ending stage of folding, KL undergoes a sudden
increase [Fig. 6(a)] because the sheet is close to the flat state
and the rate of length change is very small. We also observe
a pair of stiffness jump and a stiffness switch on KH and GO

[Fig. 6(b)]; such discontinuity on stiffness is because H and
ϕ13 experience switches from increase to decrease due to the
out-of-plane shear (Appendix F).

VI. SUMMARY AND OUTLOOK

Our analysis on the deformation mechanisms and the
resulting physical properties of the 4-vertex origami meta-
materials are rooted in the geometry of the unit 4-vertex
cells. Starting with the most generic 4-certex cell, the G-4
cell, we have illustrated that its deformation is a combination
of contraction, in-plane and out-of-plane shearing, bending,
and facet-binding. The last three mechanisms are missing
in the current Miura-ori–based metamaterial research. These
mechanisms could be partly inherited by the GFF, SC,
and Miura-ori cells, which are generated by incorporating
additional constraints among sector angles.

We have also established the relationship between the
deformation mechanisms and the metamaterials’ kinematic
and mechanical properties. We find that by breaking the Miura-
ori limitation, the GFF and SC designs can significantly expand
their maximum available deformation ranges. Furthermore, the
newly uncovered deformation mechanisms introduce various
novel properties: facet-binding provides the metamaterials
with self-locking ability, out-of-plane shear generates a tridi-
rectional negative Poisson’s ratio in GFF designs, and in-plane
and out-of-plane shears offer the metamaterials with shearing
stiffness without material deformation.

Finally, we would like to remark that this research paves
the way for applying 4-vertex origami design into metamaterial
development. Our analysis allows us to formulate and solve
inverse design problems to derive the geometric parameters
of the 4-vertex cell that lead to specified deformation patterns
(see Table I) and deformation capability (see Fig. 4).
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APPENDIX A: GEOMETRIC QUANTITIES
IN VECTOR SPACE

Here we introduce the principles of calculating the geo-
metric quantities L,W,H,ϕS,D,ϕ13,ϕ24, and θi(i = 1,2,3,4)
in a three-dimensional (3D) vector space. We first calculate the
coordinates of each vertex in a cell (for clarity, vertex i in Fig. 7
is denoted by Vi(i = 0, . . . ,8)). Based on spherical trigonom-
etry, the dihedral angles ρi(i = 2,3,4) can be expressed as
functions of ρ1 [22]:

ρ2 = arccos

(
cos α1 − cos α2 cos ξ

sin α2 sin ξ

)

+ arccos

(
cos α4 − cos α cos ξ

sin α3 sin ξ

)
,

ρ3 = arccos

(
cos ξ − cos α3 cos α4

sin α3 sin α4

)
, (A1)

ρ4 = arccos

(
cos α2 − cos α1 cos ξ

sin α1 sin ξ

)

+ arccos

(
cos α3 − cos α4 cos ξ

sin α4 sin ξ

)
,

where ξ = arccos(cos α1 cos α2 + sin α1 sin α2 cos ρ1). Con-
sidering the relative relations among folds (i.e., the dihedral
angles ρi(i = 1, . . . ,4) and the sector angles αi(i = 1, . . . ,4)),
coordinates of all vertices can be expressed in a certain
rectangular coordinate system, with ρ1 as the independent
variable. Here, we use coordinate system o − xyz shown in
Fig. 7. With the obtained vertex coordinates, all vectors in
the cell can be accordingly expressed, which facilitate the
follow-up calculations.

The length L and width W of a cell can be determined by

L = |−−−→
V5V8|, W = |−−−→

V7V8|. (A2)

FIG. 7. A partly folded state of a 4-vertex cell in 3D vector space.
The rectangular coordinate system o − xyz is built as follows: the
auxiliary plane III is assigned as the x − o − y plane, the vertex V5

is assigned as the origin, the x axis extends along V4V5, the y axis
is determined by rotating the x axis counterclockwise by 90◦ in the
x − o − y plane, and the z axis is perpendicular to the x − o − y

plane following the right-hand rule.

The angle ϕS can be expressed as

ϕS = arccos
−−−→
V5V8 · −−−→

V7V8

|−−−→
V5V8||−−−→

V7V8|
. (A3)

To obtain the other quantities, we first define the auxiliary

planes. Plane I is spanned by
−−−→
V1V6 and

−−−→
V1V5; plane II is

spanned by
−−−→
V3V7 and

−−−→
V3V8; plane III is spanned by

−−−→
V6V2

and
−−−→
V6V4; and plane IV is spanned by

−−−→
V7V2 and

−−−→
V7V4. The

normal vector of each auxiliary plane (denoted by
−→
NI to

−→
NIV)

can be calculated as

−→
NI = −−−→

V1V6 × −−−→
V1V5,

−→
NII = −−−→

V3V7 × −−−→
V3V8,

−→
NIII = −−−→

V6V2 × −−−→
V6V4,

−→
NIV = −−−→

V7V2 × −−−→
V7V4. (A4)

Then the height H yields

H = |−−−→
V0V4 · −→

NIII|
|−→NIII|

. (A5)

The distance D between planes I and III can be calculated via

D = |−−−→
V3V1 · −→

NI |
|−→NI |

. (A6)

The dihedral angles ϕ13 and ϕ13 give

ϕ13 = π − arccos
−→
NI · −→

NIII

|−→NI ||−→NIII|
, ϕ24 = π − arccos

−→
NII · −→

NIV

|−→NII||−→NIV|
,

(A7)

where the “π−” is added because the two normal vectors both
point inside or outside of the dihedral angle. The folding angles
θi(i = 1,2,3,4) are defined as the dihedral angles between the
facets and the auxiliary plane III or IV (Fig. 7), which can be
obtained similarly through the following vector dot products:

θ1 = arccos
−→
N1 · −→

NIII

|−→N1||−→NIII|
,

θ2 = arccos
−→
N2 · −→

NIII

|−→N2||−→NIII|
,

θ3 = π − arccos
−→
N3 · −→

NIV

|−→N3||−→NIV|
,

θ4 = π − arccos
−→
N4 · −→

NIV

|−→N4||−→NIV|
. (A8)

We remark that the rectangular coordinate can be built
in other ways, through coordinate translations and rotations.
However, expressions for these geometric quantities do not
depend on the coordinate systems because they are calculated
based on the relative relations among vectors. We also note
that the above expressions work for all four types of cell in
this study. Taking a step of hρ1 = 0.5◦ to traverse [0◦,180◦],
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FIG. 8. Geometry of the GFF cell [with dimensions a,b and sector angles α,β(α < β)]. Partly folded states of the cell are shown (a) before
the critical point (θ1 = θ3 = 90◦), (b) at the critical point, and (c) after the critical point. During folding, the vertices V2,V4,V5,V6,V7, and V8

always locate on the x − o − y plane.

plots of L,W,D,ϕS,ϕ13, and ϕ24 with respect to ρ1 [i.e.,
Figs. 1(c)–1(f)] can be obtained.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR THE
GEOMETRIC QUANTITIES IN GFF AND SC CELLS

Due to the flat-foldability and collinearity, geometries of
the GFF and SC cells are significantly simplified and can
be explicitly expressed, which makes it easier to find the
conditions for stacking two cells together and to calculate
the Poisson ratios. Here we display the expressions for the
geometric quantities.

For GFF and SC cells, ϕ13 always coincides with ϕ24 or
(180◦ − ϕ24) [see Fig. 1(e)], indicating that the auxiliary planes
III and IV in Fig. 7 are coplanar (no bending deformation).

Hence, during folding, the vertices V2,V4,V5,V6,V7, and V8

always stay on the same auxiliary plane, i.e., the x − o − y

plane (Figs. 8 and 9). Meanwhile, since V0V3 and V0V1 are
parallel to the x − o − y plane, vertices V0, V1, and V3 stay
on a plane parallel to the x − o − y plane. Then the distances
from the vertices V0, V1, and V3 to the x − o − y plane are
the same, which induces an important identical relation:

sin αi sin θi = const,(i = 1, . . . ,4), (B1)

where for the GFF cell, α1 = α,α2 = π − β,α3 = π −
α,α4 = β; and for the SC cell, α1 = α, α2 = π − a, α3 =
π − β, α4 = β.

Geometries of the GFF cell. In the GFF cell [with
dimensions a,b and sector angles α,β(α < β)] (Fig. 8), the
dihedral angles ρi(i = 2,3,4) can be expressed as functions of

FIG. 9. Geometry of the SC cell [with cell dimensions a,b and sector angles α,β(α < β)]. (a) Partly folded states of the cell; (b) self-locking
state of the cell, where two facets bind together, and θ1 = θ2 = 90◦. During folding, the vertices V2,V4,V5,V6,V7, and V8 always locate on the
x − o − y plane.
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ρ1 based on spherical trigonometry, i.e.,

ρ2 = arccos

(
cos α + cos β cos ξ

sin β sin ξ

)
+ arccos

(
cos β + cos α cos ξ

sin α sin ξ

)
,

ρ3 = ρ1,

ρ4 = arccos

(− cos α − cos β cos ξ

sin β sin ξ

)
+ arccos

(− cos β − cos α cos ξ

sin α sin ξ

)
, (B2)

where ξ = arccos(− cos α cos β + sin α sin β cos ρ1). At the initial stage of folding, ρ1 begins to decrease from 180◦, and all the
folding angles θi(i = 1, . . . ,4) are acute angles, which can be expressed as

θ1 = θ3 = arcsin

√
2 sin β sin ρ1√

2 − cos(2α) − cos(2β) − 4 sin α sin β cos ρ1
,

θ2 = θ4 = arcsin

√
2 sin α sin ρ1√

2 − cos(2α) − cos(2β) − 4 sin α sin β cos ρ1
. (B3)

During folding, θi(i = 1,2,3,4) increases with the decrease of ρ1. Since α < β, θ1 and θ3 will reach 90◦ prior to θ2 and θ4. The
critical value of ρ1 (say, ρ1C) corresponding to the instant that θ1 and θ3 reach 90◦ [Fig. 8(b)] can be determined by solving the
equation θ1 = θ3 = 90◦. After the critical point, θ1 and θ3 become obtuse angles and keep increasing [Fig. 8(c)], while θ2 and
θ4 remain acute angles and decrease. The expressions for the folding angles after the critical point (denoted by the subscript C)
yield

θ1C = θ3C = π − arcsin

√
2 sin β sin ρ1√

2 − cos(2α) − cos(2β) − 4 sin α sin β cos ρ1
,

θ2C = θ4C = arcsin

√
2 sin α sin ρ1√

2 − cos(2α) − cos(2β) − 4 sin α sin β cos ρ1
. (B4)

Based on the above dihedral angles ρi and folding angles θi , θiC , the length L, width W , and height H can be obtained. Before
the critical point, we have

L = 2b sin

[
1

2

(
arccos

cos α√
1 − sin2αsin2θ1

+ arccos
cos β√

1 − sin2βsin2θ4

)]
,

W = 2a
√

1 − sin2αsin2θ1 sin

[
1

2

(
arccos

cos α√
1 − sin2αsin2θ1

+ arccos
− cos β√

1 − sin2βsin2θ4

)]
,

H = a sin αi sin θi(i = 1,2,3,4); (B5)

and after the critical point we have

LC = 2b sin

[
1

2

(
− arccos

cos α√
1 − sin2αsin2θ1

+ arccos
cos β√

1 − sin2βsin2θ4

)]
,

WC = 2a
√

1 − sin2αsin2θ1 sin

[
1

2

(
− arccos

cos α√
1 − sin2αsin2θ1

+ arccos
− cos β√

1 − sin2βsin2θ4

)]
.

HC = a sin αi sin θi(i = 1,2,3,4). (B6)

We also calculate the quantities J and K , which are useful
when deriving the conditions for stacking two GFF cells. J

is the distance between vertex V4 and the line V5V8. Plot the
perpendicular of the x − o − y plane through vertex V1, which
intersects with the plane at point V9. K is the distance between
point V9 and the line V5V6. Before the critical point, we have

J =
√

b2 − (L/2)2, K =
√

a2 − H 2 − (W/2)2, (B7)

and after the critical point, we have

JC =
√

b2 − (LC/2)2, KC =
√

a2 − H 2 − (WC/2)2.

(B8)

Geometries of the SC cell. In the SC cell [with cell
dimensions a,b and sector angles α,β(α < β)] (Fig. 9),
the dihedral angles ρi(i = 2,3,4) can also be expressed as
functions of ρ1 based on spherical trigonometry:

ρ2 = arccos

[
cot α cot

(
ξ

2

)]
+ arccos

[
cot β cot

(
ξ

2

)]
,

ρ3 = arccos

[
cos2β + cos ξ

sin2β

]
, (B9)

ρ4 = arccos

[
− cot α cot

(
ξ

2

)]
+ arccos

[
− cot β cot

(
ξ

2

)]
,
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FIG. 10. Illustrations of the stacking conditions for (a) the GFF stacked unit and (b) the SC stacked unit.

where ξ = arccos(−cos2α + sin2α cos ρ1). At the initial fold-
ing stage, the folding angles θi(i = 1,2,3,4) of the SC cell can
be simplified into

θ1 = θ2 = (π − ρ1)/2, θ3 = θ4 = (π − ρ3)/2. (B10)

Since α < β, we have ρ3 > ρ1. Therefore, when ρ1 = 0, ρ3 �=
0, i.e., although the facets astride ρ3 have not bound yet, the
facets astride ρ1 already bind together [Fig. 9(b)]. Such facet-
binding prevents the cell from further folding. Besides, we
notice that the folding angles θi(i = 1, . . . ,4) will not be larger
than 90◦ during the whole folding process ρ1 ∈ [180◦,0◦].

Expressions for the length L, width W , and height H stay
the same as those in Eq. (B5), provided that α2 = π − a for the
SC cell. The expression for the quantity J remains the same
as that in Eq. (B7). However, notice from Fig. 2(c) that the
auxiliary planes I and II are always perpendicular to planes III
and IV (i.e., the x − o − y plane) during folding, i.e., ϕ13 =
ϕ24 = 90◦, vertex V9 always locates on the line V5V6, and the
quantity K vanishes.

APPENDIX C: STACKING GEOMETRY
OF THE GFF AND SC CELLS

Two GFF or SC cells can be stacked along their zigzag
crease lines into a stacked unit. To make the two different cells
kinematically compatible so that they can stay connected along
the zigzag crease lines during folding, the stacking geometry
is derived here.

Stacking of GFF cells. To ensure the kinematic compatibil-
ity of two GFF cells, the bottom cell A and top cell B must
satisfy the following constraints on extrinsic cell geometry:

LA = LB, WA = WB, JA = JB, KA = KB, (C1)

which is equivalent to

LA = LB, WA = WB,
(C2)

∠458A = ∠458B, ∠956A = ∠956B

[see illustrations in Fig. 10(a)]. If taking αB as the independent
variable of the top cell B, αB has to be larger than αA so that
the bottom cell A can be either nested into or bulged out from
the top cell B. Then the other geometric parameters of the top

cell B can be calculated by

bB = bA,
aA

aB

= cos αB

cos αA

,
cos αA

cos αB

= cos βA

cos βB

. (C3)

The folding angle θB1 of top cell B can be expressed as

θB1 = arcsin

√
cos2αA+cos2αB(sin2αAsin2θA1−1)

sin2αBcos2αA

. (C4)

The other folding angles of the top cell B can be obtained
based on the identical relation [see Eq. (B1)]

sin αBi sin θBi = const, (i = 1, . . . ,4), (C5)

where αB1 = αB, αB2 = π − βB, αB3 = π − αB, αB4 = βB .
Stacking of SC cells. Due to the vanishment of the quantity

K , the constraints on extrinsic cell geometry for stacking SC
cells are changed to

LA = LB, WA = WB,

∠458A = ∠458B, ∠658A = ∠658B (C6)

[see the illustrations of angles ∠458 and ∠658 in Fig. 10(b)].
Similarly, taking αB > αA as the independent sector angle, the
expressions for the other geometric parameters of the top cell
B can be obtained, which remain the same as Eq. (C3). The
folding angle θBi(i = 1, . . . ,4) of the top cell B can also be
calculated by Eqs. (C4) and (C5).

APPENDIX D: SELF-LOCKING IN 4-VERTEX BLOCKS

In addition to the simulation illustrations on self-locking
shown in Fig. 3, we provide theoretical analysis on the folding
angles to show how self-locking happens in GFF and SC
blocks. Figures 11(a) and 11(b) show the folding angles
(θAi ,θBi) of the GFF and SC block, respectively. The GFF
block has two self-locking states: self-locking of the nested-in
configuration is attributed to the binding of bottom-cell facets
and top-cell facets (intersection of θA1 and θB1 at 90◦, noting
that θA1 = θA3 and θB1 = θB3), which prevents the whole block
from further folding, while self-locking of the bulged-out
configuration is because the bottom cell A is folded into a flat
state (θA1 = θA3 = −180◦,θA2 = θA4 = 0◦) and all the four

043002-9



HONGBIN FANG, SUYI LI, HUIMIN JI, AND K. W. WANG PHYSICAL REVIEW E 94, 043002 (2016)

FIG. 11. Self-locking in the stacked GFF and SC blocks.
(a) Folding angles of layers A and B in a 2 × 2 × 1 GFF block
(aA = bA = 1, αA = 36◦ βA = 72◦, αB = 54◦). (b) Folding angles
of layers A and B in the 2 × 2 × 1 SC block (aA = bA = 1, αA =
36◦, βA = 72◦, αB = 54◦). Insets illustrate the configurations of
the block at the two locking positions and the transition position
(ρA1 = 180◦). Binding facets are denoted by dotted rectangles.

facets bind together, which prevents the whole block from
further folding. The SC block also has two self-locking states:
at ρA1 = 0◦, four facets bind together, two in cell A and two
in cell B (θA1,θA2 and θB1,θB2 intersect at 90◦); at ρA1 = 360◦,
two facets of cell A (astride ρA1) and two facets of cell B
(astride ρB1) bind separately (θB1,θB2 intersect at 90◦, while
θA1,θA2 intersect at −90◦).

APPENDIX E: POISSON’S RATIO OF STACKED BLOCKS

In this section, we study Poisson’s ratio in stacked blocks.
After stacking multiple stacked units into a block, the height
HS can be expressed as

HS = n(HB − HA) + HA, nested-in,

HS = n(HB + HA), bulged-out, (E1)

where n is the number of repeating layer pairs AB (Fig. 2),
and HA and HB are the height of the bottom cell and top
cell, respectively. The Poisson ratio νWL remains the same as
the corresponding sheet, and νHSL can be calculated based on
Eq. (2) by replacing H with HS (Fig. 12).

Particularly, we focus on the GFF stacked block and study
the effects of the out-of-plane shearing on the Poisson ratios.
Poisson’s ratio νWL remains the same as the GFF sheet, i.e.,
staying negative during the whole folding process. However,
νHSL shows a significant difference with νHL of the GFF sheet.
At the bulged-out configuration, flipping of Poisson’s ratio still
exists for any n. At the nested-in configuration, when n = 1,
the structure remains positive νHSL; but when n � 2, νHSL

switches to negative. Note that due to self-locking, flipping of
νHSL no longer exists in the nested-in configuration. Overall,

FIG. 12. Poisson’s ratio νHSL of the GFF block (aA = bA =
1, αA = 36◦, βA = 72◦, αB = 54◦ or 72◦, n = 1 or 2).

if the GFF block consists of multiple layer pairs, it can be
auxetic in three directions, for both nested-in and bulged-out
configurations.

APPENDIX F: STIFFNESS IN 4-VERTEX
SHEETS AND BLOCKS

Here a detailed derivation on the stiffness of the 4-vertex
sheets and blocks is provided. In GFF, SC, and Miura-ori
sheets, the stretching stiffness along the length and height
directions can be expressed through KL = d2
/dL2 and
KH = d2
/dH 2. Through the variation principle, we have

KL = d2


dρ2
1

(
dL

dρ1

)−2

− d


dρ1

(
dL

dρ1

)−3
d2L

dρ2
1

,

KH = d2


dρ2
1

(
dH

dρ1

)−2

− d


dρ1

(
dH

dρ1

)−3
d2H

dρ2
1

. (F1)

Similarly, the shearing stiffness GI = d2
/dϕS
2 and GO =

d2
/dϕ13
2 can be expressed as

GI = d2


dρ2
1

(
dϕS

dρ1

)−2

− d


dρ1

(
dϕS

dρ1

)−3
d2ϕS

dρ2
1

,

GO = d2


dρ2
1

(
dϕ13

dρ1

)−2

− d


dρ1

(
dϕ13

dρ1

)−3
d2ϕ13

dρ2
1

. (F2)

Notice that due to the out-of-plane shearing deformation,
the height H and the dihedral angle ϕ13 will experience a
switch from increasing to decreasing [Figs. 13(a) and 13(b)],
which as a result induces the stiffness jump and stiffness switch
on KH and GO , respectively [Figs. 13(c) and 13(d)].

In GFF, SC, and Miura-ori stacked units, the total elastic
energy (
Block) is contributed by three parts: the spring energy
stored in the bottom cell A (
A), the spring energy stored in
the top cell B (
B), and the energy stored in the connecting
creases (
C). Assigning kA as the linear torsional stiffness per
unit length at the creases in cell A, kB as the linear torsional
stiffness per unit length at the creases in cell B, and kC as
the linear torsional stiffness per unit length at the connecting
creases, the torsional spring constant KAi at each crease in cell
A, KBi at each crease in cell B, and KCi at each connecting
crease can be accordingly calculated by multiplying kA, kB ,
and kC with crease length. Then the total energy in stacked
units yields


Block = 
A + 
B + 
C, (F3)
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FIG. 13. In the GFF sheet (a = b = 1, α = 36◦, β = 72◦), the (a)
height H , (b) angle ϕ13, (c) normalized stretching stiffness (KH a)/k0,
and (d) normalized shearing stiffness GO/(k0a) with respect to
the folding process. Switches on the geometric quantities and the
normalized stiffness are denoted by the dotted vertical lines.

where


A = 1

2

4∑
i=1

KAi

(
ρAi − ρ0

Ai

)2
,


B = 1

2

4∑
i=1

KBi

(
ρBi − ρ0

Bi

)2
,


C = 1

2

4∑
i=1

KCi

[
(θBi − θAi) − (

θ0
Bi − θ0

Ai

)]2
. (F4)

Since the dihedral angles and folding angles of both cells
have been obtained in Appendix A, the stretching stiffness
and shearing stiffness of the blocks can be similarly obtained
through the variation principle. However, it should be noted
that in stacked blocks, the geometric parameters that served as
the differential variables may be different from those in sheets
and call for redefinition.
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