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We investigate the formation and the coarsening dynamics of islands in a strained epitaxial semiconductor film.
These islands are commonly observed in thin films undergoing a morphological instability due to the presence
of the elastocapillary effect. We first describe both analytically and numerically the formation of an equilibrium
island using a two-dimensional continuous model. We have found that these equilibrium island-like solutions
have a maximum height h0 and they sit on top of a flat wetting layer with a thickness hw . We then consider two
islands, and we report that they undergo a noninterrupted coarsening that follows a two stage dynamics. The
first stage may be depicted by a quasistatic dynamics, where the mass transfers are proportional to the chemical
potential difference of the islands. It is associated with a time scale tc that is a function of the distance d between
the islands and leads to the shrinkage of the smallest island. Once its height becomes smaller than a minimal
equilibrium height h∗

0, its mass spreads over the entire system. Our results pave the way for a future analysis of
coarsening of an assembly of islands.
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I. INTRODUCTION

Understanding the dynamics of coarsening and its effect
on self-organization is a central question in nonequilibrium
physics and solid-state physics since its experimental discov-
ery by Ostwald at the end of the 19th century [1] and the
seminal theoretical papers of Lishitz and Slyosov and Wagner
[2,3] in the late 1960s (see also [4]). Coarsening is a general
phenomenon in which the natural size of a pattern increases
with time in a continuous manner over a large range of time
scales [5–8]. From a more applied point of view, coarsening
has a significant impact on properties of matter such as the size
of grains in polycrystalline solids, the hardening of metallic
alloys, foam dynamics, sintering, sand dunes, etc. We focus
here on the fundamental aspect of coarsening of strained
semiconductor quantum dots, such as the gallium–aluminum
nitride or silicon-germanium islands [9–20]. These islands are
extensively under scrutiny both for their present and promising
applications in electronics or optics, such as single photons
emitters, and for their insights into the fundamental processes
of epitaxial growth. The properties and potential applications
of quantum dot assembly are indeed crucially dependent on
the amount of coarsening, which may critically affect the size
homogeneity of such structures [19]. Moreover, the coarsening
of such islands seems to be out of the classical description of
Ostwald coarsening and requires more investigation.

The formation of self-organized semiconductor quantum
dots results from the Stranski-Krastanov growth mode [21].
In this scheme, growth initially proceeds as planar layers
that transform above a given critical thickness hc into islands
separated by a wetting layer. These islands enable a partial
relaxation of the elastic stress of the strained film, which
overcomes capillary and wetting effects. In SiGe systems,
this growth mode includes, in fact, two different kinetic
pathways. The seminal work of Lagally [22] showed that at
large misfit, i.e., for a large enough Ge composition x, in a
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Si1−xGex film, the island growth initiates via the nucleation
of large enough fluctuations [23]. On the other hand, at low
enough misfit (i.e., low enough x), further experiments [24,25]
revealed that the island growth begins with a nucleationless
instability, reminiscent of the Asaro-Tiller-Grinfeld (ATG)
instability [26–30]. In this case, the film becomes unstable
above the critical height hc, and an initial surface corrugation
increases and transforms after some time into an assembly
of quantum dots [24,25,31–37]. After its initial growth, the
assembly of islands undergoes some coarsening, driven by
the more efficient elastic relaxation of the largest islands.
The initial roughly isotropic islands (prepyramids) thence
ripen, and as they display steep enough slopes, they transform
into anisotropic quantum dots of various sizes, especially
pyramids and domes. Even in the paradigmatic SiGe systems,
the nature of the island coarsening is still a matter of
debate and uncertainty [19]. For the initial isotropic islands
[38–40], various theories predict a power-law evolution of
the surface roughness and island density at constant mass
(annealing); however, the exponents of these power laws
are clearly different from the classical Ostwald exponents
[19]. In addition, the coarsening might be impacted by the
growth dynamics [41], the anisotropy of the surface energy
[20,42–47], alloying, and compositional effects.

In this article, we investigate analytically and numerically
the basic but still challenging issue of the coarsening of
strained islands in isotropic systems that results from the
ATG instability. We have found that the island shape can be
described by a simple analytical expression, and we report
the existence of a continuous family of solutions for the
island shape as a function of the system mass. Moreover, we
have found that the dynamics of coarsening of two islands
can be reduced to a simple two-step model. If the surface
evolution might be well described initially in the framework
of the linear theory of the ATG instability, the dynamics leads
after some time to islands that require a nonlinear analysis.
The complexity of the dynamics describing the coarsening
of such islands lies in the combination of out-of-equilibrium
properties and the long-range elastic effects. Furthermore, the
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power-law behavior mentioned before arises in the late time
dynamics where nonlinear effects cannot be neglected. We
show here that this dynamics is intimately connected to the
static equilibrium shapes of the islands and to the gradient of
the chemical potential between two islands.

This article is organized as follows. In the first part,
we describe the model under scrutiny, which is a (1+1)-
dimensional strained film that evolves via surface diffusion.
In the second part, we characterize analytically the stationary
equilibrium solutions of our model. This solution corresponds
to a single island sitting on top of a wetting layer, whose
characteristics [maximum height h0, surface (or mass) S,
chemical potential μ] are analytically predicted. In particular,
we show that the wetting interactions yield the existence of
a minimal island height. In the third part, we numerically
integrate the evolution equation of a simple system composed
of two islands with slightly different heights, whose interaction
leads to a single island after complete coarsening. In the last
part, we derive an analytical model that describes the two-
island coarsening dynamics. We show that it is characterized
by a two-step evolution, with two specific time scales. The
first step is well described by a quasistatic approach where
each island chemical potential (whose gradient rules the mass
transfer between them) is determined by the steady state
values. It is associated with an exponential evolution of the
island heights, with a characteristic time scale tc proportional
to the chemical potential gradients, i.e., to the difference of the
island chemical potentials divided by their separating distance
d. The second coarsening step occurs once the smallest island
is smaller than the minimal stable island height and therefore
quickly dissolves on the wetting layer. It is associated with a
second characteristic time scale τ that describes the dynamics
of diffusion of a perturbation on a wetting layer and that
depends on the system size. This two-step dynamical evolution
compares favorably with the direct numerical simulation of
the coarsening dynamics. The two islands’ coarsening can be
simply modeled by a system of differential equations for each
island height. Conclusions and perspectives are drawn in the
last part, where this study is promoted with respect to the more
general study of the coarsening of an assembly of islands.

II. CONTINUUM MODEL

We study a film-substrate system, made of a thin film lying
on a substrate evolving only via surface diffusion. For studying
the formation and the dynamics of the island, we use a standard
surface diffusion model whose dynamics is governed by [29]

∂h

∂t
= D

√
1 + h2

x

∂2μ

∂s2
, (1)

whereD is the surface diffusion coefficient, ∂/∂s is the surface
gradient, and μ is the chemical potential, which depends on the
elastic and surface energies. The upper film boundary is free
and localized at z=h(x), while the film-substrate interface at
z = 0 is coherent. We solve the Lamé mechanic equilibrium
equations with linear isotropic relations. For simplification,
we assume that the film and substrate share the same elastic
constants. When the film is flat h(x) = cte, it is subject to an
elastic stress measured in units of the volumetric elastic energy
E0 = E η2/(1 − ν). Here η= (af − as)/as is the misfit where

af (as) is the film (substrate) lattice spacing, E is Young’s
modulus, and ν is Poisson’s coefficient. In the general case,
when h(x) displays small slopes, the mechanical equilibrium
problem can be solved analytically (see, e.g., [40]), and its
solution is given in terms of the Hilbert transform H of the
surface profile. In addition, wetting interactions between the
film and its substrate prove to be crucial in thin films. They
might be described by a height-dependent surface energy γ (h)
[38,48–51]. In semiconductor systems, one can consider a
smooth γ (h) with the generic form characterized by a length δ

and amplitude cw, γ (h) = γf [1 + cwf (h/δ)], where f (h →
∞) = 0. Here δ is of the order of the wetting layer (a few
angstroms). Adding the elastic and capillary effects, one finds
the chemical potential:

μ(x) = E[h] + γ (h)
∂2h

∂x2
+ γ ′(h)/

√
1 + h2

x , (2)

where E[h] is the volumetric elastic energy on the surface and
the third term in Eq. (2) is due to wetting, where γ ′(h) = ∂γ

∂h
. By

balancing the elastic energy to the surface energy, we deduce
the characteristic length l0 =γf /[2(1 + ν)E0] describing the
typical size of a horizontal surface undulation and the associ-
ated time scale t0 = l4

0/(Dγf ). For example, for a Si0.75Ge0.25

film on Si, we find l0 = 27 nm and t0 = 23 s at 700◦ C (see [52]
for an estimate of surface diffusion coefficients). In the small
slope approximation, we obtain the following dimensionless
equation for the surface evolution:

∂th = −∂xx

(
∂xxh + cw

δ
e−h/δ + H[∂xh]

)
, (3)

where H[∂xh] is the Hilbert transform of the spatial derivative
of h(x,t), defined as F−1(|k|F(h)), where F is the Fourier
transform [40]. The first term on the right-hand side of
Eq. (3) represents the stabilizing effect of the surface energy,
the second term is the wetting potential, and the third term
represents the destabilizing effect of the elastic strain. Note
that Eq. (3) represents a conservation equation, and the integral∫

h(x)dx (which represents the total amount of deposited
material) is constant. This equation is nonlinear, and we use a
pseudospectral method to solve it numerically [40]. Moreover,
as we shall see, an analytical insight can be obtained from
an analysis of the stationary solution of Eq. (3). As shown
previously [40], there exists a critical height hc above which
a flat film becomes unstable with respect to infinitesimal
perturbations,

hc = −δ ln(δ2/4cw). (4)

For an initial height above hc, the initial perturbation evolves
towards an assembly of islands that display a noninterrupted
coarsening [40] leading to one stationary island. We describe
analytically the characteristics of such a stationary island in
next section.

III. THE STATIONARY ISLAND

The goal of this section is to study the equilibrium stationary
solutions of Eq. (3), in particular the island profile. Indeed,
above the critical height hc, the evolution of the surface is
characterized by a noninterrupted coarsening that eventually
leads to a one-island solution [40]. This stationary profile is
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FIG. 1. Island-like solution resulting from the long time evolution
of an initially small surface perturbation. The dots are the stationary
profile obtained with numerical simulation of Eq. (3). The system
size is L = 32,cw = 0.045, and δ = 0.005. The time is T = 1000.
The horizontal and vertical axes are in units of l0. The line is the
ansatz given in Eq. (6), with a width W = 9π/4. The value of h0 is
taken from the top of the island, and the corresponding value of hw

is obtained from Eq. (7). The value of the area S = ∫ L/2
−L/2 h(x,t)dx =

1.5 is conserved throughout the dynamics.

given by one island of height h0 lying on top of a wetting layer
of thickness hw (see Fig 1). It is characterized by a constant
chemical potential μ on the surface,

μ = −∂xxh − cw

δ
e−h/δ − H[∂xh] . (5)

The stationary island characteristics maximum height h0

and width W can be predicted by the use of a simple model.
This model has a no free parameters and can be characterized
by the total surface of the system S = ∫ L/2

−L/2 h(x,t)dx, with L

being the system size. Thus islands of different heights h0 can
be generated numerically by varying the control parameter S in
the initial condition. Motivated by the result of the numerical
simulation of Eq. (3), we choose the following ansatz for the
stationary solution of Eq. (3). For |x| < W/2,

h(x) = (h0 − hw)

(
2

W

)6[(
W

2

)2

− x2

]3

+ hw, (6)

while for |x| > W/2, we choose h(x) = hw. This ansatz
satisfies the continuity of the function at |x| = W/2 and the
continuity of the first and second derivatives as required by
Eq. (5). After substitution of this ansatz in Eq. (5) and using
a simple polynomial expansion around the point x = 0 up to
second order in x, we obtain at order x0 the following relation
between the island height h0 and the height of the wetting layer
hw:

h0 = hw + 135π2

128

cw

δ
e−hw/δ . (7)

At order x2, we obtain the relation for the width of the island
W = 9π

4 [53].
In Fig. 1, we compare the profile of a stationary island

obtained with numerical simulation of Eq. (3) with this ansatz.
The agreement between the two is rather good, with small

* *

FIG. 2. Height of the island h0 as a function of hw in units of l0.
Dots are obtained by simulations of Eq. (3), and the solid line is the
ansatz given in Eq. (6). The value of h∗

0 is defined in the figure. The
different points are obtained by performing different simulations for
different value of the initial surface S. The values of the parameters
L,cw , and δ are the same as the ones used in Fig. 1. The minimal
value of h∗

0 is defined in Eq. (8)

discrepancies located in a small zone at the foot of the
island [54].

We also plot in Fig. 2 the height of the island h0 at
equilibrium as a function of the height of the wetting layer far
away from the island hw . The simulation values are obtained by
varying the system surfaces S, while the ansatz result follows
from Eq. (7). Again, the agreement is rather good. Of special
interest is the fact that h0 has a minimal value h∗

0. The critical
height h∗

0 is defined by the relation ∂h0
∂hw

= 0; this leads, using
Eq. (7), to the result

h∗
0 = δ

[
1 + ln

(
cw135π2

δ2128

)]
, (8)

while the associated wetting thickness is

h∗
w = δ ln

(
cw135π2

δ2128

)
. (9)

As we observed numerically, islands with h0 smaller then h∗
0

are not stable. Hence, the presence of wetting interactions
enforces the existence of a minimal value of the equilibrium
island surface in addition to the existence of a minimal
film thickness hc. The critical island height can be observed
experimentally, and it will be important in the description of
the coarsening process.

In regard to the chemical potential, each island-like station-
ary solution of Eq. (5) is defined by

μi = −cw

δ
e−hw/δ. (10)

This result comes from the fact that far from the island the film
is rather flat, so that hx and hxx vanish, and only the wetting
potential term remains dominant in Eq. (5). Therefore, the
simple knowledge of hw can lead to the determination of the
chemical potential and vice versa. Using Eqs. (9) and (10),
we find that the critical chemical potential μ∗ associated with
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FIG. 3. The height h0 as a function of the surface S = 〈h〉L, with
L being fixed. The horizontal and vertical axes are in units of l2

0 and
l0, respectively. The dots are obtained by numerical simulation of
Eq. (3). The curve corresponds to Eqs. (12) and (7). The inset is the
height hw as a function of S. The system size is L = 128,cw = 0.045,
and δ = 0.005.

the critical solution with h∗
0 reads

μ∗ = −δ
128

135π2
. (11)

We mentioned previously that islands are uniquely charac-
terized by the surface S. Now that we have the profile of the
island given in Eq. (6), we can calculate its surface S,

S = hwL + 243π3

224

cw

δ
e−hw/δ ≡ 〈h〉L . (12)

The total surface (mass) S can thus be varied by varying the
mean height 〈h〉 or the size L of the system.

We plot in Fig. 3 the island maximum height h0 and the
height of the wetting layer hw versus the surface S by varying
〈h〉. As expected, we observe in Fig. 3 that the maximum
height of the island increases as the surface S increase. As h0

is a decreasing function of hw (see Fig. 2), we also find that
hw is a decreasing function of the island surface S, as shown
in the inset of Fig. 3. This may be associated with the larger
relaxation of the larger islands that are in equilibrium with a
more stable thin wetting layer.

We now study the chemical potential associated with the
one island solution. For h0 � h∗

0, there exists an equilibrium
island solution. Its chemical potential is given by Eq. (10)
in terms of the wetting layer thickness hw. The equilibrium
island chemical potential is plotted as a function of h0 in
Fig. 4. As the island surface increases, h0 increases, and
the island chemical potential naturally decreases, showing
the larger elastic relaxation of large islands. This conclusion
was also found in the three-dimensional island under study
in [40]. When h0 < h∗

0, only the flat film solution exists; its
chemical potential is entirely given by Eq. (11). We also plot
this chemical potential as a function of hw in Fig. 4. It is
an increasing function of hw as enforced by the (attractive)
wetting interactions. At equilibrium, for h > hc, an island of
thickness h0 coexists with a wetting layer of thickness hw,
which has the same chemical potential. In Fig. 4, we again
find good agreement between the numerical simulation and
our theoretical prediction. As expected, the chemical potential
has a maximum value μ∗, given by Eq. (11), associated with

−

−

−

−

−

(
)

∗

∗

FIG. 4. For h < h∗
0, the dash-dotted line is the chemical potential

μ = − cw

δ
e−h/δ as a function of height for the flat film. The units of the

vertical axis are in E0 = Eη2/(1 − ν) = 6.7 × 107 J/m3, and the units
of the horizontal axis are in l0. For h > h∗

0, the horizontal axis h = h0.
The dots represent the numerical simulation for the equilibrium state
of an island given by Eq. (3). The solid curve is the prediction given
using Eqs. (7) and (10) for the chemical potential of the island. The
dashed curve is given by Eq. (13).

the minimal value of the surface height h∗
0. The dashed curve

in Fig. 4 represents the linear approximation to μi ,

μl
i 
 −c(h0 − h∗

0) + μ∗, (13)

which has been obtained using Eqs. (7) and (10); here
c = 128

135π2 .

IV. COARSENING OF TWO ISLANDS

We now address the question of coarsening of two islands of
slightly different amplitudes (heights) separated by a distance
d. Let h1 and h2 be the heights of the small and large islands,
respectively (left and right peaks in Fig. 5). These quantities
will evolve with time. In Fig. 5, we represent the time evolution
of the two islands as enforced by the dynamical evolution
equation (3). The initial conditions for the simulations of
the two island problem are created by duplicating a single
island equilibrium solution numerically made in a system of
size L/2. In addition, each island solution is multiplied by
a constant factor very close to unity. The heights of the two
islands are h1 = hi − ε and h2 = hi + ε. We find a first regime
where the height of the small island decreases while the height
of the large island increases. Then, the small island reaches
the critical height h∗

0 at time tc [Fig. 5(d)]. In the second
regime for t > tc [Fig. 5(e)], the remaining mass in the wetting
layer diffuses towards the larger island, which relaxes towards
its equilibrium state [Fig. 5(f)]. The largest island height h2

constantly increases during the whole coarsening process.
In Fig. 6, we plot the temporal evolution of the local

chemical potential associated with the evolution given by
Eq. (3). The chemical potential on the small island increases
when its height decreases as it becomes less and less stable,
with the converse for the large island. Before tc, the chemical
potential μ between the two islands is a linear decreasing
function of space, as shown in Figs. 6(b) and Fig. 6(c).
Furthermore, when t < tc, outside the islands, the chemical
potential has variations in the scale of the system L. This
is due to finite size effects that can be neglected as long as
d � L. When the critical height of the small island is reached
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(
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(d)
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(
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(e)

− − −

(
)

(f)

FIG. 5. Numerical resolution of Eq. (3) for the profile evolution
of two interacting islands separated by a distance d . The horizontal
and vertical axes are in units of l0. The system size is L = 128.
The initial condition consists of two islands separated by a distance
d = 16 and initial amplitudes h1 = 0.36 (left island) and h2 = 0.37
(right island) with time (a) t = 0, (b) t = 700, (c) t = 1080 before tc,
(d) characteristic time t = tc = 1350, (e) t = 1550, and (f) t = 2580
when the equilibrium state is reached.

[Fig. 6(d)] at time t = tc, the chemical potential of the small
island is equal to μ∗, and the height of the small island h1

is h∗
0. For t > tc, while h2 is growing, the diffusion in the

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Numerical evolution of Eq. (3) for the chemical potential
of two interacting islands corresponding to Fig. 5. The units of
the vertical axis are E0 = 6.7 × 107 J/m3. The horizontal axis is in
units of l0.

wetting layer takes place on a scale of the order of L. This
second regime relaxes towards equilibrium, where, finally, the
chemical potential is constant [Fig. 6(f)].

V. MODEL OF COARSENING

We now develop a simple mean-field model that describes
the coarsening phenomena in two stages. In this model the
islands are represented by a punctual object of varying
surface. The advantage of this model is that it requires only
a small number of input parameters such as the width of
the island W and the chemical potential difference between
the two islands. We make the assumption that the dynamics
is close to equilibrium, so that the results for the stationary
island can be exploited. The first coarsening stage is defined
for t < tc when the two islands coexist, while for t > tc, the
smaller island has disappeared and perturbation of the wetting
layer diffuses towards the larger island.

For t < tc, we model the dynamics of the height of
each island based on the flux of matter induced by the
chemical potential gradient between the two islands. This
spatial gradient takes place on a length scale of order d. Mass
conservation enforces in this approximation [55]

αW∂th1 = μi(h2) − μi(h1)

d
,

αW∂th2 = μi(h1) − μi(h2)

d
, (14)

where h1 is the height of the small island, h2 is the height of
the large one, W is their width, and α is a constant geometrical
factor which is of order 1 [56].

Furthermore, we assume in the following that the island
chemical potential might be given by the linear form given in
Eq. (13). Hence, the system (14) simplifies to

αW∂th1 = −c(h2 − h1)

d
,

αW∂th2 = −c(h1 − h2)

d
, (15)

where c = 128
135π2 , given by the slope of Eq. (13). Let us write

the amplitude of the islands

h1(t) = hi − εh̃(t),

h2(t) = hi + εh̃(t), (16)

which implies that h1(t) + h2(t) = 2hi and h̃ is the perturba-
tion of the stationary state. Solving (15), we deduce that the
perturbation increases exponentially,

h̃(t) = e
2c

dαW
t , (17)

in the first temporal regime. This regime extends up to tc, such
that h1(tc) = h∗

0, which leads to h∗
0 = hi − εe

2c
dαW

tc . Hence, we
find that the characteristic time tc reads

tc = te ln

[
hi − h∗

0

ε

]
, (18)

where te = dαW
2c

.
As shown in Fig. 7, there is good agreement between the

numerical simulation and this estimate.
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FIG. 7. Amplitudes h1 and h2 of the islands as a function of time.
Solid curves are the theoretical prediction, and the dotted curve is
the numerical simulation. The times tc and tf are represented on the
figure. τ is defined as the time since tc for which the amplitude h2

of the large island has reached 99% of its equilibrium value. The
horizontal and vertical axes are in units of t0 and l0, respectively.

The second regime is reached when the amplitude of
the small island becomes smaller than the critical height
h∗

0,h1 < h∗
0 at t > tc. Mass diffusion then occurs in the wetting

layer. The characteristic time τ of this second regime then
depends essentially on the full size of the system L and only
weakly on the distance d. To quantify, we write the mass
conservation equation as

β(L − W )h1 + αWh2 = S, (19)

where α and β are geometrical factors for the island and for
the wetting layer, respectively, while S is fixed by the initial
conditions. From this relation, we deduce that

∂th1 = −A∂th2, A = αW

β(L − W )
. (20)

*******
*

*
*

*
*

*

FIG. 8. Characteristic times tc (asterisks) and tf (dots) as a
function of the distance d between the islands, obtained with
numerical simulation. The solid line is tc from Eq. (18), and the
dashed line is tf + τ , where τ is obtained with the numerical solution
of Eq. (21). The system size is L = 128. The time tf for the
disappearance of the two islands increases with the system size; it
is linear when d/L � 1. When d increases and becomes of the order
of L, there is a deviation from the linear law due to the effect of the
periodic boundary conditions. The horizontal and vertical axes are in
units of l0 and t0, respectively.

FIG. 9. Characteristic time τ as a function of the distance d

between the islands, obtained with numerical simulation of Eq. (3).
The line is the time τ obtained with the solution of Eq. (21). The
horizontal and vertical axes are in units of l0 and t0, respectively.

Again, we have assumed that the growth rate of the island
is proportional to the gradient of the chemical potential. This
gradient occurs on a scale of order L, so that

αW∂th2 = 2
[
μf (h1) − μl

i(h2)
]

L
. (21)

Here μf (h1) = − cw

δ
e−h1/δ is the approximate wetting chemi-

cal potential of the wetting layer. In order to obtain the time
evolution of h1(t) and h2(t), we have integrated numerically
Eqs. (20) and (21). As shown in Fig. 7, the system of
equations (20) and (21) captures well the numerical evolution
of Eq. (3). The amplitude of the island increases with time
before saturating at a value close to the predicted value, which
depends on the value of S, as shown in Fig 3.

In order to quantify this coarsening process, we define the
time tf as the time at which the amplitude of the large island has
reached 99% of its equilibrium value. In addition, we define τ

such that tf = (τ + tc).
In Fig. 8, we plot the different times tc and tf as a function

of the distance d between the islands using the numerical
and analytic results (18). We observe that as long as d/L is
small, tc increases linearly with the distance d as predicted
by Eq. (18). When d increases and becomes of the order
of L, there are deviations from the linear law in d due
to the image interaction since our numerical simulation is
performed in a periodic system. In Fig. 9, we show that the
time τ is almost independent of the distance d separating the
islands.

As a conclusion, Figs. 8 and 9 show that τ is independent
of d, while tf and tc increase linearly with d.

VI. CONCLUSION AND PERSPECTIVES

We have studied in this article the dynamics and the coars-
ening of strained islands. We first obtained an approximate
analytical equation for a stationary island lying on a wetting
layer. This approach allows us to predict the width W of the
island and to relate the island amplitude to the height of the
wetting layer. We have shown that the presence of the wetting
potential leads to the existence of a critical island height
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h∗
0 below which the island does not exist. The comparison

between the approximate analytical solution and the stationary
state resulting from the numerical integration of the mass
diffusion equation is good. Second, we have investigated the
dynamics of coarsening of two islands, and we have found that
this coarsening is noninterrupted; the small island disappears
in favor of the largest one. As observed numerically, in the first
regime the height of the largest island increases exponentially
until a time tc at which the smallest island becomes unstable.
The characteristic time tc scales like the distance d between
the islands. In the second regime, which lasts for a time τ , the
perturbation in the wetting layer diffuses, and the amplitude
of the remaining island grows until it reaches its equilibrium
value. This second regime is quite independent of the distance
d between the initial islands. In order to model this dynamics,
we propose a simple model based on a quasistatic hypothesis

with mass currents driven by the gradient of the chemical
potential. These results pave the way for a description of
coarsening in strained systems with long-range interactions.
We will extend this analysis to the problem of coarsening of
an array of N islands as generated by the Asaro-Tiller-Grinfeld
instability by generalizing the set of equations (14) to N islands.
An extension of this analytical work to three-dimensional
islands with the inclusion of the surface energy anisotropy
will be considered in the future.
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[43] M. Kästner and B. Voigtländer, Phys. Rev. Lett. 82, 2745 (1999).
[44] M. R. McKay, J. A. Venables, and J. Drucker, Phys. Rev. Lett.

101, 216104 (2008).
[45] J.-N. Aqua and T. Frisch, Phys. Rev. B 82, 085322 (2010).

042808-7

https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1063/1.447698
https://doi.org/10.1063/1.447698
https://doi.org/10.1063/1.447698
https://doi.org/10.1063/1.447698
https://doi.org/10.1016/S0370-1573(99)00046-0
https://doi.org/10.1016/S0370-1573(99)00046-0
https://doi.org/10.1016/S0370-1573(99)00046-0
https://doi.org/10.1016/S0370-1573(99)00046-0
https://doi.org/10.1103/RevModPhys.82.981
https://doi.org/10.1103/RevModPhys.82.981
https://doi.org/10.1103/RevModPhys.82.981
https://doi.org/10.1103/RevModPhys.82.981
https://doi.org/10.1103/PhysRevLett.109.096101
https://doi.org/10.1103/PhysRevLett.109.096101
https://doi.org/10.1103/PhysRevLett.109.096101
https://doi.org/10.1103/PhysRevLett.109.096101
https://doi.org/10.1103/RevModPhys.76.725
https://doi.org/10.1103/RevModPhys.76.725
https://doi.org/10.1103/RevModPhys.76.725
https://doi.org/10.1103/RevModPhys.76.725
https://doi.org/10.1103/PhysRevB.72.155323
https://doi.org/10.1103/PhysRevB.72.155323
https://doi.org/10.1103/PhysRevB.72.155323
https://doi.org/10.1103/PhysRevB.72.155323
https://doi.org/10.1088/0953-8984/18/8/R01
https://doi.org/10.1088/0953-8984/18/8/R01
https://doi.org/10.1088/0953-8984/18/8/R01
https://doi.org/10.1088/0953-8984/18/8/R01
https://doi.org/10.1103/PhysRevLett.98.096103
https://doi.org/10.1103/PhysRevLett.98.096103
https://doi.org/10.1103/PhysRevLett.98.096103
https://doi.org/10.1103/PhysRevLett.98.096103
https://doi.org/10.1016/j.ssc.2009.04.047
https://doi.org/10.1016/j.ssc.2009.04.047
https://doi.org/10.1016/j.ssc.2009.04.047
https://doi.org/10.1016/j.ssc.2009.04.047
https://doi.org/10.1016/j.surfrep.2008.09.003
https://doi.org/10.1016/j.surfrep.2008.09.003
https://doi.org/10.1016/j.surfrep.2008.09.003
https://doi.org/10.1016/j.surfrep.2008.09.003
https://doi.org/10.1103/PhysRevB.80.205321
https://doi.org/10.1103/PhysRevB.80.205321
https://doi.org/10.1103/PhysRevB.80.205321
https://doi.org/10.1103/PhysRevB.80.205321
https://doi.org/10.1063/1.3075899
https://doi.org/10.1063/1.3075899
https://doi.org/10.1063/1.3075899
https://doi.org/10.1063/1.3075899
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1016/j.physrep.2012.09.006
https://doi.org/10.1016/j.physrep.2012.09.006
https://doi.org/10.1016/j.physrep.2012.09.006
https://doi.org/10.1016/j.physrep.2012.09.006
https://doi.org/10.1103/PhysRevLett.110.096101
https://doi.org/10.1103/PhysRevLett.110.096101
https://doi.org/10.1103/PhysRevLett.110.096101
https://doi.org/10.1103/PhysRevLett.110.096101
https://doi.org/10.1103/PhysRevLett.65.1020
https://doi.org/10.1103/PhysRevLett.65.1020
https://doi.org/10.1103/PhysRevLett.65.1020
https://doi.org/10.1103/PhysRevLett.65.1020
https://doi.org/10.1103/PhysRevLett.64.1943
https://doi.org/10.1103/PhysRevLett.64.1943
https://doi.org/10.1103/PhysRevLett.64.1943
https://doi.org/10.1103/PhysRevLett.64.1943
https://doi.org/10.1103/PhysRevLett.84.4637
https://doi.org/10.1103/PhysRevLett.84.4637
https://doi.org/10.1103/PhysRevLett.84.4637
https://doi.org/10.1103/PhysRevLett.84.4637
https://doi.org/10.1103/PhysRevLett.84.4641
https://doi.org/10.1103/PhysRevLett.84.4641
https://doi.org/10.1103/PhysRevLett.84.4641
https://doi.org/10.1103/PhysRevLett.84.4641
https://doi.org/10.1007/BF02642562
https://doi.org/10.1007/BF02642562
https://doi.org/10.1007/BF02642562
https://doi.org/10.1007/BF02642562
https://doi.org/10.1016/0001-6160(89)90246-0
https://doi.org/10.1016/0001-6160(89)90246-0
https://doi.org/10.1016/0001-6160(89)90246-0
https://doi.org/10.1016/0001-6160(89)90246-0
https://doi.org/10.1103/PhysRevLett.67.3696
https://doi.org/10.1103/PhysRevLett.67.3696
https://doi.org/10.1103/PhysRevLett.67.3696
https://doi.org/10.1103/PhysRevLett.67.3696
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1016/j.surfrep.2004.05.001
https://doi.org/10.1016/0022-0248(92)90593-8
https://doi.org/10.1016/0022-0248(92)90593-8
https://doi.org/10.1016/0022-0248(92)90593-8
https://doi.org/10.1016/0022-0248(92)90593-8
https://doi.org/10.1103/PhysRevLett.71.1744
https://doi.org/10.1103/PhysRevLett.71.1744
https://doi.org/10.1103/PhysRevLett.71.1744
https://doi.org/10.1103/PhysRevLett.71.1744
https://doi.org/10.1063/1.118819
https://doi.org/10.1063/1.118819
https://doi.org/10.1063/1.118819
https://doi.org/10.1063/1.118819
https://doi.org/10.1016/S0039-6028(98)00461-0
https://doi.org/10.1016/S0039-6028(98)00461-0
https://doi.org/10.1016/S0039-6028(98)00461-0
https://doi.org/10.1016/S0039-6028(98)00461-0
https://doi.org/10.1146/annurev.matsci.29.1.173
https://doi.org/10.1146/annurev.matsci.29.1.173
https://doi.org/10.1146/annurev.matsci.29.1.173
https://doi.org/10.1146/annurev.matsci.29.1.173
https://doi.org/10.1103/PhysRevLett.79.4858
https://doi.org/10.1103/PhysRevLett.79.4858
https://doi.org/10.1103/PhysRevLett.79.4858
https://doi.org/10.1103/PhysRevLett.79.4858
https://doi.org/10.1103/PhysRevB.59.1990
https://doi.org/10.1103/PhysRevB.59.1990
https://doi.org/10.1103/PhysRevB.59.1990
https://doi.org/10.1103/PhysRevB.59.1990
https://doi.org/10.1103/PhysRevB.74.075413
https://doi.org/10.1103/PhysRevB.74.075413
https://doi.org/10.1103/PhysRevB.74.075413
https://doi.org/10.1103/PhysRevB.74.075413
https://doi.org/10.1103/PhysRevB.75.205312
https://doi.org/10.1103/PhysRevB.75.205312
https://doi.org/10.1103/PhysRevB.75.205312
https://doi.org/10.1103/PhysRevB.75.205312
https://doi.org/10.1103/PhysRevB.76.165319
https://doi.org/10.1103/PhysRevB.76.165319
https://doi.org/10.1103/PhysRevB.76.165319
https://doi.org/10.1103/PhysRevB.76.165319
https://doi.org/10.1103/PhysRevE.81.021605
https://doi.org/10.1103/PhysRevE.81.021605
https://doi.org/10.1103/PhysRevE.81.021605
https://doi.org/10.1103/PhysRevE.81.021605
https://doi.org/10.1063/1.3576916
https://doi.org/10.1063/1.3576916
https://doi.org/10.1063/1.3576916
https://doi.org/10.1063/1.3576916
https://doi.org/10.1103/PhysRevLett.82.2745
https://doi.org/10.1103/PhysRevLett.82.2745
https://doi.org/10.1103/PhysRevLett.82.2745
https://doi.org/10.1103/PhysRevLett.82.2745
https://doi.org/10.1103/PhysRevLett.101.216104
https://doi.org/10.1103/PhysRevLett.101.216104
https://doi.org/10.1103/PhysRevLett.101.216104
https://doi.org/10.1103/PhysRevLett.101.216104
https://doi.org/10.1103/PhysRevB.82.085322
https://doi.org/10.1103/PhysRevB.82.085322
https://doi.org/10.1103/PhysRevB.82.085322
https://doi.org/10.1103/PhysRevB.82.085322


SCHIFANI, FRISCH, ARGENTINA, AND AQUA PHYSICAL REVIEW E 94, 042808 (2016)

[46] G. Medeiros-Ribeiro, T. I. Kamins, D. A. A. Ohlberg, and R. S.
Williams, Mater. Sci. Eng. B 67, 31 (1999).

[47] V. A. Shchukin, D. Bimberg, T. P. Munt, and D. E. Jesson,
Phys. Rev. Lett. 90, 076102 (2003).

[48] P. Müller and R. Kern, Appl. Surf. Sci. 102, 6 (1996).
[49] B. J. Spencer, Phys. Rev. B 59, 2011 (1999).
[50] A. A. Golovin, S. H. Davis, and P. W. Voorhees, Phys. Rev. E

68, 056203 (2003).
[51] P. Müller and R. Kern, Surf. Sci. 529, 59 (2003).
[52] E. Chason, J. Tsao, K. Horn, S. Picraux, and H. Atwater, J. Vac.

Sci. Technol. A 8, 2507 (1990).

[53] The calculation of the Hilbert transform is done in real
space using the standard definition of the principal value
integral.

[54] These discrepancies can be improved by using higher order
polynomials or matching methods between the wetting layer
and the islands. However, an improvement of the solution does
not lead to any qualitative change.

[55] For simplicity, we neglect finite size effects, which lead to
small terms in d/L due to the presence of periodic boundary
conditions.

[56] α = ∫ W/2
−W/2 h(x)dx/h0W = 0.4636 and β = 0.22.

042808-8

https://doi.org/10.1016/S0921-5107(99)00206-8
https://doi.org/10.1016/S0921-5107(99)00206-8
https://doi.org/10.1016/S0921-5107(99)00206-8
https://doi.org/10.1016/S0921-5107(99)00206-8
https://doi.org/10.1103/PhysRevLett.90.076102
https://doi.org/10.1103/PhysRevLett.90.076102
https://doi.org/10.1103/PhysRevLett.90.076102
https://doi.org/10.1103/PhysRevLett.90.076102
https://doi.org/10.1016/0169-4332(96)00009-8
https://doi.org/10.1016/0169-4332(96)00009-8
https://doi.org/10.1016/0169-4332(96)00009-8
https://doi.org/10.1016/0169-4332(96)00009-8
https://doi.org/10.1103/PhysRevB.59.2011
https://doi.org/10.1103/PhysRevB.59.2011
https://doi.org/10.1103/PhysRevB.59.2011
https://doi.org/10.1103/PhysRevB.59.2011
https://doi.org/10.1103/PhysRevE.68.056203
https://doi.org/10.1103/PhysRevE.68.056203
https://doi.org/10.1103/PhysRevE.68.056203
https://doi.org/10.1103/PhysRevE.68.056203
https://doi.org/10.1016/S0039-6028(03)00055-4
https://doi.org/10.1016/S0039-6028(03)00055-4
https://doi.org/10.1016/S0039-6028(03)00055-4
https://doi.org/10.1016/S0039-6028(03)00055-4
https://doi.org/10.1116/1.576724
https://doi.org/10.1116/1.576724
https://doi.org/10.1116/1.576724
https://doi.org/10.1116/1.576724



