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Analytical results for the wrinkling of graphene on nanoparticles
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A continuum elastic model, describing the wrinkling instability of graphene on substrate-supported silica
nanoparticles [M. Yamamoto et al., Phys. Rev. X 2, 041018 (2012)], is analytically studied, and an exact
analytical expression of the critical nanoparticle separation or the maximum wrinkle length is derived. Our
findings agree with the scaling property of Yamamoto et al. but improve their results. Moreover, from the elastic
model we find a pseudomagnetic field as a function of the wrinkling deflection, leading to the conclusion that the
middle of the wrinkled graphene may have a zero pseudomagnetic field, in marked contrast with previous results.
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I. INTRODUCTION

Graphene, which is considered one of the most promising
materials in the 21st century, is a two-dimensional membrane
with remarkable thermal and electronic and unusual struc-
tural and mechanical properties. These make it especially
interesting for many theoretical and experimental studies
for different applications ranging from nanoelectronics to
biological tissues.

A freestanding graphene is nonflat and has a tendency
to be crumpled, so graphene is often used with a substrate.
Once transferred on a flat surface, or further suspended, the
membrane exhibits complex responses to external forces or
geometrical constraints, such as wrinkling and delimitation
behaviors, that may lead to unpredictable graphene properties
and/or mimic the effect of a magnetic field on graphene’s
electronic structure [1–5]. Therefore, it is important to know
whether or not the graphene sheet can conform to the subtract,
and to build a theoretical model to predict how a graphene sheet
deforms in response to stretching and bending forces for a
successful technological graphene implementation or wrinkle
and delamination manipulations.

Graphene, which is also used in lithium ion battery anodes,
has also opened new possibilities for the storage of more
lithium ions and (then) for the increase of the battery’s
capacity. As potential high-performance anode materials [6],
nanocomposites of silicon nanoparticles are dispersed between
graphene layers to keep them dispersed without aggregation.
It is found that when a small Si nanoparticle intercalates
between a graphene bilayer, each layer wraps around the
Si nanoparticle, forming a conical dome in graphene, and
when two neighboring Si nanopraticles intercalate between
two graphene layers, the wrinkling pattern in graphene can
evolve dynamically. Zhu et al. [6] have determined a critical
dispersion distance between Si nanoparticles below which Si
nanoparticles between two graphene layers evolve to bundle
together. In particular, it is shown that there is an approximately
linear dependence of critical dispersion distance on the
nanoparticle size.
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Yamamoto et al. [4] studied the effect of the spacial
structure of the substrate on the morphology of the graphene.
More precisely, they reported on experimental studies of
the wrinkling of a graphene membrane supported on SiO2

substrates with randomly placed topographic perturbations
produced by SiO2 nanoparticles with density ρnp. This study
showed that ρnp has a direct influence on the wrinkling
pattern in graphene. In the limit of small effective mechanical
thickness graphene, it is observed that when ρnp is low,
the monolayer graphene detaches from the substrate only in
a small region around the nanoparticles. As ρnp increases,
wrinkles or ridges form connecting pairs of protrusions. An
analytical approach has also been developed to discuss the
critical ridge length, χc (i.e., the maximal distance between
two nanoparticles), at which a transition between a wrinkling
and a partial or complete delamination occurs. It was found
that χc varies linearly with the nanoparticle size. Zhu and Li
[7] proposed molecular dynamics simulations to investigate
the graphene morphology regulated by nanoparticles on a
substrate. It is found that the wrinkling formation in graphene
depends not only on the distance between two neighboring
nanoparticles but also on the nanoparticle size in agreement
with the experimental observation of Ref. [4].

Despite experimental and theoretical investigations, some
aspects of the results of Ref. [4] remain to be elucidated.
For example, it was found that the profile of wrinkling
is described in terms of an explicit singular function (see
below). However, it is not clear why this singular solution
is energetically favorable and/or why the associated ridge
length is the maximum distance between two nanoparticles.
Our initial aim here is not to consider a different physical
model or to introduce another intuitive or speculative scenario.
Rather, the continuum elastic model describing the wrinkling
and the critical nanoparticle separation are analytically worked
out in detail. Our results agree with the scaling behaviors
of Yamamoto et al., but show that the ridge running along
the wrinkle between two nanoparticles follows a smooth
catenary-like profile and improves the critical wrinkle length.

II. THE PHYSICAL CONTEXT

A brief presentation of the previous results may be
appropriate. The thin plate and membrane theories have a long
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FIG. 1. Schematic of a wrinkle according to Ref. [4].
(a) Deformation of graphene membrane between two nanoparticles
with diameters d. (b) The wrinkle profile along the transverse
direction. The diameter d, dihedral angle θ, ridge length χ , and
the base of the wrinkle profile, W = d tan(θ/2), are indicated.
The curvature radius C−1

0 and the width of the deformed region

w are connected to deflection ζ via C−1
0 = [ 1

sin(θ/2) − 1]
−1

ζ,w =
(π − θ )[ 1

sin(θ/2) − 1]
−1

ζ.

history, and deformations of elastic sheet thins are classical
subjects of continuum mechanics. The problem has been
studied from different points of view, and different types of
deformations or surface instabilities and a possible continuous
or discontinuous transition between them have been predicted
(critical conditions). Most deformations (buckle delamination,
wrinkling, cracking, or fracture, etc.) are viewed as (local)
minimizers of suitable elastic energies. However, due to the
complexity of the equations (fourth-order partial differential
equations, boundary layer, free boundary conditions, etc.) that
describe surface morphologies, rigorous proofs are in most
cases difficult to achieve, and since explicit solutions exist
only in a few cases, numerical treatments are inevitable.

In Ref. [4] the elastic analytical approach supposes that the
ridge, running along the wrinkle between two nanoparticles
with diameter d separated by χ, follows a catenary-like profile,
à la Robert Hooke (1675), with a deflection ζ = ζ (x) (from the
original ridge line) and a maximum deflection ζ0 = ζ (0), as de-
picted in Fig. 1. The profile of the ridge along the transverse di-
rection is described by the curvature radius C−1

0 = C−1
0 (x) and

the opened angle θ, which is assumed to be independent of x.
The catenary-like profile, which was used by Lobkosvky

et al. [8] to find the scaling energy properties of a crumpled
elastic sheet, allowed an easy analytical treatment. More
precisely, from the equilibrium equation, it is argued that the
graphene profile can be described in terms of the deflection

ζ ex =
(

27κ

4E2D

)1/6[ 1

sin(θ/2)
− 1

]1/3(χ

2
− |x|

)2/3
, (1)

where E2D = Yh/(1 − ν2) is the tensile rigidity, κ =
Yh3/12(1 − ν2) is the bending rigidity, Y is the Young’s
modulus, h is the thickness, and ν is Poisson’s ratio of
graphene. The ridge length is given by

χ = ζ
3/2
0

(
64E2D

27κ

)1/4[ 1

sin(θ/2)
− 1

]−1/2

≡ χ ex. (2)

The above explicit solution is the key element of the analytical
results presented in Ref. [4]. This solution is used to derive
the critical ridge length χc as a function of the nanoparticle
size d. It was also used to evaluate the strain distribution [εx ∼
(κ/E2D)1/3(χ/2 ∓ x)−2/3] and strain pseudomagnetic fields in
a wrinkle. In particular, it is found that the pseudomagnetic
field has, in the middle of a wrinkle, a broad minimum on the
order of 10 T for χ = 100 nm.

While this approach is interesting and allows one to have
far-reaching physical intuition, the explicit solution presents
a discontinuity of the slope at x = 0, and then it does not
necessarily follow a caternay-like profile. Hence, relationship
(2), which is directly derived from (1), could be incorrect.

From a mathematical point of view, a natural question
is whether there exists a smooth minimizer solution for the
one-dimensional elastic energy (see below). Responses of
this innocent and naive remark may affect significantly the
prediction of the critical ridge length and other graphene
properties such as strain and pseudomagnetic fields.

Regarding the aforementioned points, the present purpose,
as mentioned in the Introduction, is to present a mathematical
study of the wrinkling of graphene on nanoparticles by reex-
amining the equilibrium equation, with a view to identifying a
smooth (local) minimizer deflection of the elastic energy. Our
approach is based on the work of Ref. [4], though we differ
in our treatment of the equilibrium equation. We are able to
present a complete picture of solutions, including singular
solution (1), by varying the maximum deflection and the slope
at x = 0. We then identify the unique smooth critical deflection
(we require only the continuity of the slope) leading to critical
distance χc and discuss some physical properties. We shall see
that the minimizer deflection can be expressed in terms of the
inverse of an incomplete normalized beta function and that χc

can be derived in an explicit form. Interesting, our analysis
shows that it is unnecessary to find explicitly the critical de-
flection to determine χc. In addition, we easily observed, from
the continuum elastic model, that the pseudomagnetic field can
be calculated as a function of the critical deflection, and then a
zero pseudomagnetic field can be located in the middle of the
wrinkled graphene, in a marked contrast to Ref. [4].

III. PRELIMINARY RESULTS

To facilitate our study and to put the mathematical discus-
sion into the graphene instability context, we give here a brief
description of the approach of Yamamoto et al. The geometry
of Fig. 1 presents a schematic of a wrinkled graphene. This
relatively simple geometry allowed for analytical solutions.
The graphene wrinkling assumes a conformation, with the
largest possible χ, that tends to reach an equilibrium state
corresponding to a (local) minimum of the elastic energy as
a basis for the physical solution. For simplicity, it is assumed
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that the protrusions have comparable size and then the wrinkle
sags in the middle. In the deformed region, or the x projection
of the wrinkling region (i.e., |x| � χ/2), the elastic energy
is expressed as a summation of the stretching energy and the
bending energy

E(ζ ) = E2D

8
(π − θ )

[
1

sin(θ/2)
− 1

]−1 ∫
ζ (∂xζ )4dx

+ κ

2
(π − θ )

[
1

sin(θ/2)
− 1

] ∫
ζ−1 dx. (3)

The adhesion energy to the substrate is given by

Eadh = 2�χd tan(θ/2), (4)

where � is the graphene-SiO2 adhesion energy per area. At
the contact between graphene and the substrate, graphene is
bent with an equilibrium curvature Ceq = (2�/κ)1/2 [9]. The
bending and the adhesion energies at the foot of the wrinkle
are, respectively,

Eb = χ

(
�κ

2

)1/2

(π − θ ),

Ea = 2�χC−1
eq tan β = χ (2�κ)1/2 tan

(
π − θ

4

)
. (5)

Here 2β is the angle of the curved region (see Fig. 1).
By using the total energy E = E + Eadh + Eb + Ea, one

sees that the equilibrium elastic equation or the Euler-Lagrange
equation for the wrinkling graphene can be written in the form

ζ 2[3(∂xζ )4 + 12ζ (∂xζ )2∂xxζ ] + λ2 = 0, (6)

in which

λ =
√

4κ

E2D

[
1

sin(θ/2)
− 1

]
= h√

3

[
1

sin(θ/2)
− 1

]
. (7)

Parameter λ, which tends to 0 in the limit of small graphene
thickness, can be used to highlight the importance of the ratio
of the bending rigidity to the tensile rigidity. In fact, parameter
λ, which is proportional to h, can be used as a small parameter,
instead of h, for an expansion scheme. This question will be
addressed in the next section. The physical reason is that we
expect singular behaviors of ζ in the small λ limit.

The equilibrium equation has to be solved with the
boundary conditions

ζ (±χ/2) = 0, (8)

where ridge length χ is unknown and must itself be deter-
mined in solving the problem. The mirror symmetry of the
equilibrium equation and boundary conditions suggest that
the equilibrium solution can also be symmetric, i.e., ζ (−x) =
ζ (x). This is the problem that was studied by Yammoto et al.
and that we are going to deal with. In particular, our aim is to
investigate the critical (or the maximal) nanoparticle separation
χc above which the graphene sheet delaminates instead of
wrinkling.

Note that Eq. (6) is degenerate in the sense that the
coefficient ζ 3(∂xζ )2 of the highest-order derivative ∂xxζ

vanishes at ζ = 0 or ∂xζ = 0. Therefore, the problem may
have boundary layer solutions [10] or/and solutions which are

not necessary in the class of Lipschitzian functions, and that the
equilibrium equation may have no mathematically convenient
solution as is shown for some variational problems [11].

In order to gain some insight into the singularity of Eq. (6),
we may look at local properties of solutions at x = 0 (a possible
singular point). We then assume as a first approximation

ζ = ζ0(1 + a|x|α) + o(|x|α) (9)

for small x, in which ζ0,α > 0, and a are real param-
eters. By substituting (9) into (6) we get α = 4/3 and
a = −ζ−2

0 (3/4)4/3(λ2/3)1/3. Hence, we may expect that the
equilibrium equation has only piecewise C2 solutions with
continuation of the first derivative across each breaking point.

The main contribution of this paper is to rigorously obtain
all pairs (ζ,χ ) satisfying (6)–(8) and to select the critical pair
(ζc,χc), or the real equilibrium solution, corresponding to the
maximal length of the wrinkle (the optimum solution) and to
a (local) minimizer of the total energy E.

First, we find that the wrinkling profile can be fully
determined by solving the following equation [see Eq. (A3)]:

ζ 2(∂xζ )4 − Dζ = λ2

3
, (10)

in which

D = ζ0(γ )4 − λ2

3
ζ−1

0 , (11)

where

ζ (0) = ζ0, ∂xζ (0) = γ. (12)

Parameters ζ0 and γ can be viewed as shooting or input
parameters. The above equation is called the Beltrami identity
(1868) or Du Bois-Reymond equation (1879) for E. Despite
its simplicity, the Beltrami equation need not have a physical
solution for any D.

Note that constant D reflects some competition between
ζ0 (the maximum deflection) and γ (the slope deflection at
x = 0). Equation (10) will be investigated for different values
of parameters ζ0 and γ. In fact, our main concern is to know
for which pairs (ζ0,γ ),0 < ζ0 � d, the associated solution
satisfies the boundary conditions and has the largest distance
between nanoparticles, which fully agrees with the physical
intuition. Once problem (6)–(8) is solved, parameter θ can be
selected through minimization of the total energy E.

One simple but important remark derived from (10) is that
the elastic energy for the deformed membrane then becomes

E(ζ ) = 2κ

3
(π − θ )

[
1

sin(θ/2)
− 1

] ∫
ζ−1 dx

+ E2D

8
(π − θ )

[
1

sin(θ/2)
− 1

]−1

χD. (13)

Hence, it is tempting to conclude naively that the membrane
has to adopt the largest possible deflection in order to minimize
the elastic energy.

IV. WRINKLING MORPHOLOGY

The aim of this long section is to obtain all solutions
in mathematical terms that may result from the simplified
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equilibrium equation (10), keeping in mind that the purpose of
the paper is to find stationary-energy deflections for different
physical parameters in the context of graphene instability and
to predict the critical distance between two nanoparticles.

A. Energetic argument

It is worth mentioning that the critical ridge length can
be estimated by using the classical scaling argument. At
the lowest order the stretching energy is of order Estr ∼
E2Dε2χWav, where ε is the stretching strain satisfying ε ∼
ζ 2

0 /χ2, 0 < ζ0 � d, and Wav is the average width of the
wrinkling profile. Bending energy Eben is proportional to the
curvature (∼ζ0/χ

2) squared, so Eben ∼ κ(ζ0/χ
2)2χWav. The

adhesion energy is of order Eadh ∼ �χWav. Therefore, the
total energy can be approximated by

E ∼ E2D
ζ 4

0

χ3
Wav + κ

ζ 2
0

χ3
Wav + �χWav. (14)

In passing, it may be noted that from the ratio Eben/Estr ∼
κ/ζ 2

0 E2D we can deduce a size scale

d� =
√

κ

E2D
=

√
3

6
h, (15)

which determines a bending-dominated regime (Estr � Eben)
if d � d� and a stretching-dominated regime (Estr � Eben) if
d � d�.

In view of (14), a critical wrinkle length is simply obtained
by minimizing the right-hand side of (14) with respect to χ. We
find χc = (3[E2Dζ 4

0 + κζ 2
0 ]/�)

1/4
, irrespective of the average

width of the wrinkling profile. Therefore, the maximum
wrinkle length satisfies

χc =
(

3
E2Dd4 + κd2

�

)1/4

. (16)

Equation (16) can be used to determine a phase diagram
showing a possibility of a transition between wrinkling and
partial or complete delamination in the parameter space of
ridge length and nanoparticle size.

Note that for d � d�, we have

χc ∼ (3κ/�)1/4d1/2 ≡ χb
c , (17)

and in the opposite situation (d � d�), χc satisfies, as in
Ref. [4],

χc ∼ (3E2D/�)1/4d ≡ χs
c . (18)

The above critical lengths are analogous to the critical blister
radii of a thin elastic sheet adhering to a stiff substrate by
means of the surface tension of a thin liquid layer [12].

Next, since χb
c and χs

c coincide if (and only if) d = d�, we
can simply write the critical lines as

χc =
{

(3κ/�)1/4d1/2, if d < d�,

(3E2D/�)1/4d, if d > d�,
(19)

instead of (16). This can be used as a first-order ap-
proximation of the critical line for the possibility of a
wrinkling-delamination transition in the parameter space of
ridge length and nanoparticle size [in the intermediate region

FIG. 2. Nanoparticle size as a function of critical wrinkling length
for both bending-dominated regime and stretching-dominated regime
(solid red line). Physical parameters are E2D = 2.12 × 103 eV/nm2,
� = 2.8 eV/nm2, and κ = 1 eV. The horizontal dotted blue line shows
d = d� = 0.021 nm, which separates the two dominated regimes.

between bending-dominated regime and stretching-dominated
regime we can use (16)]. In Fig. 2 we have plotted the
nanoparticle size as a function of χc by using (19). Similar
results were obtained for the pinning of a two-dimensional
membrane to a patterned substrate (see Fig. 2 of Ref. [13]).
Figure 2 can also be interpreted as a diagram of the wrin-
kling instability of graphene on a substrate-supported silica
nanoparticle.

Equation (19) also shows that the dependence of the
nanoparticle size is quadratic if χc < (3κ2/�E2D)1/4 = χ�

c

(bending-dominated regime), and this dependence is linear
if χc > χ�

c (stretching-dominated regime). For the values
E2D = 2.12 × 103 eV/nm2, � = 2.8 eV/nm2, and κ = 1 eV,
given in Ref. [4], the calculation predicts that χ�

c = 0.149 nm,
which is of the order of the lattice spacing a = 0.142 nm
(for flat graphene). This prediction would imply, as mentioned
in Ref. [13], that the bending-dominated regime is greatly
suppressed.

Let us note that the case d � d� occurs in multilayer
graphene for which we find structural transitions from con-
formal adhesion to wrinkling to delimitation with increasing
graphene thickness (or nanoparticle density ρnp). Interest-
ingly, in the bending-dominated model it is shown that
unbinding is controlled by a single dimensionless parameter
α = (2�n/κn)1/4/(4π2ρnpd)1/2 [4,14], where κn is the bending
rigidity of n-layer graphenes for n > 1 and �n is the adhesion
energy between SiO2 and n-layer graphene. �n is assumed
to be independent of n. For small enough α, partial or
total unbinding is predicted, while for large α the graphene
membrane is expected to conform to the substrate (except
for small regions around the nanoparticles) [14]. For fixed
n > 1, unbinding threshold occurs at some α = α [4], which
intuitively has to satisfy α = (2�n/κn)1/4/(4π2ρcd)1/2, where
ρc is the threshold density. Using (17) one sees that ρcχ

2
c ∼

1/2π2α2, which is in a reasonable agreement with [4] (i.e., ρc

is of order χ−2
c ).
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B. Solving the Beltrami equation

According to the continuum model if γ = 0 [= ∂xζ (0)], i.e.,
3D/λ2 = −ζ−1

0 , there exists a real number 0 < χ (ζ0) � ∞
(not necessarily finite) such that the Beltrami equation has a
unique nontrivial smooth solution ζ [see Eqs. (A4) and (A5)]
such that ζ (±χ (ζ0)/2) = 0; that is, for a catenary-like profile
the critical deflection is smooth, satisfies, for x > 0,

x = ζ
3/2
0

(
λ2

3

)−1/4 ∫ 1

ζ (x)/ζ0

√
s ds

(1 − s)1/4 (20)

and, then, χ (ζ0) has the expression

χ (ζ0) = 2ζ
3/2
0

(
λ2

3

)−1/4 ∫ 1

0

√
s ds

(1 − s)1/4 , (21)

which is finite and monotonically increases with ζ0 as ζ
3/2
0 . The

integral in Eq. (21) is the known Eulerian integral of the first
kind or the complete beta function β(3/2,3/4) [see Eq. (A8)].

It should be noticed that χ (ζ0) can also be written as

χ (ζ0) = 2ζ
3/2
0

(
λ2

3

)−1/4 ∫ ∞

1

ds

s3/2(s − 1)1/4 , (22)

and for given ζ0 and γ (such that D < 0), the associated
distance between two nanoparticles satisfies

χ (ζ0,γ ) = 2ζ
3/2
0

(
λ2

3

)−1/4 ∫ ∞

1

ds

s3/2
(
s − 1 + 3ζ 2

0 γ 4/λ2
)1/4 ,

(23)

from which it is clearly seen that the function γ → χ (ζ0,γ ) is
maximal at γ = 0, i.e., χ (ζ0) = χ (ζ0,0). Our analysis showed
that for a given χ there exists a unique C1 smooth deflection
for which the maximum deflection ζ0 = ζ (0), as a function of
the distance between nanoparticles, is given by

ζ0 = χ2/3(λ2/3)1/6/χ2/3, χ = 2β(3/2,3/4) ≈ 1.917.

(24)

The maximum deflection ζ0 monotonically increases with χ

as χ2/3. Equation (24) follows the same (general) trend as in
Eq. (2). Next, since the goal is to make the distance between
nanoparticles as large possible, one deduces that the maximum
wrinkle length is given by

χ (d) = d3/2(3/λ2)1/4χ ≈ 1.917d3/2(3/λ2)1/4. (25)

For ease of comparison with the results obtained in Ref. [4], we
note that in the limit D = 0, we recover the results of Ref. [4].
Indeed, in this limit, Eq. (10) reads

ζ 2(∂xζ )4 = λ2

3
, (26)

from which one can deduce nanoparticle separation χ ex

derived in Ref. [4] [see Eq. (2)] and that the corresponding
solution can be written in the explicit form

ζ ex(x) =
(

3

2

)2/3(
λ2

3

)1/6
[

2

3

(
3

λ2

)1/4

ζ
3/2
0 − |x|

]2/3

, (27)

as described by Eqs. (1) and (2).

With the previous calculation, we note that χ ex can be
rewritten as

χ ex(ζ0) = 4

3χ
χ (ζ0) ≈ 0.695χ (ζ0), (28)

which is clearly lower than χ (ζ0).
In Ref. [4], it is estimated that the maximal length

(with ζ0 = d = 7.4 ± 2.2 nm) is χ ex = 104 − 65 nm along
with θ = 35◦ − 14◦ for � = 0.6–2.8 eV/nm2, respectively,
in rough agreement with the observed maximum wrinkle
length of approximately 200 nm. Using (28) instead provides
a relatively better result. Since χ (ζ0) ≈ 1.438χ ex(ζ0), the
maximal length is estimated to be χ ≈ 149.5–93.4 nm.
However, our analytical prediction also underestimates the
maximum wrinkle length. This is not unexpected due to
the fact that our work is based on the physical model of
Ref. [4], which does not incorporate the possibility of finite size
effects. For simplicity, it is also assumed that the protrusions
have comparable heights (therefore, the wrinkle sags in the
middle), and that the opening angle is uniform. In addition,
because of the random distribution of the nanoparticles, it is
possible that the interaction between ridges could influence
the critical nanoparticle separation (boundary-layer solution)
and introduce some complicated boundary conditions. Last,
other physical mechanisms (such as impurities at the substrate
surface, defects, thermal fluctuations, and more) can also be
considered as possible sources of the discrepancy between the
analytical predictions and experiments. An attempt to under-
stand graphene responses with regard to those various contexts
goes beyond the scope of the present paper. Nevertheless, some
insight can be gained with the help of the existing theory
of Ref. [4] via a rigorous analysis. The merit of the present
simple elastic model, which includes a minimal set of physical
ingredients, allows for an analytic solution. More realistic
models can then be proposed step by step if one wishes to
have a more quantitative comparison with experiments. The
present level of analysis provides a theoretical framework
in which we show the possibility of a graphene wrinkling
where the geometry parameters of the nanoparticle, i.e., the
size and separation, act as control parameters. Globally, our
results, which agree with the energetic argument presented
above, improve the elastic analysis of Ref. [4] and seem to
be sufficient, at least in the first approximation, for testing the
degree to which the nanoparticle size influences the wrinkle
length.

To summarize, the graphene is deflected in a smooth
manner, and the maximum wrinkle length χc is explicitly given
by [see (25)]

χc = d3/2

(
3E2D

4κ

)1/4[ 1

sin(θ/2)
− 1

]−1/2

χ, (29)

depending only on the model. What is surprising is that our
analysis, which has a remarkable degree of simplicity, showed
that χc can be determined explicitly without assuming prior
knowledge of the deflection profile. By minimizing the total
energy as a function of θ, we will derive the linearity of the
relation between d and the critical maximum wrinkle length. A
detailed of the scaling law for the critical separation is provided
in Appendix B.
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C. Asymptotic deflection in the limit λ → 0

In the previous sections, we studied the wrinkling of
graphene for which the effects of the bending and the stretching
are present. However, from Fig. 2, we can notice that the critical
nanoparticle size for which the bending rigidity is relevant is
small (d� = 0.021 nm). Therefore, since the diameter of the
silica nanoparticles is shown to be d = 7.4 ± 2.2 nm, which is
large relative to d�, we may deduce that wrinkling due to the
stretching cost is to be expected. The goal of this section is to
derive an approximate solution to the equilibrium equation for
small values of λ. This case occurs when the stretching which
accompanies the bending of the graphene is a first-order effect
in comparison with the bending (d � d�). We assume that the
continuum model can be applied in this limit. The solution
will be sought as an expansion in power of λ2:

ζ = ζ 0 + λ2ζ 1 + · · · . (30)

According to (11), it makes sense to assume

D = D0 + λ2D1 + · · · . (31)

Inserting the above series into the Beltrami equation we get,
at leading order,

ζ 0(∂xζ
0)4 = D0, (32)

and, at the first order,

4(ζ 0)2(∂xζ
0)3∂xζ

1 + D0ζ
1 − D1ζ

0 − 1
3 = 0, (33)

which is a linear ordinary differential equation for ζ 1. This
equation still contains undetermined parameters D0 and D1

and also contains the unknown function ζ 0, which must be
first determined from leading order equation (32).

To solve (32), we note that D0 has to be D0 = ζ0(γ )4,

where ζ0 = ζ 0(0) and γ = ∂xζ0(0). Together with Eq. (32),
we deduce that the (critical) approximate solution is given by

ζ 0(x) =
(

5

4

)4/5

d1/5|γ |4/5

(
χ0

2
− |x|

)4/5

, (34)

where

χ0 = 8|γ |−1d/5. (35)

To solve (33), we use the expression for ζ 0 to deduce an exact
expression for the general solution,

ζ 1 = 1

3
d−1|γ |−4 + D1

(
4

5

)1/5

|γ |−16/5

(
χ0

2
− |x|

)4/5

+ c

(
χ0

2
− |x|

)−1/5

, (36)

where c is an arbitrary constant. Note that ζ 1 diverges at x =
±χ0/2, except if c = 0.

Here we notice, as pointed out in Ref. [10], that there is
no reason to expect that the approximate solution satisfies the
boundary conditions or/and that χ0 coincides with the critical
distance χc obtained in Sec. 4.1. In fact, a leading order solution
might be a good approximation only in a restricted region away
from the boundary.

D. Pseudomagnetic fields

We briefly here investigate electronic property responses to
the wrinkling of graphene. It has been found that a strain can
induce gauge fields that effectively act as a magnetic field
on the electronic structure of graphenes depending on the
patterned substrate [5,16,17]. In Ref. [17], the authors observed
that these effective pseudomagnetic fields can exceed 300 T
for graphene nanobubbles on Pt(111) single-crystal substrates.

According to Refs. [5] and [13], Yamamoto et al. argued
that the pseudomagnetic field can be simply given by

Beff ≈ �0β

aW
(∂xζ )2, (37)

where �0 = 10−15 Wb is the flux quantum, β ≈ 2 the change
in the hopping amplitude between the neighboring atomic
sites due to the lattice deformation, a (=0.142 nm) the
lattice constant, and W the typical wrinkle width. Quantity
(∂xζ )2 = εx represents the strain distribution along a wrinkle
described by deflection profile ζ. By using the explicit solution
(1), it has been found that the minimum pseudomagnetic field
is of order 10 T for χ= 100 nm [4].

Here we use expression (37) to evaluate the pseudomagnetic
field at the middle of the wrinkled graphene by using our
analytical results. First, we consider the case of small λ and use
the approximate solution (34). At x = 0, since ∂xζ

0(0) = γ 0
c

[see Eq. (B13)], we obtain

Beff ≈ 4
�0β

aW

(
�

3E2D

)1/2

(π − θ )−1/2

×
[

1

sin(θ/2)
− 1

]1/2

tan1/2(θ/2). (38)

For θ small enough, we have

Beff ≈ 4
�0β

aW

(
�

3πE2D

)1/2

, (39)

from which we obtain a Beff of order 302 T for the wrinkle
width W = 1.1 nm and for E2D = 2.12 × 103 eV/nm2, � =
2.8 eV/nm2. Interestingly, in the case where the elastic
behavior of graphene on a nanoparticle is predominantly
determined by stretching, Yamamoto et al. [4] have estimated
that the maximum pseudomagnetic field Beff is of order 300 T
at the radial distance d/2 (from the middle) for d = 7.4 nm,
in the absence of wrinkling, corresponding to small thickness
or small nanoparticle density.

For the case where the bending rigidity is not neglected
compared to tensile rigidity, one sees from (A4) that the
distribution of the pseudomagnetic field acting on the electrons
can be expressed in terms of the wrinkling deflection:

Beff(x) ≈ �0β

aW

(
λ2

3

)1/2

d−1/2ζ−1[d − ζ ]1/2. (40)

The above equation shows that the pseudomagnetic field is not
uniform and depends on the spacial distribution of the deflec-
tion. Note that the pseudomagnetic field diverges near particles
as Beff(x) ≈ (χc/2 ± x)−2/3. In fact, as noted in Ref. [4], the
pseudomagnetic field near particles in the wrinkled graphene
will generally be more complicated depending on the particle
and their direction with respect to each other and the lattice. At
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the middle x = 0 since ζ (0) = d, we find by using expression
(40), that the wrinkling graphene described by the present
critical deflection may have a zero pseudomagnetic field
irrespective of the nanoparticle size and wrinkle width, at odds
with Ref. [4], even if our finding should not be generalized for
any deflected wrinkles, as shown in Eq. (39).

V. CONCLUSION

The present work has the main objective to theoretically
analyze a simple continuum model describing the wrinkling
of graphene on a substrate decorated with silica nanoparticles
having comparable heights. We have showed that a wrinkle
formed between two protrusions can be described in terms of
a C1 smooth deflection. We have also determined a priori, as a
function of the nanoparticle size, an explicit expression of the
maximum wrinkle length below which a wrinkling is induced
(i.e., for a given nanoparticle size the graphene membrane
wrinkles if the distance between two nanoparticles is not
larger than χc). Finally, from the present continuum elastic
theory, we have derived an expression of the pseudomagnetic
filed as a function of the wrinkling deflection and concluded
that the middle of the wrinkling graphene may have a zero
pseudomagnetic field. Naturally, they still open interesting
questions concerning the limitations of the continuum model.
However, we believe that the present results can be used as
a starting basic solution for a more general picture of the
wrinkling of graphene on nanoparticles, including the case
where nanoparticles have different heights and/or the random
distribution of the nanoparticles by adding noise to the model.

APPENDIX A: THE BELTRAMI EQUATION

We discuss the technical details of the analysis of the
equilibrium equation and derive an expression of deflection
ζ. First, we use the coordinate system ψ = ζ 3/2 and v = ∂xψ.

Accordingly, Eq. (6) is transformed into the system

∂xψ = v,

∂xv = 9(243−3v4 − λ2)/25ψv2. (A1)

It is easy to see that system (A1) has the following first integral:

ψ

|3(2/3)4v4 − λ2|3/2
= c, (A2)

where c is a constant, which can be written as

(∂xζ )4 = ζ−1

(
λ2

3
ζ−1 + D

)
, (A3)

from which one obtains the Beltrami equation (10)–(12).
Now, we are going to solve the simplified equilibrium

equation by using a phase-plane analysis. This approach will
provide explicit results of the deflection profile and a way
to derive easily an exact expression of χc. In Fig. 3 we
illustrate the dependence on parameterD appearing in Eq. (10).
Two families of (mathematical) solutions are observed. When
D � 0, for any (ζ0,γ ) in the first quadrant ζ0 > 0,γ > 0, (resp.
the second quadrant ζ0 > 0,γ < 0), the orbit (ζ,∂xζ ) remains
in this quadrant (resp. in the second quadrant).

If D < 0, any curve (ζ,∂xζ ) initially in the first quad-
rant enters the second quadrant through the half line

FIG. 3. Plots of ∂xζ vs ζ according to (10) in arbitrary units.
Different curves refer to different choices of the quantityD = ζ0γ

4 −
λ2/(3ζ0) and show that a condition for a bounded solution is D < 0.

Here parameters are λ = √
3, D = 0 for the dotted blue line, −1 for

the solid black line, and −0.5 for the dashed red line.

{(ζ,q) : ζ > 0,q = 0}, in the direction of decreasing ζ, and
remains there. Therefore, ∂xζ changes sign and has exactly
one zero. Under the assumption that ζ0 = ζ (0) is the maximum
deflection, we have necessarily γ = 0 and there exists a
real number 0 < χ (ζ0) � ∞ such that ζ is increasing on
(−χ (ζ0)/2,0), decreasing on (0,χ (ζ0)/2), and vanishing at
x = ±χ (ζ0)/2.

Next, by using Eq. (A3), with 3D/λ2 = −ζ−1
0 , the Beltrami

equation reads

∂xζ = ±
(

λ2

3

)1/4

ζ−1/4
[
ζ−1 − ζ−1

0

]1/4
, (A4)

from which one sees, for x > 0,

x = ζ
3/2
0

(
λ2

3

)−1/4 ∫ 1

ζ (x)/ζ0

√
s ds

(1 − s)1/4 . (A5)

This shows in particular that the Beltrami equation with
3D/λ2 = −ζ−1

0 has a unique nontrivial smooth solution (cf.
Amann [15, p. 67]).

Note that deflection ζ can also be written as a solution to
the following inversion problem:

Iζ (x)/ζ0 (3/2,3/4) = 1 − 2|x|
χ (ζ0)

, (A6)

where χ (ζ0) is given by (22) in the main text, Iz(3/2,3/4)
[Person’s (1934) notation] is the normalized (or regularized)
incomplete beta function

Iz(a,b) = 1

β(a,b)

∫ z

0
sa−1(1 − s)b−1ds = βz(a,b)

β(a,b)
, (A7)

for 0 < z < 1, and for arbitrary argument a > 0,b > 0, where

β(a,b) = β1(a,b) =
∫ 1

0
sa−1(1 − s)b−1 ds. (A8)

The normalized incomplete beta function is one of the most
important distributions in probability and statistics and is a
standard special function of mathematical physics. Iz(a,b) is
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also called the cumulative distribution function and is related to
the cumulative binomial distribution (see, e.g., Ref. [18]). The
(non-normalized) beta function β(a,b) has played an important
instrumental role in the original formulation of string?brk?>
theory [19].

Next, by using the property Iz(a,b) = 1 − I1−z(a,b), one
can see that ζ has the following explicit form expressed
in terms of the inverse of the normalized incomplete beta
function:

ζ = ζ0
[
1 − I−1

2|x|/χ(ζ0)(3/4,3/2)
]
. (A9)

Although the normalized incomplete beta function and its
inverse do not fall into the category of elementary functions,
they are standard special functions of mathematical physics.

Iz(a,b) and I−1
z (a,b) have been extensively investigated from

different point of view and are readily computable.
Therefore, the critical (smooth) deflection can be uniquely

given by (ζ0 = d)

ζ c = d
[
1 − I−1

2|x|/χ(d)(3/4,3/2)
]
. (A10)

APPENDIX B: SCALING ANALYSIS FOR χc

In this section, we derive the scaling law for the critical
nanoparticle separation as in Ref. [4]. Up to now, we have im-
plicitly assumed that θ can vary arbitrary. In fact, the selected
graphene shape must have an opened angle minimizing the
total energy, which reads, as a function of θ,

Etot =
(

3d2E2D

4κ

)1/4
{

rκ

35/4
(π − θ )

[
1

sin(θ/2)
− 1

]1/2

+ 2�χd2

[
1

sin(θ/2)
− 1

]−1/2

tan(θ/2)

+dχ
√

�κ

[
1

sin(θ/2)
− 1

]−1/2[
2−1/2(π − θ ) + 21/2 tan

(
π − θ

4

)]}
, (B1)

where r is an universal number satisfying r � 35/4/(2χ ),
and where we have used the critical deflection with the
exact expression (29) for the critical separation. However, the
expression of Etot makes the minimization problem impossible
to solve analytically. Therefore, for any analytical progress the
critical opened angle which minimizes Etot will be evaluated in
two opposite regimes that are of particular interest, depending
on whether Ceqd � 1 or Ceqd � 1. For intermediate regimes
the opened angle has to be chosen only numerically.

On the other hand, we anticipate that at the critical opened
angle all terms of Etot are comparable. In particular, quantity
(π − θ )[1/ sin(θ/2) − 1][tan(θ/2)]−1 has to be proportional
to 2�d2/κ:

(π − θ )[1/ sin(θ/2) − 1][tan(θ/2)]−1 = constant × (
Ceqd

)2
.

(B2)

For the strong adhesion limit (Ceqd � 1), we deduce that θ

goes to zero. Hence, in place of sin(θ/2) we take θ/2, so that
the total energy can be approximated by

Etot ∼
(

3d2E2D

4κ

)1/4

[ν1θ
−1/2 + ν2θ

3/2 + ν3θ
1/2], (B3)

where

ν1 = 21/2 rκ

35/4
π, ν2 = 2−1/2�χd2,

ν3 = dχ (�κ)1/2 π + √
2

2
.

Therefore, the critical opened angle is given by

θc =
√

ν1

3ν2

⎡
⎣

√
1 + ν2

3

12ν1ν2
− ν3√

12ν1ν2

⎤
⎦

= 2

39/8

√
rπ

χ
(Ceqd)−1Z, (B4)

where Z is an universal parameter given by Z =
[
√

1 + (π + 21/2)2 31/4χ

16rπ
− (π + 21/2) 31/2

4

√
χ

rπ
]. Note that (B4)

is consistent with the assumption that Ceqd � 1. By using (B4)
we deduce from (29)

χc ∼ d

(
E2D

�

)1/4(
rπ33/4χ3

72

)1/4√
Z, (B5)

showing the linear dependence of χc on d, which is precisely
what we had concluded from the energetic argument.

Note that in the case where the bending and adhesion
energies at the foot of the wrinkle are neglected we haveZ = 1
and get simply

θc = 2

39/8

√
rπ

χ
(Ceqd)−1,

χc ∼ d

(
E2D

�

)1/4(
rπ33/4χ3

72

)1/4

. (B6)

In the weak adhesion limit (Ceqd � 1), the opened angle goes
to π. Therefore,

Etot ∼ 2d1/2

(
E2D

κ

)1/4[
rκ

3
2−5/2�2 + �31/4χd225/2�−2

+ 35/4 d

2
χ

√
�κ

]
, (B7)

where � = π − θ. Arguing as above, one sees that the critical
opened angle of the wrinkle satisfies

θc ∼ π − 2

(
35/4χ

r

)1/4

(Ceqd)1/2, (B8)

and then

χc ∼ d

(
E2D

�

)1/4(
2r33/4χ

3)1/4
. (B9)
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Our predicted results are similar to the scale laws reported in
Ref. [4] with different (physical) prefactors, since their analysis
used the explicit solution ζ ex and the critical opened angle is
calculated by assuming implicitly that the distance between
two nanoparticles is independent of parameter θ, which is
clearly not true. This also could explain the discrepancy,
noticed in Ref. [4], between the theoretical predictions and
the experiments.

Finally, we consider the case of small λ. First, we assume
that the total energy can be expressed as a power of λ:

Etot = E0
tot + λE1 + · · · . (B10)

To lowest order we obtain formally

E0
tot = E2D

8
(π − θ )

[
1

sin(θ/2)
− 1

]−1 ∫
ζ (∂xζ )4 dx

+ 2�χ d tan(θ/2), (B11)

for which the associated Beltrami equation coincides with (32).
By using the expression of the approximate solution ζ 0, the
energy E0

tot is rewritten as

E0
tot = E2D

5
(π − θ )

[
1

sin(θ/2)
− 1

]−1

d2|γ |3

+ 16�d2|γ |−1 tan(θ/2)/5. (B12)

Therefore, ζ 0 has minimal energy if γ = γ 0
c , where

(
γ 0

c

)4 = 16

3

�

E2D
(π − θ )−1

[
1

sin(θ/2)
− 1

]
tan(θ/2),

(B13)

and then

χ0
c = 4

5
31/4(π − θ )1/4

[
1

sin(θ/2)
− 1

]−1/4

× [tan(θ/2)]−1/4

(
E2D

�

)1/4

d. (B14)

This demonstrates the linear dependence (at leading order) of
the critical length of the graphene on nanoparticle size.

As above, we consider two limiting cases. At small θ one
has

χ0
c ∼ 4

5
31/4π1/4

(
E2D

�

)1/4

d, (B15)

which is similar to the scaling form of the maximum wrinkle
length. Note that the above result is also similar to the result
obtained in Ref. [4] for a stretching-dominated model by using
Schwerin’s solution for a membrane pushed by a point force
[20]. Analogous scaling for the diameter detachment zones
(2R = χ0

c ) surrounding a local protuberance is discussed in
Ref. [13]. For � = π − θ small, we obtain again (B15).
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