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We report on the results of extensive computer simulation of the effect of deformation on the morphology
of a porous medium and its fluid flow properties. The porous medium is represented by packings of spherical
particles. Both random and regular as well as dense and nondense packings are used. A quasistatic model based
on Hertz’s contact theory is used to model the mechanical deformation of the packings, while the evolution
of the permeability with the deformation is computed by the lattice-Boltzmann approach. The evolution of the
pore-size and pore-length distributions, the porosity, the particles’ contacts, the permeability, and the distribution
of the stresses that the fluid exerts in the pore space are all studied in detail. The distribution of the pores’
lengths, the porosity, and the particles’ connectivity change strongly with the application of an external strain to
the porous media, whereas the pore-size distribution is not affected as strongly. The permeability of the porous
media strongly reduces even when the applied strain is small. When the permeabilities and porosities of the
random packings are normalized with respect to their predeformation values, they all collapse onto a single
curve, independent of the particle-size distribution. The porosity reduces as a power law with the external strain.
The fluid stresses in the pore space follow roughly a log-normal distribution, both before and after deformation.
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I. INTRODUCTION

An important class of porous materials includes those that
are deformed by, for example, a large external pressure or
shear, or by absorbing liquids that cause swelling. Important
examples of such porous materials include consolidating clays
[1], biopolymers, cell membranes, food stuff, and hydrogels
[2,3], snow [4,5], paper [6,7], diapers [8,9], cakes of particles
that are formed on the external surface of a filter [10],
aggregates that are formed by flocculation [11], articular
cartilage, a soft biomaterial swollen by water [12], foams
[13–16], materials for drug delivery [17], and soil and
rock at large depths where the pressure is large [1,18–20].
An important practical example of current interest is the
sequestration of carbon dioxide in geological formations.
When CO2 is injected into a porous formation and enters
the pore space, together with the brine in the pore space it
causes deformation in the structure of the solid matrix through
its interaction with the pores’ walls and the saline water that
already exists in the pores.

Over the past two decades, several theoretical studies
of deformable porous media have been undertaken. Such
studies may be divided into three major classes. In one
class are macroscopic theories that are based on volume
[21] or ensemble averaging [22] of the continuum equations
of transport. One writes down the conservation laws at
the microscale, supplements them with constitutive relations
that are empirical or semiempirical, and then averages the
equations at the macroscale in order to derive the governing
equations at that scale.

Mixture theories constitute the second class of models of
deformable porous media. They are based on the macroscale
conservation laws, coupled with the second law of thermo-
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dynamics and entropy inequality. But, as pointed out by
Hassanizadeh and Gray [23–25], since entropy inequality
is not included in averaging at the microscale to arrive at
the macroscale equations, one cannot obtain relationships
that link macroscopic thermodynamic variables. In addition,
such mixture theories do not utilize any information at the
microscale.

The third class of models of deformable porous media
represents a combination of the first two, which we refer to
as the hybrid mixture theories (HMTs) [23–25]. Originally
developed by Hassanizadeh and Gray [23,24], the HMTs
begin with the microscopic conservation laws, average them
to derive the macroscopic equations, and then invoke entropy
inequality in order to derive the constitutive equations, such
as the generalized Darcy’s law for slow flow of fluids through
a macroscopic deformable porous medium, or Fick’s law of
diffusion. This approach has been developed by Cushman and
co-workers; see Weinstein et al. [26] and references therein,
as well as Eringen [27], Schrefler [28], and Zhu et al. [29].

None of the aforementioned three classes of models can
take into account the effect of the microstructure of a porous
medium as it undergoes deformation. Flow and transport
processes in any porous medium, deformable or not, are
controlled by its morphology, which consists of the pore-size
distribution and pore connectivity [1,30]. For macroscopic
flow and transport processes to occur, there has to be a
sample-spanning cluster of connected pores, which exists only
if the porosity φ of the pore space is larger than a critical
porosity, or the percolation threshold. As a porous medium is
deformed, its pore space undergoes significant changes. The
question is then, does the pore space become better connected,
or does it lose its connectivity as the solid matrix deforms?

This question has given rise to a fourth class of models,
those that can take into account the effect of the microstructure
of a porous medium on its deformation and, therefore, fluid
flow and transport. Thus, there have been some efforts to
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develop such models and approaches. Zhu and Wang [31]
modeled porous media by a simple-cubic network to study
fluid flow and dilatancy in a network of microcracks,
represented by the network’s bonds. Boutt and McPherson
[32] used the discrete-element method (see below) to study
cracking of rock samples, but they did not study fluid flow.
Masoud and Alexeev [33] used a random network of filaments
in a polymeric matrix, similar to percolation networks with
stretching and angle-changing bonds that were studied exten-
sively in the 1980s and 1990s [34,35] (for a comprehensive
review, see Sahimi [36]) to study the diffusion coefficient and
permeance of a deformed polymer network. Jasinski et al. [37]
studied, both experimentally and by numerical simulations,
flow and transport properties of Bentheim sandstones,
extending the earlier works of Dautriat et al. [38] and Thovert
and Adler [39], and similar to the work of Arns et al. [40,41].
They [37] discretized the linear elasticity equation and solved
it numerically. To do so, the material, represented by a cubic
simulation cell, was partitioned into a number of elementary
cubes that represented either the solid matrix or the pores. The
geometry of the sample was provided by an image obtained
through computed microtomography. Each elementary cube
was discretized by tetrahedra. The results of the simulations
were then compared with the experimental data. Jivkov
et al. [42] used a three-dimensional (3D) network with a
coordination number of up to 14 to study the permeability of
samples of rock, but the effect of deformation was not studied.

The focus of this paper is on studying the effect of
deformation on fluid flow through a particular class of
porous materials, namely, a packing of particles that represent
unconsolidated porous media. The advantage of a packing
of particles is that much is known about its microstructure
[36,43]. Both regular and random packings are studied, and
the deformation of the particles is assumed to be small, so
that the linear theory of elasticity can be utilized. We use a
quasistatic model based on Hertz’s contact theory [44] in order
to describe the interaction between the particles, report on the
various morphological properties of the pore space, as well as
its effective permeability as functions of the applied strain and
other relevant parameters, and discuss their implications. Our
study represents a step toward gaining a better understanding
of the effect of deformation, caused by a variety of factors, on
flow and transport properties of porous media modeled by a
packing of particles.

The rest of this paper is organized as follows. In Sec. II,
we describe an algorithm for generating the granular porous
media that we use in the simulations. Section III describes the
equation of motion of the particles and numerical simulations
of the deformation. In Sec. IV, we describe briefly the
lattice-Boltzmann method that is used for computing the
effective permeability of the deforming pore space. The results
are presented and discussed in Sec. V, while the paper is
summarized in Sec. VI.

II. GENERATION OF RANDOM PACKINGS

We study deformation and flow in two regular packings,
namely the simple-cubic (sc) and face-centered-cubic (fcc)
packings, as well as random packings of spherical parti-
cles. To generate the random packings, the particles were

distributed randomly in a cubic simulation cell. The particles’
size followed a Gaussian distribution, and three particle-size
distributions were utilized (see below). The boundaries in
all the directions were rigid. Initially, there may be overlaps
between the particles in the random packing. To eliminate
them, the following rearrangement procedure was used. An
overlap rate between two particle was defined by [45] R =
(ri + rj − dij )/(ri + rj ), where dij is the center-to-center
distance between particles i and j so that for overlapping
particles, dij < (ri + rj ). For each particle i, a search was
conducted to identify those that may have overlap with i. Then,
for each overlapping particle j centered at Rj , a new position
was calculated by

R(n)
j = R(o)

j +
(

ri + rj

dij

)(
R(o)

i − R(o)
j

)
, (1)

where Ri and Rj are, respectively, the position vectors of
particles i and j along the ray that connects their centers to
the origin of the coordinates, and superscripts n and o indicate
the new and old vectors. If particle i overlaps with ni other
particles, then Eq. (1) provides ni positions, and the actual new
position of particle i is given by

Ri = 1

ni

ni∑
j=1

R(n)
j , (2)

where R(n)
i is calculated by Eq. (1). The relaxation process

was applied to every overlapped particle. If a particle neither
overlaps nor contacts others, it is moved to contact its nearest
neighbor. By iterating the process, the overlap rateR decreases
gradually. To avoid any bias, the sequence of the particle
rearrangements is randomized after each iteration. The overlap
rate R eventually drops below a preset threshold, which we
took to be 10−3. Typically, it took about 1500 iterations to
remove practically all the overlaps.

In addition to a dense random packing that has a porosity
φ ≈ 0.32, we also generated a loose random packing with
a porosity of 0.54. The generation of the regular fcc and sc
packings is trivial and needs no explanation.

III. EQUATIONS OF MOTION AND SIMULATION
OF DEFORMATION

The model that we use for the mechanics of the packings
is similar to the discrete-element method [46], except that we
assume the quasistatic condition in which the displacement
field throughout the packing is calculated particle by particle.
Under equilibrium conditions, the governing equation for a
particle with Nc contacts is given by

Fext −
Nc∑
c=1

Fc = 0, (3)

where Fext and Fc are, respectively, the external and contact
forces. The contact force is given by

Fc = Fxci+Fycj + Fzck = (Fneix)i + (Fneiy)j + (Fneiz)k,

(4)

with eix , eiy , and eiz being the component of the unit vector ei ,
pointing from the center of a particle i at the spatial position
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Xi and pointing toward the center of a particle j with its
center’s position at Xj , ei = (Xi − Xj )/dij . Here, Fn is the
magnitude of the normal contact force between two particles
that, according to Hertz’s theory, is given by [44]

Fn = 4

3
Ye

√
Rδ3

n, (5)

where δn is the overlap between two particles in contact, given
by

δn = ri + rj − dij , (6)

1

Ye

= 1 − ν2
i

Yi

+ 1 − ν2
j

Yj

, (7)

1

R
= 1

ri

+ 1

rj

. (8)

Here, R is the relative curvature, Yi and Yj are Young’s moduli
of the two particles, νi and νj are their Poisson ratios (if the
two particles are made of different materials), and ri and rj

are the radii of the particles in contact. The normal contact
force is considered first, after which the contribution of the
tangential (shear) force Fs or the friction force is taken into
account. According to Coulomb’s law, one must have

Fs � μFn, (9)

where μ is the friction coefficient. All the particles in the
packing must satisfy inequality (9). The shear or tangential
force is usually written as Fs = ksδs , with ks and δs being,
respectively, the tangential stiffness and displacement.

Computing ks , which enables one to calculate the con-
tribution of the shear force, is not straightforward, because
it depends, in general, on the history of deformation and
sliding of one particle on another. On the other hand, such
contributions to the deviatoric stress tensor are believed to be
small [47], and, therefore, the normal forces contribute most to
the tensor. Under such conditions, ks is computed by [48,49]

ks = 2μ
2/3
e [6(1 − νe)RFn]1/3

2 − νe

, (10)

where μe and νe are, respectively, the effective shear modulus
and Poisson’s ratio, given by

1

μe

= 2 − νi

μi

+ 2 − νj

μj

, (11)

2

νe

= 1

νi

+ 1

νj

, (12)

with μi being the shear modulus of particle i. Due to the
different shear forces exerted on the particles, ks varies from
particle to particle and from one direction to another.

Equation (5) expresses a nonlinear relation between the
normal contact force Fn and δn, based on which kn is
calculated. To simplify the problem, a linear relationship is
assumed [49] to approximate the nonlinear relation (5), namely
Fn = knδn, with kn selected so as to minimize the difference
between the assumed linear relation and Eq. (5). Thus, we
determine [47] the minimum of the quantity,

I 2 =
∫ δ∗

0

(
4

3
Ye

√
Rδ3

n − knδn

)2

dδn, (13)

where δ∗ is the average of all particle overlaps. Then, kn is
determined by ∂I 2/∂kn = 0, yielding

kn = 8

7
Ye

√
Rδf . (14)

Note that the normal stiffness kn is not only a function of a
particle’s properties, but also the particles’ overlaps. One does
not have to linearize Hertz’ theory, and one can instead solve
the complete nonlinear problem iteratively. Our preliminary
simulations with the full nonlinear problem indicated that for
small displacements (which is assumed in this work), the lin-
earization provides a good approximation to the actual nonlin-
ear problem, with the error being on the order of a few percent.

We assume that the force-displacement relation follows
Hooke’s law [47]. Under the external force applied to the
packing, the particles are displaced and deformed. The
incremental displacement δux in the x direction is then given
by

δux =
⎧⎨
⎩

∑
c Fxc

kn+ks
if ks

kn+ks
| ∑c Fxc| < μ

√
(
∑

c |Fyc|)2 + (
∑

c |Fzc|)2,∑
c Fxc±μ

√
(
∑

c |Fyc|)2+(
∑

c |Fzc|)2

kn
otherwise .

(15)

The sums are over all the contact points. The ± sign must be selected in such a way that the frictional and active forces are
opposite each other. In a similar manner, the incremental displacements in the y and z directions are given by

δuy =
⎧⎨
⎩

∑
c Fyc

kn+ks
if ks

kn+ks
| ∑c Fyc| < μ

√
(
∑

c |Fxc|)2 + (
∑

c |Fzc|)2,∑
c Fyc±μ

√
(
∑

c |Fxc|)2+(
∑

c |Fzc|)2

kn
otherwise,

(16)

and

δuz =
⎧⎨
⎩

∑
c Fzc

kn+ks
if ks

kn+ks
| ∑c Fzc| < μ

√
(
∑

c |Fxc|)2 + (
∑

c |Fyc|)2,∑
c Fzc±μ

√
(
∑

c |Fyc|)2+(
∑

c |Fxc|)2

kn
otherwise.

(17)

It is clear that the displacement of the neighboring contacting
particles generates a new nonequilibrium state for a given

particle. Thus, the calculations utilized an iterative process in
which the forces exerted on a given particle were gradually
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FIG. 1. The error, |KN − K250|/K250, in calculating the effective permeability KN of a grid of size N × N × N relative to K for N = 250.

released until the net force on each particle in the packing was
smaller than a threshold. Typically, 150–250 iterations were
needed to reach the equilibrium state.

Oedometric compression tests were simulated with both
dense and loose packings by imposing various modes of
vertical compressive strain on the top boundary. During
each compression cycle, the bottom face and the lateral
boundaries of the system were held fixed. For each strain
mode, simulations were carried out to determine the final
configuration of the packing. The applied strain was increased
up to 3% and 30% for the dense and nondense packings,
respectively. Once the particles reached their equilibrium state
under compression, fluid flow was simulated in the deformed
pore space in order to compute the effective permeability and
other properties of the pore space as functions of the applied
strain. The effective permeability was calculated using the
lattice-Boltzmann method, which we describe briefly in the
next section.

IV. CALCULATION OF THE EFFECTIVE PERMEABILITY

The effective permeabilities of the three types of
packings were calculated using a single-relaxation-time

lattice-Boltzmann (LB) simulator to simulate fluid flow in
the pore space, and invoking Darcy’s law to compute the
permeability. The flow was assumed to be in the x direction
(see Fig. 2 below). The no-slip boundary condition was
imposed on the fluid-solid interface, as well as the rigid outer
walls of the system (in the y and z directions), by using
the standard bounce-back method, and a constant pressure
gradient was applied in the flow direction. The computational
domain for the flow calculations consisted of N × N × N

grid points, which must be resolved enough that the effective
permeability would not change if a more resolved grid is used.
Thus, we carried out a series of preliminary simulations with
N = 100, 150, 200, 225, and 250 in order to determine an
adequate resolution for the computational grid. The results are
shown in Fig. 1, where the relative error is defined by error =
|KN − K250|/K250, with KN being the effective permeability
computed with a grid of size N3, and K250 representing the cal-
culated permeability with the most resolved grid of linear size
N = 250. Figure 1 indicates that the relative error between the
results for N = 200 and 250 is essentially zero. Thus, all the
results presented below were obtained with a grid of size 2003.

The LB simulator uses an iterative sequence of propagations
and collisions of fictitious particles at the grid points of the

FIG. 2. The three particle-size distributions (PSDs) used for random packings, along with an example of a random packing before and after
compression.
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FIG. 3. The computed pore-size distributions of the dense packings of hard particles with the three particle-size distributions shown in
Fig. 2.

discretized domain. The mass density of each grid point that
does not belong to the solid matrix is defined by a set of
scalar particle distribution functions f (x,t), each of which
is related to a lattice velocity unit vector. At each time step,
the particle distribution functions are shifted to neighboring
grid points according to their unit velocity vector through
the propagation step, also called streaming. Following each
streaming step, a collision operation is carried out to update
each distribution. The simplest form of the collision operator
is based on the Bhatnagar-Gross-Krook (BGK) approximation
[50]. The streaming and collision of the fictitious particles are
described by the following equation for the particle distribution
function fi [51]:

fi(x + ei�t,t + �t) − fi(x,t) = − 1

τR

[
fi(x,t) − f

eq
i (x,t)

]
,

(18)

where �t represents the time step in lattice units, τR is the
dimensionless relaxation time, and ei are the velocity basis
vectors. The left side of Eq. (18) represents the streaming step
by which the particle distribution functions are shifted based
on the velocities, while the right side describes the collision
operation. The equilibrium distribution f

eq
i is given by [52]

f
eq
i = ρωi

[
1 + 3

c2
(ei · v) + 9

2c4
(ei · v)2 − 3

2
v2

]
, (19)

where c = �x/�t is the lattice speed, �x is the grid spacing,
v is the velocity field, ρ is the fluid’s density, and ωi are the
weight coefficients. We use the standard D3Q19 LB model for
3D modeling [52], for which ωi = 1/18 for i = 1,2, . . . ,6,
ωi = 1/36 for i = 7,8, . . . ,18, and ωi = 1/3 for i = 19. The
fluid density is given by [53] ρ = ∑

i fi , the velocity by
ρv = ∑

i eifi , and pressure by P = ρc2
s , where cs denotes the

speed of sound in lattice units (equal to c/
√

3). The kinematic
viscosity ν is the given by ν = (τR − 0.5)c2

s . Low-Mach
number Ma flow is simulated with Ma = v/cs � 1. We used
a relaxation parameter τR = 1. Stewart et al. [54] showed that
if the relaxation parameter deviates from unity, the resulting
permeabilities are not accurate.

Thus, after the porous medium attained its equilibrium state
for any given strain, the LB model of fluid flow was used in
combination with Darcy’s law,

〈v〉 = −K

η
∇P = −K

η

∂P

∂x
, (20)

in order to calculate the effective permeability K of the
deformed porous medium for the corresponding strain, where
〈v〉 denotes the volume-averaged flow velocity, and η is the
fluid’s dynamic viscosity. As Darcy’s law is accurate only
for creeping flows, all the simulations were carried out for
Reynolds numbers Re < 1.
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FIG. 4. The computed pore-length distributions of the dense packings of hard particles with the three particle-size distributions shown in
Fig. 2.
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FIG. 5. The computed pore-size distributions for the dense packings of soft particles and the three particle-size distributions shown in
Fig. 2.

We carried out extensive simulations for packings made
of two types of particles: soft and hard. Young’s modulus,
the shear modulus, and Poisson’s ratio of soft particles were
2.7 GPa, 0.97 GPa, and 0.42, whereas those for hard particles
were 110 GPa, 44 GPa, and 0.24, respectively. These are in the
range of properties reported for clay particles. Typically, we
simulated a packing with about 1500–2000 particles. The cubic
domain of the packings had dimensions of 8.5, 7.5, 8.14, and
8 cm for nondense random packing, dense random packing,
and sc and fcc packings, respectively. The sizes of the particles
in the random packing were not equal, but they followed a
Gaussian distribution. Three particle-size distributions were
utilized with an average of 3.7 mm and standard deviations of
0.2, 0.3, and 0.5 mm. The size of the particles in the regular
packings was 3.7 mm. Figure 2 presents the three particle-size
distributions that we utilized in the simulations of the random
packings, along with a typical configuration of a deformed
packing. In the figures described and discussed below, we
refer to the three particle-size distributions as PSD1, PSD2,
and PSD3. Unless specified otherwise, in all cases the friction
factor was assumed to be 0.03.

V. RESULTS AND DISCUSSION

In a dense regular packing of particles with equal sizes,
the particles move only in the loading direction under the

oedometric compression. As a result, the strain field in the
packing is almost uniform everywhere. The entire porous
medium deforms as a continuous homogeneous material.
In addition, the identical spheres rearrange themselves in a
crystallike formation when an external force is applied to the
packing. In other words, the particles move homogeneously
due to the application of the external force. Consequently, the
deformation of the regular packing of equal-size particles is
due mainly to the local deformation at the particle contact
points, rather than being due to particle relocation.

In the case of random packings, however, the particles move
in various directions when an external force is applied. The
strain field is not uniform even if the external force is, as in
the oedometric compression that we simulate. This effect is
particularly significant for particles that are located close to
the system’s boundary. Thus, the deformation of the particles
in the random packing is due to their rearrangement, as well
as the local deformation at the contact points. In what follows,
we present the results and discuss their implications.

A. Distributions of the pores’ size and length

One of the most interesting properties of the packings
of particles as they undergo deformation is the change in
their pore-size distribution (PSD) and pore-length distribution
(PLD), which directly affect their effective permeability and
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FIG. 6. The computed pore-length distributions for the dense packings of soft particles and the three particle-size distributions shown in
Fig. 2.
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FIG. 7. The computed pore-size distributions of random packings of hard particles with an initial porosity 0.54 and the three particle-size
distributions shown in Fig. 2.

porosity. Thus, we first calculated the PSD and PLD of the pore
space of the random packings. To do so, a well-known result
[55] was used to map the pore space between the particles
onto an equivalent 3D Voronoi network in which the bonds
of the network, representing the flow channels between the
particles, are the edges of the Voronoi polyhedra. To carry out
the mapping, we first used [56,57] the Delaunay tessellation to
divide the packing into cells of four nearest-neighbor particles,
with each cell being a tetrahedron with its four vertices located
at the particles’ centers in the cell. Access to this void region
is through any of the four surfaces that are created by three
particles in the cell. Since the vertices of the tetrahedron are the
same as the particles’ centers, the void projected onto each of
the four faces indicates the smallest cross section perpendicular
to the flow field that would be accessible for fluid flow into the
central void space of the cell. Due to the random structure of
the packing, the sizes and shapes of such cross sections vary
in space.

Delaunay tessellation is the geometric dual of the Voronoi
tessellation [58]. The Voronoi cells are polyhedra, each of
which contains exactly one particle of the packing, such that
any point within every polyhedron is closer to that particle’s
center than the center of any other particle in the packing.
Hence, the Delaunay tessellation is used to construct a network
that represents the solid phase of the random packing, whereas
the Voronoi tessellation is utilized for constructing the pore

network equivalent of the void space. The vertices of the
Voronoi polyhedra are connected by the edges of the polyhedra
that represent the pore space.

To construct the Voronoi network, the positions of the
network’s vertices are identified and, given the four particles
that surround each vertex, the way the vertices are connected
to each other is determined. For each particle, referred to as
the main particle, all the possible nearest-neighbor groups of
particles are considered. Then, for each group a point is located
that has the same distance from the four particles’ centers,
which will be a vertex of the Voronoi network if and only if
its distance from the center of the main particle is equal to,
or less than, its distance from the other particles’ centers in
the packing. Otherwise, such a group of four particles cannot
generate a Delaunay cell, and that point cannot be a vertex
in the Voronoi network. The procedure is repeated for all the
particles in the packing, so that the spatial coordinates of all
the Voronoi vertices around each main particle, as well as the
groups of four particles that generate each Delaunay cell, are
determined.

After constructing the Voronoi network, we determined
the effective length and radius of each bond (pore throat)
in the network. As pointed out earlier, the cross sections of
the void space representing the flow channels vary along their
length. The length of each bond of the Voronoi network was
calculated by using the spatial coordination of its two end
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FIG. 8. The computed pore-length distributions of the random packings of hard particles with an initial porosity 0.54 and the three
particle-size distributions shown in Fig. 2.
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FIG. 9. Same as in Fig. 7, but for random packings of soft particles.

sites. To calculate the effective radius of each pore throat, we
define a hydraulic diameter Dh for each bond by the classical
relation

Dh = 2
flow cross section

wetted perimeter
.

Simple geometrical analysis, together with the spatial coordi-
nates of the particles’ centers in the random packing, yield the
flow cross sections and the wetted perimeters.

In what follows, when we refer to the PSDs and the
PLDs after deformation, we mean those at the maximum
applied strain. Figure 3 presents the calculated PSDs of the
three dense packings of hard particles for which the particle-
size distributions are shown in Fig. 2. The results are for
before and after deformation. Only the packing with the
broadest particle-size distribution, the PSD3, exhibits some
change in its pore-size distribution after deformation. This is
understandable as the particles are hard, and the packings are
dense. Figure 4 shows the corresponding PLDs. In this case,
the differences in the PLDs before and after deformation are
relatively significant, since the hard particles may not deform
much, but they can move significantly under compression.

Figure 5 shows the computed PSDs of the three dense
packings of soft particles, before and after deformation, with
the particle-size distributions shown in Fig. 2. Once again, only
the packing with the broadest particle-size distribution exhibits

some change in its PSD after deformation. This indicates that it
is the high density of the particles, rather than the rigidity of the
particles, that is responsible for the changes in the PSDs. The
corresponding PLDs are presented in Fig. 6. The magnitude
of the differences in the PLDs before and after deformation
is comparable to those for the packings of the hard particles,
hence confirming our assertion that it is the particle density
that plays the most important role in the deformation process
that we have simulated.

Next, we present the results for a random packing with
a porosity of 0.54. Figure 7 depicts the computed PSDs of
the three random packings of hard particles, before and after
deformation. Relative to the dense packings, the changes in
the PSDs are more pronounced. The changes in the PLDs are
even clearer; see Fig. 8. This is understandable because the
higher porosity of the packings allows the particles to move
farther after the external strain is applied.

Similarly, if the random packings with a porosity of 0.54
consist of soft particles, then the changes in their PSDs and
PLDs are even larger after deformation, as shown, respectively,
in Figs. 9 and 10. Note that in all the cases, the deformation
gives rise to a larger number of shorter pore throats than
those in the packings before the deformation. The significant
changes in the distribution of the pore lengths also affect the
permeability of the packings after deformation. This will be
discussed shortly.
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FIG. 10. Same as in Fig. 8, but for random packings of soft particles.
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FIG. 11. Fluctuations �φ in the porosity in the strain (z) and flow (x) directions.
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FIG. 12. Dependence of porosity of the dense packings on the external strain. The particle-size distributions are shown in Fig. 2, and the
porosities have been normalized by their initial values before deformation.
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FIG. 13. Same as in Fig. 12, but for loose packing with an initial porosity of 0.54. The insets show the logarithmic plots of the same.
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FIG. 14. Same as in Fig. 12, but for the regular packings. The insets show the logarithmic plots of the same.

B. Porosity

The effect of deformation on the porosity is also important.
The change in the porosity does depend, of course, on the
stiffness of the particles and their size distribution. Figure 11
presents the fluctuations in the porosities of the dense random
packings with the particle-size distribution PSD3 in two
directions, namely in the flow direction, x, and in the z

direction along which the external strain was applied. They
represent the porosities in the planes perpendicular to the given
directions, and they indicate that the deformation propagates
well throughout the packings. Similar results were obtained
for other types of packings.

Figure 12 presents the strain dependence of the porosity
of the dense packings with the two types of particles, soft
and hard, and their three size distributions shown in Fig. 2.
In this figure and in the following, the porosity is normalized
with respect to its value before deformation. In the case of
a narrow particle-size distribution, the porosity is reduced by
only about 5% at the maximum strain applied, with the change
being even smaller if the particles are hard. The reduction in
the porosity rises to about 7% with the widest particle-size
distribution (PSD3 in the figure). As expected, the change
in the porosity is larger when the particles are soft. Similar
behavior is obtained if we use regular packings of particles.

The reduction in the porosity is, however, significantly
higher in a random packing with an initial porosity of 0.54.
Figure 13 presents the results for the two types of particles
and the three particle-size distributions of Fig. 2. Even in the
packing of the hard particles, the porosity at the maximum
strain has been reduced by as much as 20%. The reduction in
the porosity is even larger in the case of regular packings; see
Fig. 14, where we show the results for the sc and fcc lattices.
This is perhaps expected as the regular arrangement of the
particles is more amenable to deformation and rearrangement
than a random packing of the particles.

We find that in the case of nondense packing, as well as the
regular ones, the changes in the porosity follow a power law
in the applied strain S,

φ

φ0
− 1 = −nSm, (21)

where φ0 is the initial porosity before deformation. Estimates
of n and m are listed in Table I. Figures 13 and 14 also show
the fits. The coefficient n is, of course, nonuniversal. For loose
random packings of hard particles, m ≈ 1.9 ± 0.1, whereas
with soft particles, m ≈ 1.5 ± 0.07 for the sc packings, and
m ≈ 1.23 ± 0.05 and m ≈ 1.54 and 1.35 for the fcc packings
with hard and soft particles, respectively. Thus, the exponent
m is also nonuniversal among the various types of packings.
In the case of dense packings, the porosity decreases with
the strain essentially linearly, so that m = 1. Estimates of the
coefficient n for the various dense packings are also listed in
Table I, while Fig. 12 also shows the fits.

C. Number of contacts between particles

The mean number of contacts, C, defined as the number of
spheres that any particle touches, is an important characteristic

TABLE I. Numerical values of the exponent m and the prefactor n

[see Eq. (21)] for various types of packings, particle-size distributions,
and types of particles (soft and hard).

Loose random and regular

Packing m n

PSD1-hard 2.00 2.24
PSD2-hard 1.89 2.00
PSD3-hard 1.83 1.90
PSD1-soft 1.57 1.45
PSD2-soft 1.47 1.40
PSD3-soft 1.43 1.39
sc-hard 1.28 1.13
sc-soft 1.18 1.12
fcc-hard 1.54 5.92
fcc-soft 1.35 4.96

Dense
PSD1-hard 1.0 1.56
PSD2-hard 1.0 1.60
PSD3-hard 1.0 1.61
PSD1-soft 1.0 1.89
PSD2-soft 1.0 2.10
PSD3-soft 1.0 2.18
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FIG. 16. The distributions of the computed normalized stresses, exerted by the fluid in the pore space of the dense random packings of soft
particles. The curves represent fits of the numerical data to the log-normal distribution, Eq. (23).
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FIG. 17. The distribution of the computed normalized stresses, exerted by the fluid in the pore space of a loose packing of soft particles
with an initial porosity of 0.54. The curves show the fits of the numerical data to Eq. (23).
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FIG. 18. The distribution of the computed normalized stresses, exerted by the fluid in the pore space of regular packings of soft equal-sized
particles. (a) Simple-cubic (sc) packing at an external strain of 0.2, and (b) face-centered-cubic (fcc) packing at an external strain of 0.2.
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FIG. 19. Dependence of the permeability of dense random packings on the external strain. The particle-size distributions are those shown
in Fig. 2. The permeabilities are normalized by their values before deformation.
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FIG. 20. Dependence of the permeability of dense random packings on the porosity. The particle-size distributions are those shown in
Fig. 2. The permeabilities are normalized by their values before deformation.
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FIG. 21. Collapse of the permeability-porosity data of Fig. 20
onto a universal curve.

of a deforming packing. Figure 15 presents the results for the
dense packing of soft particles, as well as the packing with a
porosity of 0.54. As the external strain increases, so also does
the number of contacts. For identical strains, the increases are
smaller in the case of the nondense random packing due to the
larger void space in the system.

During the initial stages of compressing the loose packings,
the particles are mostly displaced in the large void space of
the packings. Therefore, the number of contacts between the
particles does not change rapidly, giving rise to the concave
dependence of the contact on the strain seen in Fig. 15.
The slope of the plot is also higher at higher strain modes.
In other words, the rate of increase of the contact number
is higher at larger strains. The dense packing produces the
convex dependence of the contact number on the strain. At
the initial stages of compression, the contact number increases
rapidly because the packing is dense and the particles come
into contact easily. When the strain takes on higher values,
the packing becomes very compact, leaving not enough void
space for the particles to move freely, and thus the rate of the
increase of the contact number is lower at higher strain modes.

D. Fluid stress distribution and deformation

An important characteristic of fluid flow through a de-
forming porous medium is the distribution of the stresses
that are exerted by the fluid inside the pore space and its
evolution with the deformation. As long as the morphology
of the porous medium, the flow regime, and the type of
fluid (Newtonian versus non-Newtonian) do not change, the
shape of the distribution should remain the same. But, because
deformation changes the morphology, any change in the stress
distribution would also be a reflection of the deformation. To
calculate the stress distribution, we computed the second-rank
stress tensor induced by fluid flow in the pore space, before
and after deformation. The stress tensor τ is given by

τ = 1
2η[∇v + (∇v)T], (22)

where the notation is the same as before, and superscript T
denotes the transpose operation. The eigenvalues of the tensor
were then computed, with the largest one being the most
important flow-induced stress [59,60]. We then calculated the
distribution of the largest eigenvalues.

Since we wish to construct a probability distribution
function (PDF) for the calculated stresses that is hopefully
applicable to other types of porous media, we normalize
the stresses, τ ∗ = (τ − 〈τ 〉)/σ , where 〈τ 〉 is the mean stress
and σ is the standard deviation. Figure 16 presents the
stress distribution in the dense packings of soft particles
before deformation and after the maximum strain was applied.
The particles’ sizes were distributed according to the three
distributions shown in Fig. 2. The shape of the distribution
suggests that it may be fit to a log-normal distribution. Suppose
that the mean and standard deviation of the PDF of the
unnormalized ln(stress) are, respectively, m and σ , so that
we denote the distribution by lnN (m,σ ). Then, the PDF of τ ∗
is a three-parameter distribution lnN (γ ∗,m∗,σ ) given by [60]

h(τ ∗) = 1√
2σπ (τ ∗ − γ ∗)

exp

{
−1

2

[
ln(τ ∗ − γ ∗) − m∗

σ

]2
}

,

(23)

where m∗ = m − ln στ and γ ∗ = −〈τ 〉/σ , with στ = exp(m +
σ 2/2)

√
exp(σ 2) − 1. Note that γ ∗ represents the minimum

value of the normalized stress. As Fig. 16 indicates, Eq. (23)
provides a reasonably accurate representation of the numerical
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FIG. 22. Same as in Fig. 19, but for random loose packings with an initial porosity of 0.54.
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FIG. 23. Dependence of the permeability of the random loose packings on the porosity. The initial porosity was 0.54. The particle-size
distributions are those shown in Fig. 2. The permeabilities are normalized by their values before deformation.

data. Given the dense structure of the packings, the stress
distribution changes somewhat more significantly only in the
pore space with the widest particle-size distribution.

Figure 17 presents the same, but for the random packings
with an initial porosity of 0.54. Due to the larger void space
in the packings and, therefore, more significant deformation
of the particles, the changes in the PDF of the stresses are
much larger than those in the dense packings. Note also that
the range of the stresses exerted on the pore space with
the wider particle-size distribution is broader in the loose
packings than the dense ones. In addition, in both types of
packings, the stress distributions in the undeformed state are
more sharply peaked. This is, of course, due to pore closure
or a significant reduction in the pore sizes on the one hand,
and opening up other pores on the other hand, both caused by
deformation.

In Fig. 18, we present the corresponding results for the fcc
and sc packings. In these cases, the distributions are no longer
as sharply peaked as those in the random packings. The reason
is that the regular structure of the fcc and sc packings gives
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FIG. 24. Collapse of the permeability-porosity data of Fig. 23
onto a universal curve.

rise to a broader distribution of the local flow velocities and,
therefore, a broader distribution of the stresses. Although the
fit of the numerical results to the long-normal distribution is
not as accurate as those for the random packings, Eq. (23) does
provide a reasonable description of the stresses.

The fact that in all the cases the stress distribution can
be accurately represented by a log-normal PDF is significant.
The long tail of the distribution implies that there is a small
but significant fraction of the pore space in which very large
stresses exist. This, of course, has direct implications for
the solid phase as well, because if the stress in the fluid in
the vicinity of the solid surface is large, it directly affects the
surface. On the other hand, the sharp and narrow peaks of
the distributions imply that a large fraction of the pore space
experiences small stresses, implying that the internal solid
surface in that part of the pore space also experiences small
stress. Another characteristic of log-normal distributions is
their variance, which means that there are wide fluctuations in
the stresses.

E. Effective permeability

Figure 19 presents the strain dependence of the permeabil-
ities of the dense packings with the two types of particles,
soft and hard, in which the size of the particles is distributed
according to the particle-size distributions of Fig. 2. The
permeabilities are normalized with respect to their values
before deformation. The results indicate several important
features:

(i) The reduction in the permeabilities is not a strong
function of the elastic moduli of the particles.

(ii) Even though the final applied strain is only 0.03, the
reductions in the permeabilities are very significant, whereas
as Figs. 12 and 13 indicate, the corresponding reductions in
the porosities are much smaller.

(iii) The change in the permeabilities is also not a strong
function of the particle-size distribution.

These features are due to the dense structure of the packings.
As a result of applying an external strain to the top surface of
the system, the deformation propagates significantly toward
the lower part of the packings, resulting in the reduction in the
permeability.
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FIG. 25. Dependence on the external strain of the permeability of the simple-cubic (sc) and face-centered-cubic (fcc) packings of particles.
The permeabilities are normalized by their values before deformation.

Figure 20 presents the dependence of the normalized
permeabilities on the porosities for the dense packings. If
we replot the normalized permeability data shown in Fig. 20
versus the normalized porosities, all three curves collapse onto
each other. This is shown in Fig. 21.

The results for the strain-dependent permeability of the
random loose packings with a porosity of 0.54 are presented
in Fig. 22. Note that the final applied strain to the packings is
ten times larger than that in the dense packings. In this case,
the differences between the permeabilities of the packings
with hard and soft particles are larger at larger strains,
because the larger void space of the packings allows larger
deformation of the soft particles. Given that the initial porosity
is large, the reduction in the permeability is even larger than
the dense counterpart. Figure 23 depicts the corresponding
porosity-dependent permeabilities. Once again, the numerical
data collapse onto a single curve if the normalized permeability
is plotted versus the normalized porosity. This is shown in
Fig. 24. The data collapse implies that the relative reduction of
the permeability is a universal function of the relative reduction
in the porosity, independent of the particle-size distribution.

The results for the sc and fcc packings, shown in Fig. 25,
indicate an even larger reduction in the permeabilities. Due to
their dense structure, the changes in the permeability of both
regular packings are not sensitive to the elastic modulus of the
particles.

The conclusions are as follows: (i) in all cases, the
reductions in the permeabilities vary essentially linearly with
the applied strain; (ii) while the change in the permeability is
not a strong function of the hardness of the particles, it depends
strongly on the initial morphology of the pore space, and (iii)
the normalized permeability is a universal function of the nor-
malized porosity, independent of the particle-size distribution.

F. Effect of the friction coefficient

As already pointed out, larger friction between the particles
leads to smaller deformation in them. Thus, we expect a greater
reduction in the permeability when the friction coefficient is
smaller. This is borne out by Fig. 26, which presents the results
for the permeability and porosity for two friction coefficients
in a loose packing.
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FIG. 26. Dependence on the friction coefficient μ of the permeability and porosity of a random packing of soft particles with an initial
porosity of 0.54. The particle-size distribution is PSD3, shown in Fig. 2.

042903-15



SAHAR BAKHSHIAN AND MUHAMMAD SAHIMI PHYSICAL REVIEW E 94, 042903 (2016)

VI. SUMMARY

Extensive numerical simulations were carried out to study
the effect of deformation on the morphological and flow
properties of packed beds of spherical particles when they
are under mechanical compaction. Both random and regular
packings of particles were studied. The deformation leads to
the closure of some pores and the opening up of others, and,
therefore, the resulting reduction in the permeability varies
from relatively small to large, depending on the morphology
of the initial pore space. The distribution of the pores’ lengths,
the porosity of the pore space, and the pore-size distribution
also evolve under an external strain. It is of course the changes
in the morphology of the pore space that lead to the strong
reduction of the permeability.

The Kozeny-Carman (KC) equation [61,62],

K = 〈D〉2

36CKC

φ3

T 2(1 − φ)2
, (24)

is often used to correlate the permeability of packed beds of
particles with their porosity φ, where 〈D〉 is the mean particle

diameter, T is the volume-averaged tortuosity, and CKC is the
Kozeny-Carman shape factor, which depends on the materials
that the particles are made of, and accounts for the variations
in the permeability of porous media having the same porosity
but distinct microstructures. CKC is usually taken to be 2.5 for
packings of spherical particles. The tortuosity can be defined
in a variety of ways [63,64]. We find, however, that if the KC
equation is to be used to correlate the permeability with the
porosity φ of the deforming pore space, CKC must depend on
φ. This will, however, be purely empirical, as a result of which
the equation loses its predictive power.
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