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Wetting hysteresis of nanodrops on nanorough surfaces
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Nanodrops on smooth or patterned rough surfaces are explored by many-body dissipative particle dynamics to
demonstrate the influence of surface roughness on droplet wetting. On a smooth surface, nanodrops exhibit the
random motion and contact angle hysteresis is absent. The diffusivity decays as the intrinsic contact angle (θY )
decreases. On a rough surface, the contact line is pinned and the most stable contact angle (θ ′

Y ) is acquired. The
extent of contact angle hysteresis (�θ ) is determined by two approaches, which resemble the inflation-deflation
method and inclined plane method for experiments. The hysteresis loop is acquired and both approaches yield
consistent results. The influences of wettability and surface roughness on θ ′

Y and �θ are examined. θ ′
Y deviates

from that estimated by the Wenzel or Cassie-Baxter models. This consequence can be explained by the extent of
impregnation, which varies with the groove position and wettability. Moreover, contact angle hysteresis depends
more on the groove width than the depth.
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I. INTRODUCTION

The wetting of a solid surface by a liquid is ubiquitous
in everyday life and industrial applications, such as cleaning,
printing, and microfluidics. The wettability is generally ex-
pressed in terms of the contact angle (CA) between liquid-gas
and solid-liquid interfaces. On a smooth surface, the intrinsic
CA (θY ) depends on the chemical composition only and is
described by Young’s equation [1],

cos θY = γsg − γsl

γlg

, (1)

where γij is the interfacial tension between i and j phases.
The subscripts g,l, and s represent gas, liquid, and solid,
respectively. When the CA is less than 90◦, the surface is
generally referred to as being lyophilic. On the contrary (CA
greater than 90◦), it is lyophobic. However, ideal surfaces
rarely exist in nature and surface roughness always occurs
on real surfaces. It is believed that the wetting behavior
is considerably influenced by surface roughness as well
[2–6]. Typically, two theoretical models are widely employed
to explain how surface roughness affects the CA. For the
completely wetted rough surface, the apparent CA (θ ) is related
to θY by the Wenzel model [7]

cos θ = r cos θY , (2)

where r is the area ratio of the wetted surface to the projected
one (r � 1). Due to the increment of the solid-liquid contact
area, surface roughness amplifies the lyophilicity for lyophilic
surfaces but raises the lyophobicity for lyophobic surfaces. On
the other hand, for the completely nonwetted rough surface
with the air pockets, θ can be determined by the Cassie-Baxter
model [7]

cos θ = α cos θY + (1 − α) cos(180◦). (3)

where α represents the area fraction of the wetted surface
(α < 1). The air pockets with the CA 180◦ always enhance
surface lyophobicity (θ > θY ).
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The above theories imply a unique CA for a liquid on a
surface. In fact, the CA is always in a range bounded by θa and
θr on a surface, where θa and θr represent the advancing and
receding CAs, respectively. Upon the inflation and deflation of
the drop, it is observed that the contact line is pinned for θr �
θ � θa . For the outward or inward movement of the contact
line, the CA should achieve θa or θr first, respectively. The
difference between θa and θr is defined as the extent of contact
angle hysteresis (CAH), �θ = θa − θr . Three mechanisms are
generally invoked to explain the existence of CAH: pinning by
chemical defects [3,8,9], adhesion hysteresis [9–12], and sur-
face roughness [6,13–15]. In the first mechanism, the contact
line is mechanically trapped by the lyophilic defects upon
retraction. The extent of CAH is strongly affected by the size
and lyophilicity of the blemishes. In the second mechanism,
the restructuring of the solid surface such as polymerlike
materials is induced by the liquid-solid contact to reduce the
system energy. As a result, the solid-liquid interfacial tension
is lowered from γsl associated with θa to γ ′

sl associated with
θr [10]. In the third mechanism, surface grooves lead to a
series of stable drop shapes with different apparent CAs [6,14].
Typically, periodic surfaces are used to demonstrate these
metastable states separated by the energy barrier, which cannot
be overcome by thermal fluctuations. Note that for the cases
of random surfaces with small roughness, this mechanism
coincides with the first mechanism [3,16].

Recently, the advance of science and technology has
promoted the miniaturization, leading to the structures on
the nanoscale eventually. For example, the structures in
semiconductor manufacturing are shrunk to be nanoscaled to
achieve higher performance. As a result, the exploration of
the wetting phenomena on the microscale, or even nanoscale
becomes important for the further developments in nanotech-
nology [17–21]. CAH is essential in understanding of the
wetting mechanism and CAH of nanodrops on substrates
can be investigated by simulations [22–29]. Unfortunately,
very few works are reported in the literature. Nanodrops on
randomly rough surfaces has been explored by molecular
dynamics [24]. It is shown that on hydrophobic surfaces,
nanodrops are in the Cassie-Baxter state and CAH is absent.
On hydrophilic surfaces, in contrast, strong CAH is observed.
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In addition, CAH of a drop on lyophobic patterned surfaces
(pillar and grid) immersed in an immiscible liquid has been
studied by dissipative particle dynamics (DPD) [23]. While
CAH is insignificant on the homogeneous substrate or at high
temperature, it becomes substantial on patterned surfaces at
low temperature. Contact line motion can also be simulated
by the Lattice-Bolztmann technique, which is a mesoscale
approach [30–32].

The wetting phenomena for microdrops or larger drops
on rough substrates have been widely investigated both
experimentally and theoretically. As the drop size and surface
roughness get down to the nanoscale, however, the validity of
Young’s equation is controversial because of the effect of the
line tension [33]. The applicability of the Wenzel or Cassie-
Baxter model becomes questionable [26–28,34,35]. Moreover,
how the nanoscale roughness alters the extent of CAH is still
unknown. The pinning of the contact line, which always occurs
in microscale experiments is not observed in simulations
of nanodrops [23,24]. In this work, the wetting behavior
of a nanodrop sitting on a rough surface in equilibrium
with its vapor is explored by many-body dissipative particle
dynamics (MDPD), which is able to simulate a drop-vapor
system [36]. In Sec. II, MDPD simulation methodology is
briefly introduced. The calculation of the interfacial tensions
and the determination of the CA for nanodrops are also
presented. In Sec. III A, the validity of Young’s equation is
examined by considering a nanodrop on the smooth surfaces
with various wettabilities. In Sec. III B, the CAH loop, which
always exists in microscale experiments, is acquired by the
inflation-deflation method in our simulations. θa and θr are
also determined by the inclined plane method. The consistency
between these two methods is studied. In Secs. III C and III D,
by studying various patterned rough surfaces, the influences of
surface roughness and wettability on CAH are demonstrated.
Finally, conclusions of this work are included in Sec. IV.

II. SIMULATION METHOD

A. MDPD simulations

MDPD is modified from classical DPD to simulate a
gas-liquid system [36]. In MDPD, the conservative force f C

ij

consists of both attractive and repulsive potentials,

f C
ij = aijωc(rij )eij + bij (ρi + ρj )ωd (rij )eij , (4)

where aij < 0 and bij > 0 are the attractive and repulsive
parameters between two particles i and j , respectively. rij =
|rij | is the distance between the positions of particles i and j

and eij = rij /rij is the direction vector. The weight functions
are chosen as ωc(rij ) = 1 − rij /rc and ωd (rij ) = 1 − rij /rd .
They decline linearly with interparticle separation and vanish
as rij � rc for ωc(rij ) and as rij � rd for ωd (rij ). In this work,
rc = 1.0 and rd = 0.75 are set. The amplitude of the repulsions
depends on the local density ρi and ρj . The random and
dissipative forces are the same as those in DPD [37,38].

The dimensionless form is used and all the units are scaled
by particle mass m, cutoff radius rc, and thermal energy kBT .
The parameters used in this work are selected according to
Warren’s work [36] and listed in Table I. Generally, aij = −40
and bij = 25 are set. For the sake of generality, no specific test
liquids and solid surfaces are considered. The liquid can be

TABLE I. Parameters in the MDPD scheme (in MDPD units).

Name of parameter Symbol of parameter Value

Attractive coefficient aij (−40) ∼ (−15)
Repulsive coefficient bij 25
Time step �t 0.01
System temperature kBT 1.0
Random coefficient σ 3.0
Dissipative coefficient γ 4.5
Empirical velocity λ 0.65
Verlet coefficient

oil or water. As a result, aij between solid and liquid beads
is varied to obtain different wettability, which depends only
on the interfacial tensions on a smooth surface according
to Young’s equation. The difference of interactions between
liquid-liquid beads and solid-liquid beads comes mainly from
the attractive coefficient (aij ). The former is all = −40 while
the latter is asl = (−40) ∼ (−15). The simulation system is a
cubic box (903). The lower boundary is a solid substrate with
varying wettability while the upper boundary is a wall with
very low wettability. The x and y directions are subjected to the
periodic boundary conditions. The number densities of liquid
and solid beads are 6 and 8, respectively. The total number
of MDPD liquid beads varies from 1.4 × 105 to 2.3 × 105. At
least 5 × 105 steps are run for each simulation and the first
2.5 × 105 steps are for equilibration.

B. Surface tension calculations

In our simulations, interfacial tensions γ12 between phases
1 and 2 are computed according to Irving-Kirkwood expres-
sion [39,40]

γ12 =
∫

{Pzz(z) − [Pxx(z) + Pyy(z)]/2}dz, (5)

where Pxx,Pyy , and Pzz are the components of the pressure
tensor with the coordinates x, y, and z. The components are
defined as

Pαα(α = x,y,z) = ρkBT + 1

V

⎡
⎣∑

i>j

∑
j

(rij )α
(
f C

ij

)
α

⎤
⎦, (6)

where ρ is the number density and V the system volume.
(rij )

α
and (f C

ij )
α

denote the α component of rij and f C
ij ,

respectively. The first term is the kinetic energy contribution
from the particle momentum and the second term comes from
interaction potential energy contribution. After the values of
each pressure component become essentially constant over a
sufficiently long period, the interfacial tensions are calculated.
For the set of parameter above, γsg = 14.3 and γlg = 7.5 are
obtained. In the simulation for surface tension calculation, a
thick liquid layer is formed in the system and the effect of
capillary waves on the liquid-vapor interface is eliminated by
enough sampling.

C. Contact angle determination

After the system equilibrium is reached, simulation snap-
shots are acquired every 1 × 104 steps for total 5 × 104
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steps. For each snapshot, CA for a nanodrop on a surface
is then obtained by using the software provided by the CA
goniometer, OCA 15EC (Data Physics, Germany). If the size
of a DPD bead is about 10 nm, then the droplet size is about
500 nm. Such a calculation is not feasible for conventional
molecular dynamics. The ellipse fitting mode, which uses the
complete drop shape for the CA measurement is selected.
First, the liquid-gas and solid-liquid interfaces of the nanodrop
are determined manually. The smooth fitting curves are then
provided by the software. After the CA of each snapshot is
acquired, the mean value of the CA is calculated. The standard
deviation of the CA is less than 2.5◦.

III. RESULTS AND DISCUSSION

The simulation outcomes for the wetting behaviors of nan-
odrops on smooth or patterned rough surfaces are presented.
Both lyophilic and lyophobic substrates are considered. On
smooth surfaces, the values of the interfacial tension are
calculated via Irving-Kirkwood equation. The CA obtained
from Young’s equation is compared to that determined directly
from MDPD. Whether a nanodrop is pinned on a smooth
surface or not is examined by following its trajectory due to
thermal fluctuations. On patterned rough surfaces, CAH exists
and its extent is decided by two typical techniques employed in
macroscopic experiments. The comparison between outcomes
from these two approaches are made. According to our
simulation outcomes, the mechanism of CAH resulting from
surface roughness is explained.

A. Nanodrops on a smooth surface

First of all, a smooth surface without nanoscaled roughness
is considered and its solid-gas tension is γsg = 14.3. A
nanodrop with surface tension γlg = 7.5 is deposited on the
surface. The equilibrium shape of a drop varies with the at-
tractive parameter (asl < 0) between solid and liquid particles.
The values of the solid-liquid tension (γsl > 0) calculated by
Eq. (5) via MDPD simulations and CAs evaluated by Young’s
equation (θY ) are listed in Fig. 1(a). As |asl| is increased, solid
beads like liquid ones more, γsl declines, and θY decreases
accordingly. As shown in the side view of the drop, the base

FIG. 1. (a) The variation of surface tension, CA evaluated
by Young’s equation, and drop shape with solid-liquid attractive
parameter. (b) The comparison between CAs determined by Young’s
equation (θY ) and obtained by simulations (θm).

FIG. 2. The mean-squared displacement 〈�r2(t)〉 is plotted
against the time t for nanodrops with different θY . The inset shows
the variation of the diffusion coefficient D with the contact area A.

diameter of the solid-liquid contact area grows and the CA is
getting smaller. Note that the volumes of all droplets shown
in Fig. 1(a) are the same. According to the Kelvin equation,
the vapor pressure should vary with the radius of curvature.
To examine the validity of Young’s equation, CAs obtained
directly from simulations (θm) are compared to the theoretical
value θY . The values of θm agree quite well with those of θY and
a linear line with the slope of +1 is clearly seen in the θY -θm

plot of Fig. 1(b). The maximum difference between θY and θm

is no more than 3◦. Consequently, Young’s equation is valid
for nanodrops in our simulations and thus the contribution of
the line tension is negligible.

Unlike a macroscopic drop, a nanodrop on a smooth
surface exhibits the two-dimensional random motion due to
significant thermal fluctuations. Figure 2 shows the mean-
squared displacement 〈�r2(t)〉 for a drop with volume 2083,
where r(t) is the position of the center of mass of the drop
from the origin at the time t . For sufficiently long time, e.g.,
t > 100,〈�r2(t)〉 is proportional to t . That is, the nanodrop
displays the Brownian motion described by

〈�r2(t)〉 = 4Dt , (7)

where D represents the diffusion coefficient of the sessile
nanodrop and can be estimated from the slope of the linear
line in Fig. 2. It is found that D grows with θY or it descends
with the base diameter. The diffusion coefficient is plotted
against the contact area A in the inset of Fig. 2. Apparently, D
decays exponentially with the increase in A. As a result, when
a drop is large enough, thermal fluctuations are unable to drive
its random motion. The Brownian motion of a nanodrop also
reveals the absence of contact line pinning or CAH on a smooth
surface.

B. CAH determined by two methods used in experiments

On a smooth surface, a nanodrop exhibits the random
walk and CAH is absent. However, as grooves are present
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FIG. 3. The structure of the patterned rough surface with cuboidal
cavities. L,W , and H represent the length, width, and depth of the
groove, respectively. G is the distance between two adjacent cavities.

on the surface, its random motion is inhibited, indicating the
appearance of CAH. In this work, a patterned rough surface is
created with cuboidal cavities, as shown in Fig. 3. The substrate
consists of four layers and the beads of the substrate are
arranged in simple cubic structure. The cavity is a square
mesh and its length, width, and depth are L = 1.5,W = 1.5,
and H = 1.0, respectively. The distance between two adjacent
cavities is G = 0.5. The extent of CAH is generally determined
by two approaches in macroscopic experiments: the inflation-
deflation and inclined plane methods. Therefore, they are
adopted in our simulations to explore the extent of CAH
for a nanodrop on the patterned rough surface. Although the
CA on the smooth surface is unique, θY = 85◦, the CA on
a rough surface is distributed in a range and dependent on
its history. When a spherical nanodrop is deposited on the
patterned rough surface, the equilibrium CA is reduced to
θ ′
Y ≈ 77◦. Typically, θ ′

Y is referred to as the most stable CA,
which will be explained later in the determination of CAH by
the inclined plane method. It is essentially independent of the
location on the surface and the drop size.

This result agrees reasonably with the prediction of the
Wenzel model based on the area ratio r ≈ 2.5,θ ′

Y ≈ 78◦. The
typical hysteresis loops for the apparent CA (θ ) and base
diameter of the drop (BD) are acquired and demonstrated in
Fig. 4(a) by employing the inflation-deflation method in which
a group of particles are directly added or removed from the top
of the drop and then the system will evolve toward equilibrium.
For the sessile drop of initial volume V0 = 3.33 × 104, the CA
declines but its BD remains unchanged as a small portion
of liquid is removed from the drop stepwise (path 1). If
the drop volume (V ) continues decreasing, the CA reaches
a lower bound, θr ≈ 72◦. Afterwards, the contact line starts to
move inward but the CA stays at θ ≈ θr . In contrast, upon the
addition of liquid to the drop with V0, the CA rises from θ ′

Y with
constant BD (path 2). Eventually, the CA arrives at an upper
bound, θa ≈ 83◦. Subsequently, the contact line starts to move
outward but the CA stays at θ ≈ θa . The direct growth from θr

to θa accompanied with a pinned contact line can be achieved

FIG. 4. (a) The variation of the apparent CA (θ ) (top loop) and
base diameter of the drop (BD) (bottom loop) with the drop volume
(V). (b) Some snapshots associated with the hysteresis loop.

by inflating a shrunk drop (path 3). Note that the variation of
BD tends to be steplike due to the periodical roughness. Some
snapshots for a nanodrop on the patterned rough surface during
inflation and deflation are depicted in Fig. 4(b).

In the inclined plane method, a horizontal external force is
exerted on the nanodrop to mimic the horizontal component of
gravitational force in macroscopic experiments. The vertical
force can be neglected for small Bond numbers, which are
defined as the ratio of gravitational force to surface tension
force. Figure 5(a) depicts the variation of the drop shape
with the applied force (f ) for a drop volume 3.33 × 104.
As f is increased, both the frontmost and rearmost contact
lines stay pinned due to surface roughness. Therefore, the
front CA grows and the rear one declines with increasing
f . As f exceeds a critical value (fc), the pinning force
induced by roughness is overcome and the drop starts to move.
The front CA (θf ), rear CA (θb), and major length (lm) are
shown in Fig. 5(b). The major length is defined as the length
between the rightmost and leftmost sides of the drop along
the direction of the external force. The major length does not
vary with f,lm ≈ 56.4, because of the contact line pinning.
Simultaneously, θf grows toward the advancing CA while θb

FIG. 5. (a) The variation of the drop shape with the applied force
(f ). (b) The plot of the front CA (θf ), rear CA (θb), and major length
(lm) against f .
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TABLE II. Simulation outcomes for the nanodrop on the rough
surfaces of various wettability (θY ). The patterned roughness is
specified as L = W = 1.5,H = 1.0, and G = 0.5.

θY θ ′
Y BD �θ fc na

127 141 28 0 0 1.5
113 124 35 3.6 3 4.9
103 112 40 8.0 12 7.4
85 77 56 11.1 32 9.5
76 59 64 5.2 16 10.1
63 43 72 – – 11.0

declines toward the receding CA. Eventually, one observes
θf = θa and θb = θr as f � fc = 32. When f exceeds fc, the
frontmost and rearmost contact lines start to move forward
at the same time. The foregoing wetting behaviors agree
qualitatively with those reported in experiments for the most
stable CA [41–43]. Consequently, the initial condition in our
simulations (the spontaneous partial wetting of a spherical
drop) yields θ ′

Y corresponding to the most stable CA. Note
that both θa and θr determined from the inclined plane method
are the same as those from the inflation-deflation method.
This consequence reveals that both approaches are valid in
simulations for exploring CAH of a drop on a rough surface.
For convenience, the inclined plane method is used in the
following.

C. Effect of wettability on the most stable CA and CAH

Although the hysteresis-free behavior is shown on the
smooth surface with θY = 85◦, contact line pinning with
�θ = θa − θr ≈ 11◦ is clearly observed by the inclined plane
method as the surface becomes rough. Under a specified
patterned roughness (L = W = 1.5,H = 1.0, and G = 0.5),
CAH is anticipated to change if the wettability of liquid on
solid surface (θY ) is varied. The simulation outcomes are listed
in Table II for various values of θY . Note that the wettability
can be changed by altering the attractive coefficient (aij ) in
Table I. As the wettability is increased, the most stable CA
(θ ′

Y ) declines but the base diameter (BD) grows monotonically.

On lyophobic surfaces (θY > 90◦), θ ′
Y is evidently greater

than θY due to lyophobic grooves or air pockets. This fact
is qualitatively consistent with the Wenzel and Cassie-Baxter
models. However, both models overestimate θ ′

Y . The prediction
of the Cassie-Baxter model (area fraction α = 0.44) is closer
to the simulation value for θY = 113◦ and 127◦ while that of
the Wenzel model (area ratio r = 2.5) is closer for θY = 103◦.
On lyophilic surfaces (θY < 90◦), θ ′

Y is obviously less than
θY because of the impregnation of lyophilic grooves. While
the Wenzel model describes θ ′

Y of the rough surface with
θY = 85◦ well, it underestimates θ ′

Y for θY = 76◦ and predicts
the total wetting behavior (θ ′

Y ≈ 0◦) for the rough surface with
θY = 63◦.

The discrepancy between the theoretical models and our
simulation results can be realized by the impregnation of
patterned grooves. Figure 6(a) shows the side view slice of
the sessile nanodrop on the rough surface with various θY . It
seems that the impregnation is generally inevitable and only
the lyophobic surface with θY = 127◦ is slightly impregnated.
The extent of the impregnation is further illustrated in the
contour plot of liquid beads in grooves, as shown in Fig. 6(b).
The maximum capacity of liquid beads within a groove can be
theoretically evaluated by the product of liquid density (6) and
the groove volume (2.25) and it is about 13.5. As expected, the
extent of impregnation in terms of average amount of liquid
beads per groove (na) decreases with increasing θY . On a
specific surface, however, there is a nonuniform distribution of
liquid in grooves. Some grooves have more liquid than others.
In general, the grooves near the edge of the drop contain less
liquid than those in the center. According to these results, one
can conclude that the effective area ratio (r) in the Wenzel
model and the effective area fraction (α) in the Cassie-Baxter
model are smaller than their intrinsic values. This explains
why the overestimation of theoretical models for lyophobic
surfaces and underestimation for lyophilic surfaces. While the
Wenzel model can qualitatively describe our MDPD results
on lyophilic rough surfaces, it fails to depict some results of
density functional theory calculations and molecular dynamics
simulations. In the latter, the increment of CA due to surface
roughness is attributed to the contribution of the line tension or
the incomplete impregnation of lyophilic grooves [26–28,34].

FIG. 6. (a) The side view slice of the sessile nanodrop on the patterned rough surfaces with various θ ′
Y . (b) The extent of impregnation is

exhibited by the contour plot of liquid beads in grooves with various θ ′
Y .
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TABLE III. Simulation outcomes for the nanodrop on the rough
surfaces of θY = 85◦. The structure of roughness (W or H ) is
systematically varied.

W H r Sa θ ′
Y �θ fc na

1.5 0.5 1.75 0.25 81 3.9 8 4.5
1.5 1.0 2.50 0.49 77 11.1 32 9.5
1.5 1.5 3.25 0.74 75 17.8 64 14.4
1.5 2.5 4.75 1.23 74 18.0 66 24.3

1.0 1.0 2.78 0.49 79 0 0 3.3
1.5 1.0 2.50 0.49 77 11.1 32 9.5
2.0 1.0 2.28 0.46 79 26.4 94 18.7
2.5 1.0 2.11 0.42 80 36.2 156 30.8

It is interesting to find that CAH (�θ ) does not alter
monotonically with θY as shown in Table II. On lyophobic
rough surfaces (θY > 90◦), both �θ and fc decrease with
increasing θY . Their changes are in accordance with the
extent of impregnation. As θY = 127◦, the nanodrop is able
to exhibit the random motion in the absence of external
forces. Therefore, one has fc = 0 and �θ ≈ 0. Based on
the extent of impregnation, the nanodrop can be regarded
in the Cassie-Baxter state. This consequence is consistent
with the concept of superhydrophobic surfaces where most
of the drop base is in contact with the air pockets. Hence,
CAH is essentially absent. On lyophilic surfaces (θY < 90◦),
one expects that �θ increases with the growth of wettability
corresponding to the extent of impregnation. However, it is
found that �θ and fc decline significantly as θY descends.
From the viewpoint of impregnation, the drop is essentially
in the Wenzel state. However, the grooves near the edge of
the drop is not fully impregnated but susceptible to imbibe
liquid (Ref. [44], Movie S1). This condition is getting serious
as θY is decreased. Therefore, a smaller fc is able to move the
drop forward but a small portion of liquid is always left in the
grooves. As θY = 63◦, one has fc approaching zero and �θ

is difficult to determine. The above simulation results reveal
that for a specified roughness, the maximum extent of CAH
tends to occur at surfaces with the wettability away from being
highly lyophobic and lyophilic.

D. Effect of roughness on the most stable CA and CAH

In addition to the wettability of liquid on solid surface, it is
known that the most stable CA and CAH depend significantly
on surface roughness. The influences of roughness on θ ′

Y and
�θ can be investigated if the structure of regular grooves is
systematically varied for a specified wettability. For surfaces
with θY = 85◦, the simulation outcomes are listed in Table III
for various values of groove width W and height H . Here all
grooves are rectangular L = W and the distance between two
adjacent grooves is G = 0.5.

As H is increased from 0.5 to 2.5, the area ratio (r) and
arithmetic average of the 3D roughness (Sa) are increased but
the area fraction (α) remains unchanged, 0.44. It is found that
θ ′
Y declines with increasing H . This result is consistent with

the Wenzel model. Since the groove size is slightly greater
than the size of a DPD bead, the effect of the groove surface
on the extent of impregnation is significant. In this case, the

FIG. 7. The contour plot of the liquid density in the groove
compared to that in the bulk for various groove depths H .

liquid density in the groove is about 70% of that in the bulk
(Fig. 7). The underestimation of θ ′

Y by the Wenzel model may
be explained by the smaller value of r (effective area ratio).
As H is increased, both �θ and fc grow. Nonetheless, CAH
becomes insensitive to H (or Sa) for H � 1.5. For shallow
grooves (H � 1.0), impregnated liquid in the roughness is
carried away by a moving drop (f > fc) (Ref. [44], Movie S2).
In contrast, for deep grooves, liquid trapped in the roughness
is left behind by a sliding drop (Ref. [44], Movie S3 ). That is,
the external force overcomes the liquid-liquid cohesive force
and the breakup of the nanodrop is resulted. As the breakup
mechanism dominates, CAH is independent of the groove
height.

As W is increased from 1.0 to 2.5, the area ratio (r) and
arithmetic average of the 3D roughness (Sa) decline and the

FIG. 8. The contour plot of the liquid density in the groove
compared to that in the bulk for various groove widths W . As W

is increased, the contact line gradually becomes noncircular.
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area fraction (α) is reduced from 0.56 to 0.31. However, the
liquid density in the groove grows from 55% to 82% of that in
the bulk (Fig. 8). As depicted in Table III, it seems that θ ′

Y is
not sensitive to W . This consequence does not agree with the
Wenzel model. The failure may be attributed to the opposite
trend of the extent of impregnation realized from the area ratio
and the liquid density in the groove. In contrast to θ ′

Y , it is found
that both �θ and fc grow with increasing W . As W = 1.0, the
random motion of the drop is clearly seen. Therefore, fc = 0
is observed and CAH on such a surface is absent. However, as
W = 2.5, the nanodrop is strongly pinned by the grooves. For
f = fc, one has θa ≈ 104◦ and θr ≈ 68◦. This result indicates
that CAH is serious because �θ > 30◦. It is worth mentioning
that as W is increased, the contact line gradually becomes
noncircular due to the edge effect of the grooves [45], as shown
in Fig. 8. According to our simulation results, serious CAH on
a patterned rough surface results mainly from the large mouth
of grooves instead of the depth or Sa .

IV. CONCLUSIONS

The wetting behavior of nanodrops on smooth or patterned
rough surfaces are investigated by MDPD. On a smooth
surface, a nanodrop exhibits different θY via varying the
attractive parameter between liquid and solid and Young’s
equation is valid. Moreover, nanodrops show the random
motion due to thermal fluctuations, indicating the absence
of CAH. The diffusivity decays as θY is decreased. By the
spontaneous partial wetting of a spherical drop on a rough
surface, the equilibrium CA θ ′

Y is different from θY and
corresponds to the most stable CA. The contact line of a

nanodrop is pinned by grooves and CAH appears. For a
specified patterned roughness, the extent of CAH is determined
by increasing and decreasing the drop volume or exerting a
horizontal external force f . The typical hysteresis loops of the
apparent CA and base diameter of the drop are acquired. Both
approaches yield consistent results and can be employed to
explore CAH in simulations.

θY is varied to examine the effect of wettability on the most
stable CA and CAH for a patterned rough surface. θ ′

Y grows
as θY is increased. However, θ ′

Y deviates from the theoretical
value predicted by the Wenzel or Cassie-Baxter models. This
outcome is explained by the extent of impregnation, which
varies with the groove position and wettability. The liquid
density in the groove is always smaller than that in the bulk.
Interestingly, CAH changes nonmonotonically with θY for
a specified roughness. The maximum �θ tends to occur at
surfaces with medium wettability (θY ∼ 90◦). As a surface
becomes more lyophilic, the grooves outside the drop edge
becomes susceptible to imbibe liquid and CAH tends to
vanish. In addition, the groove structure is systematically
varied to examine the effect of roughness on θ ′

Y and �θ . As the
groove depth is increased, CAH rises but becomes unchanged
eventually. In contrast, as the groove width is increased, θ ′

Y

does not change but CAH grows significantly. Our simulation
results reveal that CAH depends more on the groove width
than the depth.
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