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Binary mixtures of disks and elongated particles: Texture and mechanical properties
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We analyze the shear strength and microstructure of binary granular mixtures consisting of disks and elongated
particles by varying systematically both the mixture ratio and degree of homogeneity (from homogeneous to fully
segregated). The contact dynamics method is used for numerical simulations with rigid particles interacting by
frictional contacts. A counterintuitive finding of this work is that the shear strength, packing fraction, and, at the
microscopic scale, the fabric, force, and friction anisotropies of the contact network are all nearly independent
of the degree of homogeneity. In other words, homogeneous mixtures have the same strength properties as
segregated packings of the two particle shapes. In contrast, the shear strength increases with the proportion
of elongated particles correlatively with the increase of the corresponding force and fabric anisotropies. By a
detailed analysis of the contact network topology, we show that various contact types contribute differently to
force transmission and friction mobilization.
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I. INTRODUCTION

One of the compelling properties of granular materials is
that an homogenous mixture of particles is difficult to achieve
when they differ in size, shape, and material properties such as
density and friction [1–8]. Particle segregation occurs when a
granular mixture is subjected to flow or vibration and results in
more or less full “demixing” of different species [9–13]. Size
segregation has been extensively studied in the past [14–18],
but recently it has been shown that particle shapes also lead to
segregative behavior [7,19–22]. The segregation phenomena,
which represent a fundamental but often embarrassing prop-
erty of granular media, are well known in particle processing
industries, such as civil engineering for the elaboration of
concrete and food and pharmaceutical industries for the
handling of particles of different sizes. Most applications
require a homogeneous product, with stringent requirements
on the dispersion of constituents and the acceptable level of
fluctuations. The level of segregation can affect both the local
and global properties of the behavior of a granular material.

Whether numerically or by experiments, the quasistatic
behavior of granular mixtures has mainly been studied for
two different particle sizes [23]. The packing fraction of
homogeneous mixtures of bidisperse disks is found to be
higher than that of monodisperse packings, and the shear
strength is maximum at intermediate mixture ratio. Very
recently, it has also been evidenced that force distribution is
broader in packings composed of a mixture of smooth and rigid
particles than in packings composed of only rigid disks [24].
These results extend in fact those observed in the quasistatic
shearing of homogeneous polydisperse packings of disks and
irregular pentagons [25,26].

The properties of granular materials with noncircular and
aspherical shapes have only recently been investigated in a
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systematic fashion [27–40]. A nonlinear evolution of packing
fraction and shear strength is observed when particle shape
increasingly deviates from circular shape [41]. However, the
geometrical and mechanical properties of mixtures of different
particle shapes have not yet been investigated. Furthermore,
to our best knowledge, systematics analysis has always been
performed only for homogenous systems. As previously
mentioned, the mixtures of different particle shapes and sizes
are generally inhomogeneous and, hence, it is crucial to
understand and quantify also the effects of the degree of
homogeneity on the rheology. It is clear that such a control
of the degree of homogeneity is quite challenging in practice
and, for this reason, it has not been investigated in the past.

The aim of this paper is to systematically explore the
combined effects of mixture ratio and the level of homogeneity
on the mechanical behavior of sheared binary mixtures
composed of elongated and circular particles by means of
contact dynamics simulations. In particular, an interesting
issue that we would like to address in this paper is to quantify
to which extent a “good mixture” leads to “better” rheological
properties. Among all possible particle shapes, elongated
particles were used since their shape can be quantified
by a single shape parameter representing their anisometry.
Furthermore, it is well established that elongated particles
tend to develop orientational order affecting fabric, force
transmission, and frictional behavior as compared to circular
particles [32,42–47].

In this work, packing homogeneity was represented by
the Lacey mixing index [48,49], which varies from zero for
homogenous packing to one for fully segregated packings. We
numerically construct different packings, each characterized
by a mixture ratio and a Lacey mixing index. The packings
are analyzed in the steady state in terms of their shear
strength, packing fraction, connectivity, and fabric and force
anisotropies as functions of these two parameters.

In the following, we introduce in Sec. II the numerical
approach, system characteristics, and loading parameters. In
Sec. III we focus on the evolution of shear strength and
packing fraction with mixture parameters. The microstructure
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is analyzed in Sec. IV in terms of connectivity, and contact and
force anisotropies. Section V presents concluding remarks and
a summary of our main results.

II. MODEL DESCRIPTION

A. Numerical procedures

The simulations were carried out by means of the contact
dynamics CD method [19,50–52]. The CD method is based
on implicit time integration of the equations of motion and a
nonsmooth formulation of mutual exclusion and dry friction
between particles. This method requires no elastic repulsive
potential and no smoothing of the Coulomb friction law for the
determination of forces. The nonsmooth contact laws, which
relate the impulsions exerted at each contact with the change of
relative velocity during the time step, supposes that grains are
perfectly rigid. The formulation of these contact laws involves
two coefficients of restitution (normal and tangential) that
control the amount of energy dissipated during collisions; in
all the simulations presented in this paper the coefficients of
restitution are set to zero. An iterative algorithm of solution
is used, by means of which the impulsions and changes of
momentum of each grain over the time step are determined.
For specific implementation of the contact dynamics method
see, for instance, Ref. [51].

For a systematical investigation of the effect of mixture ratio
and mixture homogeneity, strict procedures need to be used in
order to generate packings with continuously varying texture.
The mixture ratio parameter α is the proportion of elongated
particles. We varied α from 0 for a packing composed of only
disks to 1 for packing composed of only elongated particles.
We have Np = 13000 particles, Nα

p = αNp elongated particles
and (1 − α)Np disks.

Mixture homogeneity can be measured by various mixing
indices. A common definition is that of Lacey, which is directly
proportional to the standard deviation from a given mean
property of one of the constituents of a mixture [48,49].
Let yi be the y coordinate of the ith elongated particle.
The average position of elongated particles is given by

〈y〉 = (
∑Nα

p

i=1 yi)/(Nα
p ) and their variance by S2 = [

∑Nα
p

i=1(yi −
〈y〉)2]/(Nα

p − 1). Numerically, it is easy to construct fully
segregated granular systems. We choose to place all elongated
particles in a band of thickness ε located at the center of the
packing. In the segregated case, Nα

p /nb elongated particles are
randomly distributed along nb horizontal bands of thickness
δH = H/nb, where H is the initial height of the packing.
From these two known states, for a given mixture ratio, the
Lacey parameter M is given by

M = S2
r − S2

S2
r − S2

0

, (1)

where Sr and S0 are the values of the variance calculated from
the homogenous and fully segregated systems, respectively.
Hence M varies from 0, for fully segregated system, to 1, for
fully homogeneous mixture.

The issue is to efficiently distribute elongated particles
inside the material in order to obtain the desired value of
M , with a continuous transition from fully segregated to fully
homogeneous state initially constructed. Thus, given Eq. (1)

FIG. 1. Geometry of rcr particles.

and the way fully segregated and homogenous states are built,
we randomly distribute the elongated particles in subband
of thickness δH ′ = H ′/nb, where H ′ is the thickness of the
central band defined by

H − H ′

H − ε
= M∗, (2)

where M∗ represents the homogeneity parameter. At the end
of the construction, the Lacey parameter M is computed and
compared to the desired homogeneity parameter M∗. Due to
the inherent disorder of granular media, we do not expect to
obtain the exact imposed value. In practice, our mixtures are
defined with a precision of |M − M∗| < 0.01.

B. Elongated particles

The elongated particles are modeled as a juxtaposition of
two half-disks of radius R′ and one rectangle of length L

and width 2R′ [32] as shown in Fig. 1. In the following, we
will refer to these particles as “rounded-cap rectangles” (rcr).
The elongation of rcr particles is defined by the dimensionless
parameter η [41], or the aspect ratio λ as follows:

η = �R

R
= λ − 1

λ
, (3)

where R = L/2 + R′ is the radius of the circle circumscribing
the particle, �R = R − R′ = L/2 and λ = (L + 2R)/(2R).
η varies from 0 for a circle to 1, corresponding to a line of
zero thickness. As it was reported by a number of studies,
particle shape elongation affects drastically the rheological
properties of granular media. For instance, a well-known
result is that the packing fraction varies unmonotonically as
particles become more elongated [28,29,53,54], whereas the
shear strength increases linearly [32]. In our simulations η is
fixed to be 0.7 for which we know that in the critical state (see
below), the packing fraction of packing composed with only
rcr particles nearly coincides with that of packings of disks,
whereas the shear strength is 40% higher1 [32,55].

1Note that a series of simulations were also performed with η = 0.4,
for which we know that the packing fraction of packing composed
with only rcr particles is maximal. In this case the shear strength is
slightly larger than that of a system composed of only disks, but the
trends that are presented later are basically the same.
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(a)

(b)

(c)

FIG. 2. Representations of disk-disk (dd), disk-rcr (dr), and rcr-
rcr (rr) contacts.

For a mixture of disks and rcr particles three kinds of
contacts may arise: disk-disk, disk-rcr, and rcr-rcr. On the
other hand, since the rcr particles are modeled as clusters of
two disks and one rectangle, the disk-rcr contacts may occur in
the form of disk-disk or disk-side contacts, and rcr-rcr contacts
in the form of disk-disk, disk-side, or side-side contacts. In
this last case, two contact points are necessary to represent
side-side contacts, as shown in Fig. 2. The procedure of contact
detection between polygonal particles and its implementation
in the framework of the CD method are described in detail in
Ref. [36].

C. Sample construction and biaxial test

All samples are prepared according to the same protocol.
First, a dense packing composed of 13 000 disks is constructed
by means of a layer-by-layer deposition model based on
simple geometrical rules [56]. The particles are deposited
sequentially on a substrate. Each new particle is placed at
the lowest possible position at the free surface as a function
of its diameter. This procedure leads to a dense packing in
which each disk is supported by two underlying particles and
supports one or two other particles. In order to avoid long-range
ordering, a weak size polydispersity is considered by varying
the diameter d of the disks in the range of [dmin,2dmin] with a
uniform distribution of particle volume fractions.

For each choice of the parameters α and M∗, and according
to the procedure established above (see Sec. II A), αNp disks
are replaced by rcr particles with each disk serving as the
circumscribing circle of a rcr particle. Note that the rcr particles
are introduced with random orientation in the disk.

Following this geometrical process, the packing is com-
pacted by isotropic compression inside a rectangular frame
of dimensions l0 × h0 in which the left and bottom walls are
fixed, and the right and top walls are subjected to the same
compressive stress σ0. The gravity g and friction coefficients
μ between particles and with the walls are set to zero during

the isotropic compression in order to avoid force gradients and
obtain isotropic dense packings. This procedure is stopped
when a persistent contact force network is obtained and
fluctuations around the mean values of the solid fraction
and connectivity of the contact network remain below 0.1%.
Figure 3 displays snapshots of the packings for several values
of M∗ and α at the end of isotropic compaction.

The isotropic samples are then subjected to vertical com-
pression by downward displacement of the top wall at a
constant velocity vy for a constant confining stress σ0 acting on
the lateral walls. The friction coefficient μ between particles
is set to 0.5 and to zero with the walls. Since we are interested
in quasistatic behavior, the shear rate should be such that the
kinetic energy supplied by shearing is negligible compared
to the static pressure. This can be formulated in terms of an
inertia parameter I defined by [57]

I = ε̇

√
m

p
, (4)

where ε̇ = ẏ/y is the strain rate, m is the particle mass, and p

is the mean pressure. The quasistatic limit is characterized by
the condition I � 1. In our simulations, I was below 10−3.

We performed a large number of biaxial simulations for a
broad set of combinations of the mixture ratio and homogene-
ity parameters. The mixture ratio α was varied from 0.1 to 0.9
by steps of 0.1, and, for each value of α, the homogeneity pa-
rameter was varied in the set {0.0,0.1,0.2, . . . ,0.8,0.9,0.97}.
Two other biaxial tests were performed for packings composed
of only disks (α = 0) and rcr particles (α = 1). Hence a total
number of two times 110 simulations were performed: (1)
isotropic compression and (2) biaxial test from the isotropic
state constructed. For video samples of the simulations, see
www.cgp-gateway.org/ref036.

III. MACROSCOPIC BEHAVIOR

The shear strength of granular materials is characterized by
the coefficient of internal friction ϕ, which can be calculated
from the stress tensor σ defined by [19,58]

σij = 1

V

∑
c∈V

f c
i �c

j , (5)

where �c
j is the j component of the branch vector joining

the centers of the two touching particles at contact c, f c
i is

the i component of the force vector at contact c, and V is the
total volume. The macroscopic friction coefficient is given by
μ = sinϕ = q/p, where p = (σ1 + σ2)/2 is the mean stress,
q = (σ1 − σ2)/2 is the stress deviator, and σ1 and σ2 are the
principal stresses. For biaxial shearing, the major principal
direction during compression is assumed to be vertical.

Figure 4 shows the normalized shear stress q/p and packing
fraction ρ as a function of shear strain εq for five extreme
combinations (see inset) of the mixture ratio α and mixture
homogeneity M∗. The shear strain εq is evaluated from the
difference between the vertical and horizontal strain defined
respectively by ε1 = ∫ h

h0

dh′
h′ = ln (1 + �h

h0
) and ε2 = ∫ l

l0

dl′
l′ =

ln (1 + �l
l0

), where l0 and h0 are the initial box width and
height. �h = h − h0 is the total downward displacement, and
�l = l − l0 is the total change of the box width.
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(a) (b)

(c) (d)

(e) (f)

(g)

(h)

FIG. 3. Examples of the generated packings at the initial state,
for α = 0.5 (left column) and α = 0.1 (right column) and for M∗ =
0.0 (a),(b), M∗ = 0.5 (c),(d), and M∗ = 1.0 (e),(f). A zoom near
the central zone is shown for α = 0.5 and M∗ = 0.0 (g) and M∗ =
1.0 (h).

During biaxial compression, the shear stress increases
initially to a high value before decreasing to a constant value
in the steady state. The jump observed at εq = 0 reflects both
the rigidity of the particles and high initial packing fraction

FIG. 4. Normalized shear stress q/p (a) and packing fraction
ρ (b) as a function of cumulative shear strain εq for five extreme
combinations (see schematic representation in inset) of the mixture
ratio α and mixture homogeneity M∗.

of the samples induced by initial isotropic compaction. All
samples dilate during shear and ρ declines from its value ρ iso

(see Sec. II) in the initial isotropic state and levels off at a
constant value ρ∗ in the steady state. The samples undergo
an almost homogeneous dilation at low shear strains and thus
ρ decreases rapidly. At larger strains, a nearly homogeneous
packing fraction ρ∗ is reached practically at εq = 0.4 for all
samples. Both ρ∗ and the friction coefficient sin ϕ∗, defined
from the mean value of q/p in the steady state, are independent
of the initial state, and thus for our rigid particles ρ∗ and ϕ∗
represent intrinsic properties of the material at the macroscopic
scale [59].

Figure 5 shows the average values of sin ϕ∗ as a function
of both α and M∗. As expected, the shear strength increases
as the proportion α of elongated particles increases. We note
also that this increase is nearly linear for all values of M∗.
We also observe that, for a given value of α, the shear
strength is practically independent of M∗. This finding is a
rather counterintuitive finding as one should rather expect a
decrease of the strength for M∗ → 1 [60,61]. In particular,
knowing the ability of elongated particles to orient themselves
perpendicular to shear direction (see [32,42,43,45–47], and
Sec. IV), a “naive” picture is that segregation should create a
smooth and rigid surface enhancing the sliding of disk over
the set of elongated particles at their interface. We will see in
Sec. IV C that this idea is partially true.

We also observe in Fig. 6 that the packing fraction is
nearly independent of both α and M∗. The independence of ρ∗
with respect to α was expected only for M∗ → 1. Indeed, as
mentioned in Sec. II B, systems composed of only rcr particles
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FIG. 5. Macroscopic friction angle sin ϕ∗ as a function of the
ratio (a) and homogeneity (b) of the mixture for all values of M∗ (a)
and α (b) averaged in the steady state. Error bars correspond to the
standard deviation of the fluctuations in the steady state.

with elongation parameter η = 0.7 have nearly the same
packing fraction as the disk packing.2 This is again a surprising
result that the packing fraction is only very weakly dependent
on the value of α. This is also a rather counterintuitive behavior
as it is often believed that the shear strength in granular
materials should increase with solid fraction.

IV. GRANULAR TEXTURE, FORCE TRANSMISSION, AND
FRICTION MOBILIZATION

A well-known feature of dry granular materials is that the
shear strength results from the buildup of various anisotropic
structures during shear due to (i) friction between the particles
and (ii) steric effects depending on particle shapes and size
distributions [62–66]. Figure 7 shows a typical map of normal
forces fn represented by the thickness of the lines joining
particle centers to the contact points, and by friction mobiliza-
tion at contact c represented by circles whose diameters are
proportional to the mobilization index I c

m = |f c
t |/(μf c

n ) [35],
where f c

t is the tangential force. Visual inspection reveals the
anisotropic and inhomogenous nature of the contact and forces
networks. In particular, these features are enhanced when
packings tend to be segregated. Indeed, for fully segregated
packings [here M∗ = 1; Fig. 7(b)], the mobilized contacts are

2Note that the packing fraction increases with α in the case of
rcr particles with elongation parameter η = 0.4 but, again, the shear
strength and packing fraction remains also nearly independent with
M∗.

FIG. 6. Packing fraction ρ∗ as a function of the proportion α of
rcr particles for all values of M∗ averaged in the residual state. Inset:
ρ∗ as a function of M∗ for all values of α. Legend are the same as for
Figs. 5(a) and 5(b) for the inset. Error bars correspond to the standard
deviation of the fluctuations in the steady state.

FIG. 7. Snapshots of force-bearing particles for (a) (α,M∗) =
(0.50,0.00) and (b) (α,M∗) = (0.5,1.00) in the critical state at εq 	
0.5. Floating particles (i.e., particles with one or no contacts) are
shown in white and normal forces are represented by the thickness
of the segments joining the particle centers to the contact point. The
diameters of light-gray (yellow) circles are proportional to the friction
mobilization Ic = |f c

t |/(μf c
n ) at each contact c.
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mainly concentrated in the central part of the packing with
contacts between rcr-rcr particles for which normal forces have
a marked “zigzag” shape. In contrast, for fully homogenous
systems [here M∗ = 0; Fig. 7(a)] no peculiar organization of
normal forces or mobilized contacts is observed.

Below, we investigate the general organization (texture) of
our sheared packings in terms of particle connectivity, and
force and fabric anisotropies of the contact network. First,
we briefly present the statistical descriptors of the granular
microstructure and force transmission, in terms of density and
average force and branch vector length as a function of contact
orientation.

A. Stress partition

Since the shear stress corresponds to the deviation of
stress components from the mean stress p along different
space directions, the most useful information encoded in the
microstructure is the contact density and average normal and
tangential forces as a function of contact orientations. Let
us introduce the probability distribution function P (n) of
contact orientations n and the average branch vector 〈�〉(n) as a
function of n as a descriptors of the anisotropies of the contact
network. Likewise, the force anisotropy can be characterized
by the average contact force 〈 f 〉(n) as a function of n. In
two dimensions, the unit vector n is parametrized by a single
angle θ , and the branch vector � and contact force f can be
represented by their normal and tangential components: � =
�nn + �t t and f = fnn + ft t . Thus the probability density
P (θ ) of contact orientations θ , the angular averages of the
components 〈�n〉(θ ) and 〈�t 〉(θ ) of the branch vectors and the
average components 〈fn〉(θ ) and 〈ft 〉(θ ) of forces as a function
of contact orientation θ provide a rich description of the
anisotropic state of a granular material [26,35,38,39,62,67,68].

As shown in Fig. 8, for sheared systems the above functions
tend to take a simple unimodal shape, which can be well
approximated by their truncated Fourier expansions:

P (θ ) = 1

2π
{1 + ac cos 2(θ − θc)} (a),

〈�n〉(θ ) = 〈�n〉{1 + aln cos 2(θ − θln)} (b),
〈�t 〉(θ ) = 〈�n〉alt sin 2(θ − θlt ) (c),
〈fn〉(θ ) = 〈fn〉{1 + af n cos 2(θ − θf n)} (d),
〈ft 〉(θ ) = 〈fn〉af t sin 2(θ − θf t ) (e),

(6)

where ac is contact orientation anisotropy, aln is normal
branch anisotropy, alt is tangential branch anisotropy, af n is
normal force anisotropy, and af t is tangential force anisotropy.
The angles θc, θln, θlt , θf n, and θf t are the corresponding
privileged directions. In practice, anisotropic parameters are
calculated through the force and fabric tensors presented in
the Appendix. The analytical forms of 〈�t 〉 and 〈ft 〉 result
from the orthonormal nature of the Fourier basis and the fact
that the mean value of �t and ft vanish as a consequence of,
respectively, axial symmetries and force balance:∫ π

0
〈�t 〉(θ )P (θ )dθ =

∫ π

0
〈ft 〉(θ )P (θ )dθ = 0. (7)

The anisotropies ac, aln, alt , af n, and af t are interesting
not only as descriptors of the granular microstructure and
force transmission, but also it can be shown that the general

FIG. 8. Polar representation of the functions P (θ ) (a), 〈�n〉(θ ) (b),
〈�t 〉(θ ) (c), 〈fn〉(θ ) (d), and 〈ft 〉(θ ) (e) for different values of the M∗

and α.

expression of the stress tensor (5) leads to the following simple
relation [32,39,67,69]:

sin ϕ∗ 	 1
2 (ac + aln + alt + af n + af t ), (8)

where the cross products between the anisotropy parameters
have been neglected.

In the following section, we analyze the anisotropies and
their respective roles in the shear strength as a function of the
degree of homogeneity and mixture ratio.

B. Anisotropy of the contact network and forces

Figures 9 and 10 show the variations of the contact
anisotropy and the normal and tangential branch anisotropies,
ac, a�n, and a�t , respectively, averaged in the steady state, as
a function of the proportion α of elongated particles for all
values of M∗ and as a function of M∗ for all values of α.
We see that ac is positive and increases with α. Both a�n and
a�t are small compared to ac but they are negative and they
increase in absolute value with α. A negative value means that,
on average, the normal and tangential components of branch
vectors are preferentially perpendicular to the major principal
stress direction.

These variations of the geometrical anisotropies with
α are compatible with the well-known trend of elongated
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FIG. 9. Evolution of contact anisotropies as a function of α (a)
for all values of M∗ and as a function of M∗ for all values of α in the
steady shear state. Error bars correspond to the standard deviation of
the fluctuations in the steady state.

particles to orient themselves perpendicularly to the shear
direction [32,42,43,45–47], sandwiched between two disks at
low values of M∗ [see snapshot in Fig. 7(a)] or in the form of
columnar structures when M∗ → 1 [see snapshot of Fig. 7(b)].

FIG. 10. Evolution of normal (up) and tangential (down) branch
anisotropies as a function of α for all values of M∗ and in the insets
as a function of M∗ for all values of α in the steady shear state. Error
bars correspond to the standard deviation of the fluctuations in the
steady state. Legends are the same as in Figs. 9(a) and 9(b) for the
insets.

FIG. 11. Evolution of normal (up) and tangential (down) force
anisotropies as a function of α for all values of M∗ and in the insets
as a function of M∗ for all values of α in the steady shear state. Error
bars correspond to the standard deviation of the fluctuations in the
steady state. Legends are the same as for Figs. 9(a) and 9(b) for the
insets.

In all cases, particles form longer branch vectors with their
neighbors in the direction of extension, which suggest that the
particles touch preferentially along their minor axes when the
contact orientation is close to the compression axis, and along
their major axis when the contact orientation is close to the
extension axis.

In contrast, we see that all geometrical anisotropies are
nearly independent with the level of homogeneity, except
maybe for α = 0.6 and 0.7 for which we can detect a slight
increase of ac and |a�n| from 0.42 to 	0.62 and from 0.05 to
0.18, respectively. As it was the case for the macroscopic re-
sponse, this observation is again very surprising because visual
inspection in Figs. 3 and 7 illustrate that the structure of the
packings clearly depends on the values of M∗, and one would
again expect that the columnar structure developed for M∗ →
1 would imply an increase of the geometrical anisotropies.
In other words, the anisotropic parameters introduced above
cannot capture the geometrical differences induced by segre-
gation, and a specific traitement must be done (see Sec. IV C).

Figure 11 shows the variations of the normal and tangential
force anisotropies, respectively af n and af t , averaged in
the steady state, as a function of α for all values of M∗
and as a function of M∗ for all values of α (inset). We
see that both anisotropies increase with α. In connection
with the variations of ac with α, the increase of af n shows
that stronger force chains are transmitted along the principal
stress direction and thus the mean normal force, given by
〈fn〉 = ∫ π

0 P (θ )〈fn〉(θ )dθ , increases too. In the same time,
the increase of af t with α reveals that an increasing number
of contacts are mobilized in friction when disks are replaced
by rcr particles. Indeed, by integrating Eq. 6(e) in the range
[0,π/2], the mean mobilization index 〈Iμ〉 = 〈|ft |〉/(μ〈fn〉) is
equal to 2af t . This variation of af t is also compatible with the
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well-known aptitude of faceted particles to mobilize friction
at side-side contacts [32,36,39,70,71].

In contrast, we note again that both af n and af t remain
constant with M∗. In other words, normal and tangential force
anisotropies cannot capture the specificities of the mixture such
as the peculiar distribution of mobilized contacts illustrated
in Fig. 7 for segregated systems. Finally, it is also worth
mentioning that both tangential force anisotropy and the
absolute value of branch anisotropies increase with α in the
same range from 0.0 to 0.2, so that af t + a�n + a�t 	 0.

Thus, by virtue of Eq. (8), the increase of the macroscopic
friction angle with the mixture ratio α is essentially due to the
increase of ac and af n. In contrast, the independence of sin ϕ∗
with respect to M∗ results from the fact that all anisotropies are
also independent with M∗. This last finding is very surprising
in particular when we refer to the maps of Figs. 3 and 7, in
which just a visual inspection reveals profound change in the
granular structures and forces. This point is discussed in much
more detail in the following section.

C. Partition of the contact network

As mentioned in the preceding section, a distinct feature of
a binary granular mixture is the possibility of forming different
types of contacts. We can distinguish contacts in each set of
particles having the same shape, i.e., disk-disk and rcr-rcr con-
tacts, and contacts at the interface between each species, i.e.,
disk-rcr contacts. Furthermore, rcr-rcr or disk-rcr contacts may
occur in the form of side-side or side-disk contacts, which are
able to accommodate force lines that are usually unsustainable
by disk-disk contacts. For this reason, it is worthwhile trying to
isolate their respective roles with respect to the shear strength
as well as the structural and forces anisotropies.

As we have seen previously that the effect of α results in a
“simple” shift of the data, and also because we must go down
to a lower scale of description to analyze precisely the effect
of M∗, in this section, we consider only packing composed by
the same proportion of disk and rcr (i.e., α = 0.5).

A tricolor map of normal contact forces projected along
the vectors joining the particle centers to the contact points
and representing disk-disk (dd), disk-rcr (dr), and rcr-rcr (rr)
contacts is displayed in Fig. 12, for α = 0.5 and three different
values of M∗. We see here that the force chains reflect the
mixing different contact types. In the homogeneous case, the
spatial organization of contacts is also very homogeneous and
the contact and force networks are composed of small sets of
short chains composed of only disk-disk and rcr-rcr contacts,
partially mediated by disk-rcr contacts. In contrast, in the fully
segregated case we observe long force chains for each subset
of contacts. In particular, force chains composed of only rcr-rcr
contacts have a marked zigzag aspect, in comparison to that of
only disk-disk contacts.

1. Partial anisotropies

In the residual state, the proportions of different contact
types are nearly constant. Figure 13 shows the proportions
kdd , kdr , and krr of dd, dr , and rr contacts averaged over the

FIG. 12. Snapshots of force-bearing particles for α = 0.5 and
M∗ = 0.0 (a), M∗ = 0.5 (b), and M∗ = 1.0 (c) in the critical state at
εq 	 0.5. The floating particles (i.e., particles with one or no contacts)
are shown in white, and the normal forces are represented by the
thickness of the segments joining the particle centers to the contact
points, in red for disk-disk contacts, yellow for disk-rcr contacts, and
in black for rcr-rcr contacts.

residual state as a function of M∗, and for α = 0.5. We see that
kdr declines with M∗ from 0.5 (for homogeneous packings) to
	0 for fully segregated packings, the only dr contacts being
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FIG. 13. Proportions of disk-disk (dd), disk-rcr (dr), and rcr-rcr
(rr) contacts as functions of the homogeneity parameter M∗ and for
α = 0.5. The error bars represent the standard deviation in the steady
state.

located at the interface between the two phases. At the same
time, kdd and krr increase from 0.25 to 0.45 and from 0.2
to 0.55, respectively. Interestingly, kdd > krr for M∗ < 0.6.
In this way, as the segregation increases, the contact network
passes from a contact network dominated by dr contacts to a
contact network dominated by dd and rr contacts. Note that
we have kdd 	 krr since we present results for α = 0.5. In
general, kdd (M∗ = 0) declines from 0.8 for α = 0.1 to 0.05
for α = 0.9, whereas krr (M∗ = 0) increases in the opposite
proportion and kdr (M∗ = 0) remains between 0.2 and 0.5, but
the general trends observed in Fig. 13 are always the same.

Let us consider now the mean angular distributions,
introduced in Sec. IV A, of the contact and force vectors
supported by disk-disk, disk-rcrc, and rcr-rcr contacts such
that

P (θ ) = Pdd (θ ) + Pdr (θ ) + Prr (θ ),

〈�n〉(θ ) = 〈�n〉dd (θ ) + 〈�n〉dr (θ ) + 〈�n〉rr (θ ),

〈�t 〉(θ ) = 〈�t 〉dd (θ ) + 〈�t 〉dr (θ ) + 〈�t 〉rr (θ ), (9)

〈fn〉(θ ) = 〈fn〉dd (θ ) + 〈fn〉dr (θ ) + 〈fn〉rr (θ ),

〈ft 〉(θ ) = 〈ft 〉dd (θ ) + 〈ft 〉dr (θ ) + 〈ft 〉rr (θ ),

where the indices refer to the partial contributions of dd,
dr , and rr contacts. The corresponding anisotropies can be
extracted by fitting each distribution; see Eq. (6). In practice,
the anisotropy parameters are calculated through the force and
fabrics tensors, presented in the Appendix by restricting the
summation to each set of contacts. In principle, the principal
directions of these partial angular distributions do not coincide
with those of the overall tensors at all stages of shearing. But
in the residual state the principal directions coincide so that
the global anisotropy of each angular distribution is the sum
of its partial anisotropies:

aγ = add
γ + adr

γ + arr
γ , (10)

where γ stands alternatively for {c,�n,�t,f n,f t}. Note that
by construction we have add

�t = 0.
Figure 14 shows the variation of the partial contact and

force anisotropies averaged in the residual state for α = 0.5,
as functions of the homogeneity parameter M∗, together with

M

(a)

∗

ac

add
c

adr
c

arr
c

M∗

afn

add
fn

adr
fn

arr
fn

M∗

arr
ft

adr
ft

add
ft

aft

(b)

(c)

FIG. 14. Partial contact anisotropies add
c , adr

c , and arr
c (a), partial

normal force anisotropies add
f n, adr

f n, and arr
f n (b), and partial tangential

force anisotropies add
f t , adr

f t , and arr
f t (c) of dd , dr , and rr contacts

as functions of the homogeneity parameter M∗, together with total
anisotropies ac, af n, and af t , for α = 0.5. The error bars represent
the standard deviation in the steady state.

the total anisotropies ac, af n, and af t . We do not consider here
the normal and tangential branch anisotropies, which remain
very small. We see that the contact and force anisotropies
supported by dd contacts remain constant as a function of M∗
although their proportion increases. This can be understood by
remarking that the disk-disk contacts are not affected by the
specificities of particle shapes (here elongation). In contrast,
we see that all the partial contact, normal and tangential
force anisotropies supported by dr contacts decline with M∗,
whereas the anisotropies supported by rr contacts increase.
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FIG. 15. Macroscopic friction angle sin ϕ∗ and partial shear
strengths for disk-disk (dd), disk-rcr (dr), and rcrc-rcrc (rr) contacts
as functions of the homogeneity parameter M∗, together with the
predicted values by Eq. (13) (empty symbols), for α = 0.5. The error
bars represent the standard deviation in the steady state.

Here, it is remarkable that in all cases adr
γ + arr

γ remains
constant which, by virtue of Eq. (10) explains the fact that
the global corresponding anisotropy remains also constant. In
particular, Fig. 14(c) reveals also that for nearly segregated
packings, friction is mainly mobilized at rr contacts since
arr

f t > adr
f t + add

f t , which is in agreement with the observation
done on Fig. 7(b).

2. Stress partition

Along the same line, the stress tensor can be partitioned
as a sum of three tensors by grouping the contacts in Eq. (5)
according to their types:

σ = σ dd + σ dr + σ rr , (11)

where σ dd , σ dr , and σ rr are obtained from the expression of
the stress tensor Eq. (5) by restricting the summation to dd, dr ,
and rr contacts, respectively. The corresponding partial stress
deviators qdd , qdr , and qrr are then calculated and normalized
by the mean pressure p. The macroscopic friction angle is then
given by

sin ϕ∗ = q∗
dd

p
+ q∗

dr

p
+ q∗

rr

p
. (12)

Figure 15 shows qdd/p, qdr/p, and qrr/p averaged in the
residual state as a function of M∗ for α = 0.5. We see that
qdd/p is nearly constant, and remarkably qdr/p follows a
trend opposite to that of qrr/p so that the decrease of qdr/p

with M∗ is exactly compensated by the increase of qrr/p,
which explains the independence of sin ϕ∗ with respect to
M∗. In particular, qdr/p → 0 for segregated packings, thus
evidencing the critical role of contacts at the interface between
the two species of particles. This confirms also the idea
suggested in Sec. III that sliding is enhanced at the interface.
From a broader point of view, fully segregated granular media
are the archetypical representation of composite materials
made of various layers and for which the interface between
layers is known to behave often as a “weak zone” of the
material [72,73].

The harmonic partition of stresses presented in Sec. IV A
holds also for the subnetwork of dd, dr , and rr contacts, and

one can show that

q∗
ξ

p
	 1

2

(
aξ

c + a
ξ

�n + a
ξ

lt + a
ξ

f n + a
ξ

f t

)
, (13)

where ξ stands alternatively for {dd,dr,rr}. This additive
partition is nicely verified by our numerical data as shown in
Fig. 15 in dashed lines. Thus the corresponding variations of
the partial stresses with M∗ results from the corresponding
variations of the associated partial anisotropies with M∗,
underlying the role of each contact type in fabric, force
transmission, and friction mobilization.

V. CONCLUSIONS

In this paper, a systematic numerical analysis of the
quasistatic rheology of two-dimensional sheared granular
mixtures was presented. We considered a binary mixture of
disks and elongated particles of rounded-cap-rectangle shape
(rcr). The binary mixture is characterized by the mixture ratio
α, which varies from 0 for a packing composed of only disks
to 1 for a packing composed of only rcr particles, and with
a homogeneity parameter M∗ which varies from 0 for an
homogeneous packing to 1 for a fully segregated packing.
The numerical samples were subjected to biaxial compression
until a steady shear state was reached.

A major result of this work is that the shear strength is
independent of the packing homogeneity and increases as the
mixture ratio increases. In contrast, the packing fraction was
found to be nearly independent from both α and M∗. We have
also performed a detailed analysis of the microstructure. In
particular, the fabric and force anisotropies were analyzed as
a function of α and M∗.

The increase of the shear strength with respect to the
mixture ratio appears to be a consequence of the increase of
the contact network and normal force anisotropies whereas the
increase of tangential anisotropy is compensated by a decrease
of branch vector anisotropies. This behavior is explained by
the fact that the elongated particles mobilize more friction
than disks during flow and orient themselves orthogonally to
the major principal stress direction. Replacing disks by rcr
particles naturally enhances this phenomenon.

Remarkably, the contact and force anisotropies are inde-
pendent with respect to the level of packing homogeneity,
thus explaining also the independence of the shear strength.
This finding is rather counterintuitive since, at least geomet-
rically, the packing structure varies drastically with M∗. By
performing an additive partition of the stress, force, and fabric
anisotropies in terms of disk-disk, disk-rcr, and rcr-rcr con-
tacts, we showed that the partial shear strength and anisotropies
of rcr-rcr contacts increase with M∗, whereas those of disk-rcr
contacts decrease. This is consistent with the observation that
all local and global properties are independent of M∗.

This work is a systematic investigation of particle shape
mixture ratio and the degree of mixture homogeneity by
considering a binary mixture of different shapes. It shows
that the mixture ratio parameter and, at first order, an “average
homogeneity” parameter related to particle positions are good
control parameters of the packings. Our findings highlight also
the key role of the interface between two different species in a
granular mixture, especially when the system is segregated.
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In this case, the strength supported by the contacts at the
interfaces between the two species declines, revealing that
the interface is a “weakness zone” of the material.

Hence an interesting issue suggested by this work is how
the strength at the interface between two species can be
increased. A natural way is by adding cohesive forces, which
is typically the case for mixtures of wet and dry granular
media, but we may expect that the weakness zones will then
move from the interface to the zone where dry particles will
be grouped. Thus, in view of realistic modeling of granular
materials or, in a more general way, composite materials,
we see here that the definition of a “good mixture” is not
evident. The counterintuitive features evidenced in this work
suggest the necessity of further investigations of the behavior
of granular mixtures by considering other shapes, and also
different interactions, both in 2D and 3D. In particular, it
would be highly instructive to assess the proper role of friction
by varying this parameter systematically for each value of the
homogeneity parameter.
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APPENDIX: FORCE AND FABRIC TENSORS

In practice, the values of all anisotropy parameters and the
angles of corresponding privileged directions can be calculated

from the following force and fabric tensors:

Fαβ = 1

π

∫ π

0
nαnβPθ (θ )dθ,

χln
αβ =

∫ π

0
〈�n〉(θ )nαnβPθ (θ )dθ,

χlt
αβ =

∫ π

0
〈�t 〉(θ )nαtβPθ (θ )dθ, (A1)

χ
f n

αβ =
∫ π

0
〈fn〉(θ )nαnβPθ (θ )dθ,

χ
f t

αβ =
∫ π

0
〈ft 〉(θ )nαtβPθ (θ )dθ,

where α and β design the components in the considered
frame. From Eqs. (6) and (A1), assuming that in a biaxial
sheared state θc = θf n = θf t = θσ = π/2, θln = θlt = 0, the
following relations are easily obtained:

ac = 2(F1 − F2)/(F1 + F2),

aln = 2
(
χln

1 − χln
2

)/(
χln

1 + χln
2

) − ac,

alt = 2
(
χl

1 − χl
2

)/(
χl

1 + χl
2

) − ac − aln, (A2)

af n = 2
(
χ

f n

1 − χ
f n

2

)/(
χ

f n

1 + χ
f n

2

) − ac,

af t = 2
(
χ

f

1 − χ
f

2

)/(
χ

f

1 + χ
f

2

) − ac − af n,

where χ l = χ ln + χ lt , χf = χf n + χf t , and the indices 1 and
2 refer to the principal values of each tensor. By construction,
we have (F1 + F2) = 1, (χl

1 + χl
2) = 〈�n〉, and (χf

1 + χ
f

2 ) =
〈fn〉. Note that ac, af n, and af t are always positive, whereas
aln and alt are negative. Note that a�t is equal to 0 for packings
composed of only disks.

[1] M. Pica Ciamarra, A. Coniglio, and M. Nicodemi, J. Phys.:
Condens. Matter 17, S2549 (2005).
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[56] C. Voivret, F. Radjaı̈, J.-Y. Delenne, and M. S. El Youssoufi,

Phys. Rev. E 76, 021301 (2007).
[57] G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004).
[58] L. Staron, F. Radjai, and J.-P. Vilotte, Eur. Phys. J. E 18, 311

(2005).
[59] J. Mitchell and K. Soga, Fundamentals of Soil Behavior (Wiley,

New York, 2005).
[60] J. Lee, M. Guimaraes, and J.-C. Santamarina, J. Geotech.

Geoenviron. Eng. 133, 1136 (2007).
[61] J.-C. Santamarina and H. Shin, in Meso-Scale Shear Physics in

Earthquake and Landslide Mechanics (CRC Press, Boca Raton,
FL, 2009), pp. 159–190.

[62] F. Radjai, D.-E. Wolf, M. Jean, and J.-J. Moreau, Phys. Rev.
Lett. 80, 61 (1998).

[63] H. Troadec, F. Radjai, S. Roux, and J. C. Charmet, Phys. Rev. E
66, 041305 (2002).

[64] N. P. Kruyt, Int. J. Solids Struct. 40, 3537 (2003).
[65] S. J. Antony and N. P. Kruyt, Phys. Rev. E 79, 031308 (2009).
[66] N.-P. Kruyt, Mech. Mater. 44, 120 (2012).
[67] L. Rothenburg and R.-J. Bathurst, Geotechniques 39, 601

(1989).
[68] N.-P. Kruyt and L. Rothenburg, Acta Mech. 225, 2301 (2014).
[69] H. Ouadfel and L. Rothenburg, Mech. Mater. 33, 201 (2001).
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