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Magnetic-field-induced stepwise director reorientation and untwisting of a planar cholesteric
structure with finite anchoring energy
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Within the continuum approach we study the equilibrium configurations of a cholesteric liquid crystal confined
between two parallel plates, when a magnetic field is applied perpendicularly to the plates. We analyze the role of
soft anchoring boundary conditions on magnetic-field-induced cholesteric-nematic transitions in a finite thickness
cholesteric cell, treated to induce soft planar alignment. We study the stepwise behavior of cholesteric pitch as
a function of the anchoring energy, the thickness of a layer, and the field strength. We analyze some kinds of
soft anchoring potentials, including the case of degeneration of the easy axes. We show that the variation of the
thickness or intrinsic pitch induces the the stepwise behavior of a pitch of the planar cholesteric structure, and the
stepwise variations of the average tensor of diamagnetic susceptibility. The values of these jumps are determined
by the anchoring energy. We find the values of critical parameters for the transitions between planar and confocal
cholesteric states, and homeotropic nematic state. We show that the variation of the anchoring energy leads to
change of the phase transition character; the conditions for hysteresis behavior are obtained. We show that for
rather soft anchoring the confocal state is metastable, and the increase of a magnetic field leads to the direct
transition between the planar cholesteric and homeotropic nematic phases. We also give a detailed derivation of
the threshold and saturation properties of planar cholesteric to homeotropic nematic transition.
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I. INTRODUCTION

Optical properties of liquid crystal (LC) cells are deter-
mined by the type of their structure, i.e., spatial distribution
of a director field n(r) [here n is the unit vector along
which the main axes of the molecules are oriented on the
average]; therefore, the study of possible types of structures
and features of orientational transitions under the action of
external magnetic or electric fields is an actual problem in the
physics of liquid crystals.

It is known that the type of a LC structure depends
on material parameters, on the direction and strength of
external fields, and also on the orientation of the director
on the boundaries of a layer [1,2]. The orientation of the
director near the surface is determined by the method of its
fabrication and by the material it is made of. Depending on
these factors, it is energetically favorable for the director to
be oriented along some direction called an easy orientation
axis. In the simple case of a flat surface the axis of the
easy orientation is directed more often along a normal to
a surface (homeotropic orientation) or perpendicular to the
surface (planar orientation). If the director alignment on the
boundaries of the layer is strictly determined (so-called rigid
or strong anchoring), the director on a surface coincides with
the axis of the easy orientation. However, for a more exact
description of the spatial distribution of the director field in a
cell, as shown in Ref. [3], it is necessary to suppose that the
anchoring energy is finite (soft anchoring), and consequently
external fields can cause deviations of the director n(r) from the
easy orientation direction. In a nematic LC the conditions for
coupling of molecules with the surface provide the orientation
of the director in a cell. In the case of cholesteric liquid crystals
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(CLCs) the orientation of the director in a cell also depends on
the twisting ability of its molecules (or optically active dopant);
therefore, the helical director structure is formed with some
pitch.

Variation of parameters of the system influencing the
spatial distribution of a director field in a cell can cause
the spiral cholesteric structure to disappear: there will be a
phase transition into the nematic state. For example, in a CLC
with diamagnetic anisotropy χa > 0 a relatively high magnetic
field, directed along a normal to the boundaries of a layer
on which soft planar anchoring for the director takes place,
causes the phase transition into a homeotropic nematic state,
in which the director in a cell is oriented along the direction of
a magnetic field (the so-called saturation state). Depending on
the type of CLC alignment, in the absence of a magnetic field
this phase transition into the nematic state can occur in several
ways.

The problem of the concrete form of interaction energy
of LC molecules with a bounding surface is one of the key
questions in the physics of liquid crystals. Now there are plenty
of works devoted to the study of the influence of this interaction
on orientational properties of a LC in a layer [3–30]. The
authors of these works, however, more often deal with nematics
[3–9] or cholesterics with strong anchoring conditions at the
boundaries of a layer [14–19,31].

Nowadays there are a lot of ways of treating the surfaces
to allow the creation of some axes of easy orientation on them
[4,9]. Thus, there is an opportunity to set various orientations
of LC molecules on the boundaries of a layer by changing
the values of the system parameters (thickness of a layer, or
magnetic or electric field strength).

In the present paper a cholesteric-nematic phase transition
in the plane-parallel cell placed in homogeneous magnetic
field, directed along a normal to a plane of a cell, is studied.
It is supposed that the axes of easy orientation are located
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in the plane of the layer boundaries and directed under some
angle to each other; i.e., in the absence of a magnetic field
there is a planar cholesteric structure in the layer with the
helical axis along a normal to the boundaries of a cell.
Diamagnetic anisotropy χa of a cholesteric is assumed to
be positive; therefore, the growth of magnetic field strength
causes distortions of the initial planar cholesteric structure,
i.e., the reorientation of a director field in the layer, that results
(in a strong enough magnetic field) in a transition into a
homeotropic nematic state in which the director in a cell is
oriented along a magnetic field direction (the saturation state).

Problems similar to those described above are investigated
now rather intensively (see, for instance, Refs. [10–13,20–23]).
In these papers expressions were obtained which determine the
threshold Fréedericksz field. It was shown that due to a finite
anchoring energy the homeotropic nematic state (the saturation
state) can exist in the cell, and the saturation field was derived,
for which such a nematic state must exist. However, in the
majority of works the authors for the description of a planar
cholesteric state in a cell assumed the total turn of the director
around the helical axis to have a constant value, which does
not depend on the thickness of a cell. Such an approach is
rather good for studying the orientational properties of nematic
plane-parallel twist cells in which the turn of the director in a
layer is determined by the relative angle of rotation of the layer
boundaries. It is known [1,2] that in a planar cholesteric state
the integer number of half turns of a spiral structure can be
in a layer. It means that the total angle of the director rotation
in the layer can accept a discrete number of allowable values
determined by the distance between the boundaries of the layer,
the intrinsic pitch of the helical structure, and the anchoring
energy at the boundaries of the layer [24,25]. As it is shown
below, this allows one to describe the unwinding of a helical
cholesteric structure at the cholesteric-homeotropic nematic
phase transition under the action of a magnetic field directed
along the spiral axis of a cholesteric. In the present paper
we analyze several types of anchoring potentials, including
the potential with the degeneration of the easy orientation
axis.

Let us also note the great interest in the investigation of
stepwise variation of the helical pitch induced by different
factors: anchoring or temperature-induced stepwise behavior
[24–30,32–34] or light-induced stepwise behavior [35–39] of
the pitch. The magnetic-field-induced stepwise untwisting of
the cholesteric structure was studied in Refs. [40,41] under
strong anchoring conditions. Anchoring energy effects on the
stability of CLC helical structures in the field absence were
investigated in Refs. [42,43].

The paper is organized as follows. In Sec. II, we derive
the governing equations describing the planar cholesteric
cell with soft anchoring boundaries under the magnetic field
action. Unlike Refs. [10–13,20–23] we consider not only the
possibility of a transition between the planar and distorted
states (the Fréedericksz transition), but also the stepwise
behavior of a cholesteric spiral structure in relatively thick
layers, as well as the transition into a saturation (nematic)
state. In Sec. III, we study the influence of the polar anchoring
strength. The influence of the degeneration of the easy
orientation axis on the cholesteric-nematic transition is studied
in Sec. IV. Finally, Sec. V is devoted to conclusions.

II. PLANAR ANCHORING

A. Equations of equilibrium

Consider a CLC layer of thickness d confined between two
parallel plates. Let us direct the z axis perpendicularly to the
layer, so z = 0 corresponds to the bottom boundary and z = d

to the top boundary. We direct the external magnetic field along
the normal to the layer H = (0,0,H), and the diamagnetic
anisotropy χa is assumed to be positive. The components of
the director can be written as

n = (cos θ cos ϕ, cos θ sin ϕ, sin θ ), (1)

where the polar angle θ is measured from the plane of the
layer, and the azimuthal angle ϕ is measured from the x axis
directed along the layer. We assume the angles θ and ϕ to be
the functions of the z coordinate.

The distribution of the director field in the layer of
cholesteric LC is determined from the conditions of the
minimum of the free energy functional

F =
∫

Fv dV +
∫

FS dS, (2)

where the volume density of the free energy Fv is given by the
expression [1]

Fv = 1
2 [K11(∇n)2 + K22(n · ∇ × n + q0)2

+K33(n × ∇ × n)2] − 1
2χa(n · H)2, (3)

and FS is the surface density of the interaction energy of
cholesteric molecules with the boundaries, which can be
written as [3]

z = 0: FS = −Wa

2
(n · es1)2, (4)

z = d : FS = −Wa

2
(n · es2)2. (5)

Here the modules of the orientational elasticity K11, K22,
and K33 are positive and characterize splay, twist, and bend
deformations, respectively; q0 is the wave number of the
intrinsic helical structure (q0 ≡ 0 for nematics); Wa > 0 is
the surface density of the azimuthal energy of coupling of
cholesteric molecules with the boundaries of a cell; and es1

and es2 are the unit vectors of easy orientation at the bottom
and top surfaces, respectively:

es1 = (cos β,− sin β,0), es2 = (cos β, sin β,0). (6)

The angle β is measured from the x axis, so the axes of easy
orientation lying in the planes of the top and bottom surfaces
are oriented under an angle 2β to each other.

Choosing q−1
0 as the unit of length, and Hq = q0

√
K11/χa

as the unit of magnetic field strength, so the dimensionless
magnetic field H = H/Hq , we can substitute the director (1)
in Eq. (3) and obtain

Fv

K11q
2
0

= 1

2
{f (θ )θ̇2 + h(θ )ϕ̇2 − 2k2ϕ̇ cos2 θ

−H 2 sin2 θ + k2}, (7)
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where

f (θ ) = cos2 θ + k3 sin2 θ,

h(θ ) = (k2 cos2 θ + k3 sin2 θ ) cos2 θ.

In Eq. (7) the dot designates the differentiation on the dimen-
sionless coordinate z̃ = q0z and the following dimensionless
parameters are used:

k2 = K22

K11
, k3 = K33

K11
, (8)

where the tilde above the dimensionless coordinate is omitted
below.

The surface densities of the free energy, Eqs. (4) and (5),
can be written as

z = 0:
FS

K11q0
= −w

2
cos2 θ cos2(β + ϕ), (9)

z = D :
FS

K11q0
= −w

2
cos2 θ cos2(β − ϕ). (10)

Here D = q0d is the dimensionless thickness of the layer, and
w = Wa/(K11q0) is the dimensionless anchoring energy. We
assume that the functions ϕ(z) and θ (z) have the following
properties [13]:

θ (z) = θ (D − z), ϕ(z) = 2ϕm − ϕ(D − z), (11)

where ϕm ≡ ϕ(D/2). It follows from Eq. (11) that

θ̇ (z = 0) = −θ̇ (z = D), ϕ̇(z = 0) = ϕ̇(z = D), (12)

θ (0) = θ (D) ≡ θS, ϕ(0) ≡ −ϕS = 2ϕm − ϕ(D), (13)

θ (D/2) ≡ θm, θ̇(D/2) = 0, (14)

and the total variation �ϕ of the azimuthal angle on the
thickness of a layer is equal to

�ϕ = ϕ(z = D) − ϕ(z = 0) = 2(ϕm + ϕS). (15)

Minimization of the free energy functional (2) over θ (z) and
ϕ(z) results in the following equations:

d

dz
[f (θ )θ̇] = 1

2

∂

∂θ
[f (θ )θ̇2] + 1

2
ϕ̇2 ∂

∂θ
h(θ )

+ k2ϕ̇ sin 2θ − H 2 sin 2θ, (16)

θ̇ ϕ̇

[
∂

∂θ
h(θ )

]
+ h(θ )ϕ̈ + k2θ̇ sin 2θ = 0, (17)

and boundary conditions

z = 0 : −∂Fv

∂θ̇
+ ∂FS

∂θ
= 0, −∂Fv

∂ϕ̇
+ ∂FS

∂ϕ
= 0, (18)

z = D :
∂Fv

∂θ̇
+ ∂FS

∂θ
= 0,

∂Fv

∂ϕ̇
+ ∂FS

∂ϕ
= 0. (19)

Let us rewrite Eqs. (18) and (19), using Eqs. (7) and (9)–(11):

z = 0 : −f (θS)θ̇ + w

2
sin 2θS cos2(β − ϕS) = 0,

−h(θS)ϕ̇ + k2 cos2 θS + w

2
cos2 θS sin 2(β − ϕS) = 0,

(20)

z = D : f (θS)θ̇ + w

2
sin 2θS cos2(β − 2ϕm − ϕS) = 0,

−h(θS)ϕ̇ + k2 cos2 θS + w

2
cos2 θS

× sin 2(β − 2ϕm − ϕS) = 0. (21)

As it is seen, Eqs. (20) and (21) coincide provided that the
angle ϕm accepts a discrete series of values

ϕm = nπ/2, (22)

where n is an integer, having, as shown below, the sense of the
number of half turns of a cholesteric spiral structure, which
can be determined from the condition of the minimum of the
total energy, Eq. (2).

In Refs. [13,20,24,25,38,44–46] the phase transition be-
tween the planar cholesteric and the homeotropic nematic
phases in a layer with planar anchoring of the director
at the boundaries, in electric or magnetic fields oriented
perpendicularly to the boundaries of the layer, was considered.
The parameter ϕm in these works can have appropriate values:
in Refs. [13,20] (in which β = 0) the angle ϕT = 2ϕm takes
the values 3π/2 and π/2; in Ref. [46] the parameter ϕeff =
2ϕm takes the values from the interval (50◦,130◦). However,
according to Eq. (22), the angles ϕT and ϕeff can have only
the discrete values nπ , where n can accept only integer values
determined by the minimum of the total energy, Eq. (2).

As it is easy to see, for all values of material parameters
of the system, the thickness of a layer, and the magnetic
field strength, Eqs. (16), (17), (20), and (21) have two trivial
solutions

θ (z) ≡ 0 and θ (z) ≡ π/2. (23)

The former corresponds to the planar cholesteric state, and
the latter corresponds to the homeotropic nematic state. At
θ (z) ≡ 0 from Eqs. (16) and (11) it follows that

ϕ(z) = qz − ϕS, where q = 2(ϕm + ϕS)/D, (24)

and the value ϕS at a given thickness of the layer D is
determined from Eq. (20):

D = 4k2(ϕm + ϕS)

2k2 + w sin 2(β − ϕS)
. (25)

The expression for the dimensionless total energy (2) in the
planar state F0 ≡ F/(K11q0S) becomes

F0 = D

8k2
w2 sin2 2(β − ϕS) − w cos2(β − ϕS). (26)

Here S is the surface area of the layer boundaries.
In the case of homeotropic nematic ordering [θ (z) ≡ π/2]

the director n is oriented along the direction of a magnetic
field, and the total energy (2) is equal to

Fπ/2 ≡ F
K11q0S

= 1

2
D(k2 − H 2). (27)

Together with the trivial solutions (23), Eqs. (16) and (20)
have nontrivial solution 0 < θ (z) < π/2, corresponding to a
confocal cholesteric phase for which the director makes the
angle θ (z) with the spiral axis. Now we write the expressions
describing the distribution of a director field in this phase.
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As seen from Eqs. (7), (9), and (10), the total energy (2)
does not depend explicitly on z and ϕ. This allows us to write
the first integrals

C1 = θ̇
∂Fv

∂θ̇
+ ϕ̇

∂Fv

∂ϕ̇
− Fv

= f (θ )θ̇2 + h(θ )ϕ̇2 + H 2 sin2 θ, (28)

C2 = ∂Fv

∂ϕ̇
= h(θ )ϕ̇ − k2 cos2 θ, (29)

where C1 and C2 are constants of integration [Eqs. (28)
and (29) can be received directly from Eqs. (16), and (17)].
Expressing ϕ̇ from Eq. (29) and substituting it in Eq. (28), we
find the value of the constant C1 with the help of Eq. (14):

C1 = (C2 + k2 cos θm)2

h(θm)
+ H 2 sin2 θm, (30)

where θm ≡ θ (D/2).
Equation (20) for the angle ϕ determines the value of

constant C2:

C2 = w

2
cos2 θS sin 2(β − ϕS). (31)

Expressing the derivatives θ̇ and ϕ̇ from Eqs. (28) and (29)
and using Eqs. (30) and (31) we can write the equations for
θ (z) and ϕ(z):

z =
∫ θ(z)

θS

√
A(θ )dθ, (32)

ϕ(z) + ϕS =
∫ θ(z)

θS

(C2 + k2 cos2 θ )

h(θ )

√
A(θ )dθ, (33)

where

A(θ ) = f (θ )

/{
(C2 + k2 cos2 θm)2

h(θm)

− (C2 + k2 cos2 θ )2

h(θ )
+ H 2(sin2 θ − sin2 θm)

}
. (34)

The values of the quantities θm and ϕS are determined from
the expressions

D

2
=

∫ θm

θS

√
A(θ )dθ, (35)

ϕm + ϕS =
∫ θm

θS

(C2 + k2 cos2 θ )

h(θ )

√
A(θ )dθ, (36)

following from Eqs. (32) and (33). The first equation in Eq. (20)
together with Eqs. (28), (30), and (31) determines the value of
θS :

f (θS)√
A(θS)

= w

2
sin 2θS cos2(β − ϕS). (37)

Thus, Eqs. (32)–(37) and (22) describe the distribution of
the CLC director in a confocal phase. The integer number n

in Eq. (22) is determined from the condition of the minimum
of the total energy (2), the expression for which becomes as

follows:

Fθ =
∫ θm

θS

{
f (θ )√
A(θ )

+
[(

C2
2 − k2

2 cos4 θ
)

h(θ )

−H 2 sin2 θ

]√
A(θ )

}
dθ + 1

2
k2D

−w cos2 θ cos2(β − ϕS). (38)

B. Planar state

As seen from Eq. (24), in the planar state the pitch of
the spiral p = 2π/q, generally speaking, is not equal to the
intrinsic pitch p0 = 2π of a cholesteric (in the dimensional
form p0 = 2π/q0), and for the given thickness of a layer it
should satisfy the relation

D = p

2
n + p

π
ϕS, (39)

which follows from Eqs. (22) and (24). In accordance with
Eq. (39), the integer number n of half turns of a spiral [see the
first item in Eq. (39)] should be placed in the layer of thickness
D. The second item in Eq. (39) corresponds to that part of the
spiral structure where the director rotates at an angle 2ϕS (the
angle between the orientations of the director at the bottom
and top surfaces).

In a particular case, when the pitch of the spiral of the
planar structure coincides with the intrinsic pitch p0, as it
follows from Eqs. (22) and (24), ϕ̇ = 1 (or in dimensional units
ϕ̇ = q0), and the thickness of the layer satisfies the relation

D = πt + 2β, (40)

where t is some integer. In this case ϕS = β; i.e., there is no
deviation of the director orientation from the easy axes on
the top and bottom boundaries, the variation of the azimuthal
angle (15) �ϕ = 2(ϕm + β) = πt + 2β, and the total energy
(26) reaches the minimal value F0 = −w.

In the case when Eq. (40) is not satisfied, i.e., t is some
fractional number, the spectrum of allowable values of ϕm will
be determined by expression (22), in which n is an integer [see
Eq. (39)], which is determined by the minimum of expression
(26). In accordance with the aforesaid, between the values of
angles ϕS and β and the numbers n and t the following relation
holds:

(β − ϕS) ∼ (n − t), (41)

where n is a positive integer, and t is any positive number
determined by expression (40). Hence, the total energy (26)

F0 ∼ (n − t)2 (42)

will have a minimum at n = t if t is an integer (the pitch of the
spiral is equal to the equilibrium pitch p0), otherwise it will
have a minimum at n equal to t approximated up to the nearest
integer. Thus, in the planar state the value of an integer n in
Eq. (22) is determined by the expression

n =
∥∥∥∥ (D − 2β)

π

∥∥∥∥, (43)

which together with Eqs. (25) and (26) determines the
minimum of the CLC total energy in the planar state (here
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FIG. 1. Dependence of F0 on the thickness of the layer D for
k2 = 0.6, k3 = 1.5, and β = π/4: (a) w = 0.3, (b) w = 1, (c) w = 3,
and (d) w = 5.

‖ · · · ‖ is the designation for the rounding off up to the nearest
integer). We notice that if the thickness D → 0, i.e., for
dimensional values the condition d/p0 � 1 is satisfied, the
total rotation of the director (15) will be determined only by the
relative turn of the layer boundaries, i.e., by the angle �ϕ = 2β

in the case w = ∞ or �ϕ = 2ϕS in the case w 
= ∞. For a
nematic d/p0 = 0; therefore, the angle ϕm ≡ 0. The authors
of Ref. [13], however, consider the special cases of a planar
structure in a nematic and set an incorrect value ϕt = π/2 for
the angle ϕt = 2ϕm.

In Fig. 1 the total free energy of a cholesteric in the planar
state F0 is shown as a function of the thickness of a layer D

for β = π/4 at various values of anchoring energy w (in the
computations we use the set of material parameters [13,20]
k2 = 0.6, k3 = 1.5). For each value of w the family of curves
[see Figs. 1(a)–1(d)] is shown, which consists of dashed lines
and one thick line. Each dashed line is the solution of Eqs. (25)
and (26) for which the angle ϕm takes one of the allowable
values determined by Eq. (22) (the integer indices in Fig. 1
correspond to the values of n). As seen from Fig. 1, each dashed
line corresponding to one of the allowable values of ϕm has one
minimum, which is achieved when Eq. (40) is satisfied, and at
further increase of the thickness D the free energy infinitely
increases. Dashed lines in each family intersect; therefore, at
the increase of the thickness D, the minimal values of F0

correspond to the consecutive transitions from the planar state
with ϕm = 0 (dashed curve 0) to the state with ϕm = π/2
(dashed curve 1), which then is replaced with the state with
ϕm = π (dashed curve 2), etc. Just the same process of change
of ϕm with the growth of the thickness D, corresponding to the
minimum of the total energy F0, is determined by Eqs. (22),
(25), (26), and (43) (see also the thick lines in Fig. 1). As
seen from Fig. 1, for any value of w the transition from
the planar cholesteric state with ϕm = nπ/2 to the state with
ϕm = (n + 1)π/2, in accordance with Eq. (43), occurs at D =
2β + π (n + 1/2), i.e., at the increase of the layer thickness by
�D = π (or in dimensional units �d = p0/2, where p0 is the
intrinsic pitch of a cholesteric spiral).

FIG. 2. Dependence of the pitch of spiral p on the thickness of
the layer D in the planar state for k2 = 0.6, k3 = 1.5, and β = π/4:
(a) w = 0.3, (b) w = 1, (c) w = 3, and (d) w = 5.

In Figs. 2 and 3 the spiral pitch p and the angle ϕS are
shown as functions of the layer thickness D in the planar state
for different values of anchoring energy w. The dependencies
ϕS(D) and p(D) are the solutions of the set of equations (22),
(25), (39), and (43) and correspond to the minimum of the
total energy F0 [the integer indices in Figs. 2 and 3 correspond
to the values that take n in Eq. (43) with the increase of the
thickness D]. As seen from Figs. 2 and 3, at D → ∞ the angle
ϕS → β, and the pitch of the spiral tends to the equilibrium
value p → 2π for an infinite cholesteric (or in dimensional
units to the value p0 = 2π/q0). At D → 0 the angle ϕm = 0
and ϕS → 0 (see Fig. 3); thus, the pitch of the spiral has the
finite value

p = 2π
D

�ϕ
→ 2π

D

2ϕS

= 4k2π

(2k2 + w sin 2β)
. (44)

FIG. 3. Dependence of ϕS on the layer thickness D in the planar
state for k2 = 0.6, k3 = 1.5, and β = π/4: (a) w = 0.3, (b) w = 1,
(c) w = 3, and (d) w = 5.
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From Figs. 2 and 3 it is seen that the less the anchoring energy,
the more slowly the angle ϕS → β, but the faster p → 2π .

The stepwise behavior of the angle ϕS and the pitch of the
spiral p at the transition between the states distinguished on
one half turn of the spiral at D = 2β + π (n + 1/2) results in
jumps of the average over the layer transverse components of
the magnetic susceptibility tensor 〈χij 〉:

〈χij 〉 = 1

D

∫ D

0
(χ⊥δij + χaninj ) dz,

�〈χxx〉 = 〈χxx(n)〉 − 〈χxx(n + 1)〉,
�〈χyy〉 = 〈χyy(n)〉 − 〈χyy(n + 1)〉,
�〈χxx〉 = −�〈χyy〉

= sin 2ϕSn

2
(
πn + ϕSn

) − sin 2ϕS(n+1)

2
(
π [n + 1] + ϕS(n+1)

) . (45)

The angles ϕSn
and ϕS(n+1) in Eq. (45) are determined by relation

(25):

D = 2β + π

(
n + 1

2

)
= 4k2

(
π
2 n + ϕSn

)
2k2 + w sin 2

(
β − ϕSn

)
= 4k2

(
π
2 [n + 1] + ϕS(n+1)

)
2k2 + w sin 2

(
β − ϕS(n+1)

) . (46)

It is easy to show from Eq. (46) that the values of the angles
ϕSn

and ϕS(n+1) satisfy the relation

ϕSn
= β + �ϕn, ϕS(n+1) = β − �ϕn, (47)

where the positive parameter �ϕn can be found from the
equation

w = k2(π − 4�ϕn)

[2β + π (n + 1/2)] sin 2�ϕn

. (48)

As a result, Eqs. (45) and (46) with the help of Eq. (48) can be
written as

�〈χxx〉 = −�〈χyy〉

= sin 2(β + �ϕn)

2(πn + β + �ϕn)
− sin 2(β − �ϕn)

2(π [n + 1] + β − �ϕn)
.

(49)

Equations (48) and (49) allow us to obtain the relationship
between the jumps of transverse components of the tensor
〈χij 〉 and the azimuthal anchoring energy w = Wa/(q0K11).
Thus, by experimental measuring of �〈χxx〉 and �〈χyy〉 with
the help of Eq. (49) one can determine the parameter �ϕn and,
substituting it in Eq. (48), estimate Wa .

Let us note that light-induced stepwise change of the
cholesteric helical pitch was studied experimentally and
theoretically in Refs. [35–39] as well as the discontinuous
change of averaged values of the components of the CLC
dielectric susceptibility tensor.

As supposed above, the considered transition between the
planar states differing on one half turn of the spiral is not
accompanied by slippage of the director on the boundaries of
the layer through the anchoring barrier, i.e., without occurrence
of a defect (the so-called χ lines [25]). For this it is necessary
that the energy of coupling must satisfy the inequality [25]
Wa < 2πK22/d.

Let us notice that at β = π/4 and if relation (40) holds,
in which t = 1 (ϕm = π/2), the so-called supertwist state
can occur in a cell. In this case the easy axes at the bottom
and top walls of a layer are oriented under the angle π/2 to
each other, the pitch of the spiral is equal to the equilibrium
value for an undistorted CLC p = p0, and the total angle
of the director rotation in the layer �ϕ = 3π/2. The layer
thickness in supertwist state is D = 3π/2 (or in dimensional
units d/p0 = 0.75 [2]). At D < 3π/2 or D > 3π/2, as seen
from Fig. 3, the angle ϕS 
= β; therefore, the total angle
of the director rotation �ϕ = 2(ϕm + ϕS) 
= 3π/2, and the
supertwist state does not occur.

Reference [13] asserts that due to the soft anchoring
the supertwist state can be observed not at d/p0 = 0.75
as described above, but at d/p0 = 0.7; moreover, for the
determination of the threshold characteristics in the supertwist
state the angle ϕt = 2ϕm is assumed to be 3π/2, whereas the
allowable values ϕt = πn, where n is an integer.

C. Fréedericksz field

For the calculation of threshold characteristics of the
system, at which there is a deformation of a planar cholesteric
structure in a layer under the action of the external magnetic
field H , we consider Eqs. (35) and (37) in the limit θm → 0
and obtain

D = 4k2(ϕm + ϕS)

w sin 2(β − ϕS) + 2k2
, (50)

√
γ (ϕS)

2wk2 cos2(β − ϕS)
= cot

{ √
γ (ϕS)(ϕm + ϕS)

w sin 2(β − ϕS) + 2k2

}
, (51)

where

γ (ϕS) = [w sin 2(β − ϕS) + 2k2]

× [w(2k2 − k3) sin 2(β − ϕS) − 2k2k3] + 4k2
2H

2
F .

(52)

As is easily seen, expression (38) for the total energy coincides
with Eq. (26) in the limit θm → 0, and expression (50)
coincides with Eq. (25); therefore, the angle ϕm in Eqs. (50)
and (51), as mentioned in Sec. II B, should be determined from
Eqs. (22) and (43). In this case Eqs. (22), (43), (50), and (51)
at the given thickness D and the CLC material parameters
determine the so-called Fréedericksz field HF , such that at
H < HF the planar cholesteric state exists, and at H � HF

the transition to the confocal state occurs.
In Figs. 4 and 5 the dependence of HF on the thickness D

(see dashed and thick lines with the integer indices) is shown.
Each dashed curve represents the solution of Eqs. (50) and
(51), for which the angle ϕm accepts one of the allowable
values (22) [the integer index in the dashed curve corresponds
to the value, which n has in Eq. (22)]. As noted above, the
dependence HF (D) is determined by Eqs. (22), (43), (50), and
(51); thick lines in Figs. 4 and 5 correspond to this case. As seen
from Figs. 4 and 5, the dependence HF (D) represents a “step”
function, for which the jumps of HF occur at D = (n + 1)π
(where n = 0,1,2, . . . are the indices in the curves in Figs. 4
and 5).
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FIG. 4. Dependence of HF and HS (the curve with the index “S”)
on the thickness of the layer D for w = 5, k2 = 0.6, k3 = 1.5, and
β = π/4.

The curves with the index “S” in Figs. 4 and 5 correspond
to the saturation field HS , such that at H > HS there is only
a homeotropic nematic state in a layer (the expression for
HS is reviewed in Sec. II D). In Figs. 4 and 5 two possible
situations are shown, when for given thickness D the saturation
field HS > HF (Fig. 4) or HS < HF (Fig. 5). In the first
case, as shown below, at a given D and HF < H < HS

the phase transition from the planar cholesteric state to the
homeotropic nematic state occurs through the intermediate
confocal cholesteric state [0 < θ (z) < π/2] and is the second
order phase transition. In the second case the given phase
transition is always the transition of the first order; i.e.,
the planar structure at some H = H ∗

t undergoes a stepwise
transition in the homeotropic nematic state (the expression for
H ∗

t is reviewed in Sec. II E).

FIG. 5. Dependence of HF and HS (the curve with the index “S”)
on the thickness of the layer D for w = 0.3, k2 = 0.6, k3 = 1.5, and
β = π/4.

As seen from Figs. 4 and 5 (thick lines), at D → ∞ the
Fréedericksz field HF → H ∗

F . The value of H ∗
F is determined

from Eqs. (50) and (51). At D → ∞, as it follows from
Eq. (43), ϕm → ∞, and ϕS → β (see Fig. 3); therefore,
γ (ϕS) = 4k2

2(H 2 − k3) [see Eq. (52)], and Eqs. (50) and (51)
can be written as√

H 2
F − k3

w
= cot

{
D

2

√
H 2

F − k3

}
. (53)

For D → ∞ we obtain

H ∗
F =

√
k3. (54)

Let us consider some special cases following from Eqs. (52)
and (51). Resolving Eqs. (52) and (51) concerning the
magnetic field H , we obtain within the limits of the rigid
planar coupling w → ∞ (ϕS0 → β) the threshold value HF ,
known from Ref. [45]:

HF = 1

D
{π2 + 2β[2β(k3 − 2k2) + 2k2D]}1/2. (55)

The authors of Ref. [45] considered the case d/p0 � 1;
therefore, the angle ϕm = 0 and the total angle of rotation
�ϕ = 2β. Within the limits of the rigid coupling (w → ∞)
and β = 0 the expression for the threshold value of magnetic
field HF , determined by Eqs. (52) and (51), takes the form
received in Ref. [20]:

HF = 1

D
{π2 + 2ϕm[2ϕm(k3 − 2k2) + 2k2D]}1/2. (56)

For the case of a twisted nematic cell (q0 = 0) where the total
angle of the director rotation on the thickness of a layer is
determined only by the relative angle of rotation of bounding
plates, i.e., ϕm ≡ 0 and �ϕ ≡ 2β, we obtain the formula
known from Ref. [13]:

HF = 1

d
√

χa

{K11π
2 + 4β2(K33 − 2K22)}1/2. (57)

Equation (57) is written in the dimensional form. In the absence
of twist in the nematic cell (β = 0), we obtain the classical
Fréedericksz field [1]:

HF = π

d

√
K11

χa

. (58)

D. Saturation state

Because χa > 0, at the increase of the magnetic field
strength H the homeotropic nematic state in which the director
is oriented along the direction of the magnetic field [θ (z) ≡
π/2] should be established in the layer. Reverse decrease
of the field, beginning with some value H = HS , will cause
the deformation of homogeneous homeotropic alignment and
a further phase transition from the nematic phase into the
cholesteric confocal state. The value HS of the field is called the
saturation field [13]. For the determination of HS , we consider
Eqs. (35) and (37) in the limit θm → π/2. As a result we
obtain the following system of equations for the saturation
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state:

D = 2k3√
a

ln

⎧⎨
⎩

2αS1
√

a +
√

4a
(
α2

S1 + 1
) + b2

(
α2

S1 + 1
)2√

4a + b2
(
α2

S1 + 1
)2

⎫⎬
⎭, (59a)

ϕm + ϕS0 = arctan

{
bα2

S1

2w cos2(β − ϕS0)

}
+ Dk2

2k3
, (59b)

αS1

√
4a + b2

(
α2

S1 + 1
) = 2w

√
α2

S1 + 1 cos2(β − ϕS0), (59c)

where a = H 2
S k3 − k2

2 and b = w sin 2(β − ϕS0). At the fixed
thickness D and the given values of material parameters,
Eqs. (59) determine the value of HS , such that at H � HS

there is only the homeotropic nematic phase, and at H < HS

the phase transition in the confocal cholesteric state takes
place. As it is shown below, at H → HS the value of the
angle ϕm → 0 at any thickness D; i.e., the increase of H

causes the unwinding of a spiral structure. In Figs. 4 and 5
the dependencies HS on the thickness D (see curves with the
index “S”) are shown. As seen from these figures, HS → ∞ at
D → 0; i.e., the reorientation of the director from the planar
into the homeotropic state demands infinite HS . At D → ∞
the magnetic field strength HS → H ∗

S (see Figs. 4 and 5),
where H ∗

S is determined by the expression

H ∗
S =

√
k2

2 + w2

k3
, (60)

which follows from Eqs. (59); here ϕS0 → β and αS1 → ∞.
Equations (59) at β = 0 coincide with the system of

equations determining the saturation field HS , obtained in
Ref. [13]. In order to rewrite Eqs. (59) in the form of Ref. [13], it
is necessary to introduce the angle β0 according to the relation
cos β0 = (α2

S1 + 1)−1/2.

E. Unwinding of a spiral in confocal state

Equations (35)–(33) and (22) determine the distribution of a
director field in the confocal cholesteric state, which, as distinct
from homeotropic or planar states, can exist only for some
interval of values of CLC material parameters, the thickness of
a layer, and magnetic field strength. As mentioned in Sec. II A,
the integer n in Eq. (22) should be determined from a condition
of a minimum of the total energy (2). In the planar cholesteric
state the value of n, corresponding to a minimum of Eq. (26),
is determined by Eq. (43); therefore, for the given thickness D

in the planar state the integer n is unequivocally determined.
However, in the confocal state for given n it is impossible to
obtain the analytical expression similar to Eq. (43); therefore,
in order to obtain a real distribution of a director field in
the confocal state, it is necessary to find the solutions of
Eqs. (32)–(37) and (22) for all possible integers n, and from
the comparison of the total energies (38) of these states to
determine the distribution of a director field, possessing the
minimal value of Fθ .

In Figs. 6–9 we show θm as a function of H at fixed values
of CLC material parameters and the thickness of a layer D, as
well as the dependence of the total energies Fθ on H , which

corresponds to the curves in Figs. 6 and 8. The functions θm(H )
and Fθ (H ) are the solutions of Eqs. (35)–(38) and (22). The
indices in Figs. 6–9 correspond to the integer values of n

in Eq. (22), the continuous horizontal lines in Figs. 7 and 9
correspond to the value F0 [see Eq. (26)], and the dashed
line with the index Fπ/2 corresponds to the total energy in
the homeotropic state [see Eq. (27)]. The arrows in Figs. 6
and 8 show the change of the angle θm at the increase and
at the decrease of H . In Figs. 6 and 7 the thickness D = 8;
hence, at 0 � H < HF the planar cholesteric state exists in
a layer, in which ϕm = π , i.e., n = 2 (see thick curve with
index 2 in Fig. 4). The value HF is determined by Eqs. (50)
and (51). The further increase of H at H � HF causes the
jumplike change of θm and ϕm: there is a transition in the
confocal state with n = 1; i.e., the angle ϕm achieves the value
π/2 and the half-turn number of a spiral structure decreases
by a unit. In this case, as seen from Fig. 7, the energies of
the states with n = 1 and n = 0 are close, but the total energy
Fθ of the state with n = 1 remains less than the energy Fθ

of the state with n = 0. With the increase of H at some value
HF < H < HS [where HS is determined from Eq. (59)] the
state with n = 1 transforms into the state with n = 0: the spiral
structure becomes completely untwisted, the angle ϕm = 0 and
the director in the middle of the layer is oriented along the

FIG. 6. Dependence of the angle θm on the magnetic field strength
H for w = 5, D = 8, k2 = 0.6, k3 = 1.5, and β = π/4: curve 0,
n = 0, angle ϕm = 0; curve 1, n = 1, angle ϕm = π/2; curve 2, n = 2,
angle ϕm = π .
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FIG. 7. Dependence of Fθ on the magnetic field strength H for
w = 5, D = 8, k2 = 0.6, k3 = 1.5, and β = π/4: curve 0, n = 0,
angle ϕm = 0; curve 1, n = 1, angle ϕm = π/2; curve 2, n = 2, angle
ϕm = π .

direction of a field H , and at H � HS the director is oriented
along the field H in the cell. Thus, the transition from the
cholesteric into the homeotropic nematic state, caused by the
increase of the magnetic field strength H , is a second order
phase transition.

The reverse, a decrease in the magnetic field strength
H , causes, beginning with H � HS , a second order transi-
tion from the homeotropic nematic phase into the confocal
cholesteric state with ϕm = π/2 (n = 1), which exists up
to H � HR , and at H = HR the conical spiral structure
transforms in the planar cholesteric state, in which ϕm = π

(n = 2).
In Figs. 8 and 9 the thickness of the layer D = 5; i.e., at

0 � H � HF there is a planar cholesteric state in the layer with
ϕm = π/2 (see thick curve with index 1 in Fig. 4). At H � HF

the planar alignment transforms in a stepwise fashion in the

FIG. 8. Dependence of the angle θm on the magnetic field strength
H for w = 5, D = 5, k2 = 0.6, k3 = 1.5, and β = π/4: curve 0,
n = 0, angle ϕm = 0; curve 1, n = 1, angle ϕm = π/2.

FIG. 9. Dependence of Fθ on magnetic field strength H for w =
5, D = 5, k2 = 0.6, k3 = 1.5, and β = π/4: curve 0, n = 0, angle
ϕm = 0; curve 1, n = 1, angle ϕm = π/2.

confocal state with ϕm = 0: the spiral structure of the CLC
disappears, and the total turn of the director on the thickness
of the layer is determined only by the relative turn of the
boundaries of the layer (�ϕ = 2ϕS). The further increase of
the field causes at H → HS the transition into the homeotropic
nematic state.

Decrease of the field H , beginning with H � HS , leads
to the replacement of the homeotropic nematic alignment by
the confocal cholesteric state with ϕm = 0, which at H = HR

transforms in a stepwise fashion into the planar cholesteric
state with ϕm = π/2.

The jumps of θm in Figs. 6 and 8 at the increase or
decrease of the field H occur at the transitions between the
planar cholesteric state and the confocal cholesteric state, but
the transition between the cholesteric phase and the nematic
phase is carried out in a continuous way, i.e., without jump of
θm; therefore, the cholesteric-homeotropic nematic transition
shown in Figs. 6–9 is a transition of second order.

The decrease of the anchoring energy w influences the
character of the phase transition from the planar cholesteric
state into the homeotropic nematic state. At a relatively large
value of w this transition is accompanied by the appearance
of the intermediate confocal state; in this case for the given
thickness D the following relation for the threshold fields
HF < HS (see Figs. 4 and 6–9) takes place. According to
the numerical calculations, at the decrease of the anchoring
energy we obtain HS < HF , beginning with some value w∗
(see Fig. 5). In this case the solutions describing the confocal
state look similar to the curve 2 in Fig. 4 for any values
of the thickness D of the layer. Thus the total energy of
such a confocal state exceeds the energies of the planar and
homeotropic states; i.e., the confocal state is unstable and for
the given thickness D the increase of H causes the transition
from the planar cholesteric state directly into the homeotropic
nematic state at H = H ∗

t , and the decrease of H from the
part of large values results at H � H ∗

t in returning to a
nematic-planar cholesteric transition. In this case the transition
is of first order. The value of the field strength, at which there
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FIG. 10. Dependence of H ∗
t on the layer thickness D for k2 = 0.6,

k3 = 1.5, and β = π/4: curve 1, w = 0.3; curve 2, w = 1.

is this phase transition, for the given thickness D is determined
from the equality between the total energies (26) and (27):

H ∗
t =

[
k2 + 2w

D
cos2(β − ϕS) − w2

4k2
sin2 2(β − ϕS)

]1/2

,

(61)

where the value of ϕS is determined by Eq. (25) in which the
angle ϕm can be found from Eq. (43). The value of anchoring
energy w∗, at which HF ∼ HS , one can estimate from the
comparison of the asymptotic expressions (54) and (60):

w∗ ∼
√

k2
3 − k2

2 . (62)

As the characteristic values of the modules of orientational
elasticity belong to the intervals [2]

0.5 <
K33

K11
< 3.0, 0.5 <

K22

K11
< 0.8, (63)

then, using Eq. (8), we obtain

0 < w∗ � 2.958. (64)

Hence, at K11 ∼ 1 × 10−7 dyn and q0 ∼ 1 × 103–1 ×
104 cm−1 the azimuthal anchoring energy should be relatively
small: 0 < Wa < 1 × 10−3 erg/cm2. We note, that, as it is
known [8], the typical values are Wa ∼ 1 × 10−3–1 erg/cm2.

Thus, at w > w∗ the planar cholesteric-homeotropic ne-
matic phase transition is accompanied by the appearance of
the intermediate state with confocal ordering, i.e., is a second
order transition, and at w � w∗ the planar state transforms into
a homeotropic state without the appearance of a conical spiral
structure, i.e., as a first order transition. We note that Eq. (62)
is carried out better, the greater the thickness of the layer D.

In Fig. 10 the dependencies H ∗
t on the thickness D for

different anchoring energies w < w∗ are depicted: w = 0.3
(curve 1) and w = 1 (curve 2). As seen from Eq. (61), at
D → 0 the magnetic field strength H ∗

t → ∞, and at D →
∞ the threshold value H ∗

t → √
k2 (since ϕS → β). In the

area below the curve the planar cholesteric state exists, and

FIG. 11. Dependence of HF (thick lines) and HS (thin lines) on
the inverse anchoring energy 1/w for k2 = 0.6, k3 = 1.5, and β =
π/4: curve 1, D = 8; curve 2, D = 5; curve 3, D = 2; curve 4,
D = 1.

above the curve the homeotropic nematic one exists. Thus,
in the planar state for the given thickness D the angle ϕm

is determined by Eqs. (22) and (43); in Fig. 10 the areas of
different values of ϕm are separated from each other by vertical
dashed lines, where the indices correspond to the integer values
of n [see Eq. (43)].

In Fig. 11 the dependencies of the Fréedericksz field HF

(thick lines) and saturation field HS (thin lines) on the inverse
energy of coupling 1/w for different values of the layer
thickness D are shown; the vertical dashed line corresponds to
the value 1/w∗. As seen from this figure, relationship (62) is
carried out better, the greater the value of D; i.e., at w > w∗ the
threshold values of the field satisfy the inequality HS > HF

(otherwise, HS � HF ). At small D the relationship (62) works
badly (see curve 4 in Fig. 11). At w → ∞ (rigid anchoring)
HS → ∞; i.e., in the case of rigid planar anchoring it is
impossible to reorient the director of the CLC in a homeotropic
state. At w → 0 the threshold fields achieve the following
values: HF → √

k3 [it follows from Eqs. (50) and (51)] and
HS → k2/

√
k3 [see Eq. (60)].

III. INFLUENCE OF POLAR ANCHORING STRENGTH

Let us consider the general form of the anchoring potential
[5], including the polar Wp and azimuthal Wa energies of
coupling. For this purpose we write Eqs. (4) and (5) as follows:

z = 0 : FS = −Wp

2
(n · ez)

2 − Wa

2
(n · es1)2, (65)

z = d : FS = −Wp

2
(n · ez)

2 − Wa

2
(n · es2)2. (66)

Here the designations are the same as in Sec. II A; Wp

and Wa are the so-called polar and azimuthal anchoring
strengths, respectively. As seen from Eqs. (65) and (66), at
Wa > Wp these potentials have a minimum at n ‖ es1(2), i.e.,
they describe the anchoring interaction with the axis of easy
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orientation lying at the boundary of a layer (planar conditions
of coupling), and at Wa < Wp the easy axis is directed along a
normal to the boundaries (homeotropic conditions of coupling,
n ‖ ez). For clarity we suppose that Wa > Wp; i.e., in the
absence of a magnetic field there is planar alignment in a cell.
Minimization of the total energy functional (2) in which the
volume contribution is defined by Eq. (3), and the surface one
is defined by Eqs. (65) and (66), results in new relationships
determining the threshold values of a magnetic field and a
thickness of a layer at which there are orientational transitions
between three possible kinds of one-dimensional distributions
of the director field (1).

The expressions of Sec. II C, determining the critical
parameters of the system at which there is a transition between
the planar cholesteric state [θ (z) = 0] and the confocal state
[0 < θ (z) < π/2], with the aid of Eq. (65) can be written now
as

D = 4k2(ϕm + ϕS)

2k2 + wa sin 2(β − ϕS)
, (67)

√
γ (ϕS)

2k2[wa cos2(β − ϕS) − wp]

= cot

{
(ϕm + ϕS)

√
γ (ϕS)

2k2 + wa sin 2(β − ϕS)

}
. (68)

Here the designations are the same, as in Sec. II A, and wa =
Wa/(q0K11) and wp = Wp/(q0K11). Equations (67) and (68)
and the function

γ (ϕS) = [wa sin 2(β − ϕS) + 2k2]

×[wa(2k2 − k3) sin 2(β − ϕS) − 2k2k3] + 4k2
2H

2
F

at wa = w coincide with Eqs. (50) and (52) obtained in
Sec. II A, and at wp = 0 Eqs. (67) and (68) are reduced to
Eqs. (50) and (51). Just as in Sec. II A [see Eq. (25)], Eq. (67)
at the given layer thickness D determines the values of the
angle ϕS in the planar state. The values of ϕm in Eqs. (67)
and (68) should satisfy relation (22) in which the integer n

is determined by Eq. (43). If we choose wa = 0 (the case of
azimuthal degeneration of the easy axis), Eqs. (67) and (68)
can be written as follows:

D = 1√
k3 − H 2

F

ln

⎧⎨
⎩

√
k3 − H 2

F + wp√
k3 − H 2

F − wp

⎫⎬
⎭. (69)

With the increase of the layer thickness (D → ∞) the
Fréedericksz field HF , determined by Eqs. (67) and (68),
or Eq. (69), just as in Sec. II C, has the asymptotic value
HF → √

k3 [see Eq. (54)].
In Fig. 12 the dependence of the Fréedericksz field HF on

the thickness D is shown. The family of dashed and thick
lines (the designations are the same as in Fig. 4; see Sec. II C)
corresponds to the cases wa = 5 and wp = 0 in Fig. 12. The
family of continuous and thick lines in Fig. 12 corresponds
to the case wa = 5 and wp = 4.5. Each dashed or continuous
line of the family with the integer index in Fig. 12 represents
the solution of Eqs. (67) and (68), where the angle ϕm is
determined by Eq. (22) with n equal to the index of the curve.

FIG. 12. Dependence of the field HF on the thickness D for
k2 = 0.6, k3 = 1.5, β = π/4, and wa = 5: dashed lines, wp = 0;
solid lines, wp = 4.5.

Because with the increase of the layer thickness D the number
of half turns of the spiral should be increased (which causes
the increase of ϕm and increase of n; see Sec. II C), the actual
dependence HF (D) in Fig. 12 corresponds to thick parts of
the curves for which relationship (43) is carried out. As seen
from Fig. 12, the increase of polar coupling energy wp leads
to a slight influence on the dependence HF (D): the difference
between the values HF for wp = 0 and wp 
= 0 decreases with
the increase of the thickness D (see thick plots of curves in
Fig. 12).

Equations (59), determining the threshold characteristics of
the transition in a homeotropic nematic state, for the case of
anchoring interaction (65) is as follows:

D = 4k3

a1
ln

⎧⎨
⎩

a1αS1 +
√

a2
1

(
α2

S1 + 1
) + b2

1√
a2

1 + b2
1

⎫⎬
⎭,

ϕm + ϕS0 = arctan

⎧⎨
⎩ αS1b1√

a2
1

(
α2

S1 + 1
) + b2

1

⎫⎬
⎭ + k2

k3

D

2
,

αS1

√
a2

1

(
α2

S1 + 1
) + b2

1

= 2
(
α2

S1 + 1
)
[wa cos2(β − ϕS0) − wp], (70)

where a1 =
√

4(H 2
S k3 − k2

2) and b1 = wa(α2
S1 + 1) sin 2(β −

ϕS0). As already marked in Sec. II E, the transition in a
homeotropic state is accompanied by total unwinding of the
CLC spiral (the number of half turns of the spiral n = 0);
therefore, in Eqs. (70) the angle ϕm = 0. Equations (70) at
wp = 0 coincide with Eqs. (59), and in the case of azimuthal
degeneration of the easy axis (wa = 0) Eqs. (70) can be written
in the following form:

D = 2k3√
k2

2 − H 2
S k3

arctan

⎧⎨
⎩ wp√

k2
2 − H 2

S k3

⎫⎬
⎭. (71)
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FIG. 13. Dependence of the field HS on the thickness D for
k2 = 0.6, k3 = 1.5, β = π/4, and wa = 5; the numbers in the curves
correspond to wp .

At D → ∞ the field strength HS → H ∗
S , where the value

H ∗
S , instead of that in Eq. (60), is determined now as

H ∗
S =

√
k2

2 + (wa − wp)2

k3
, (72)

which follows from Eqs. (70); thus, ϕS0 → β and αS1 → ∞
(see Sec. II D).

At the limit ϕS0 → 0 and αS1 → 0 Eqs. (70) have the
solution D → 0, for which

wa cos2 β = wp,

HS = 1

k3

√
k2

2k3 + wa sin 2β

(
k2

2 + 1

4
k3 sin 2β

)
.

(73)

These formulas describe the asymptotic behavior of curve 2.5
in Fig. 13 at D → 0. In the case of wa cos2 β > wp at D → 0
from Eqs. (70) we obtain that HS → ∞ (curves 0, 0.1, 1.0,
and 2.0 in Fig. 13). At wa cos2 β < wp the saturation state is
achieved in thin layers owing to the influence of the boundaries
(curves 3.0, 3.5, 4.0, and 4.5 in Fig. 13): the magnetic field HS

vanishes at the thickness

D = 2k3

k2
arctan

⎧⎨
⎩ 2αS1k2√

b2
1 − 4k2

2

(
α2

S1 + 1
)
⎫⎬
⎭. (74)

In Fig. 13 the evolution of the dependence of the saturation
field HS on the thickness D at the increase of the polar
energy of coupling wp is shown. The dashed curve in Fig. 13
corresponds to wa = 5 and wp = 0 (see Sec. II C, Fig. 4). As
seen from Figs. 12 and 13 and Eq. (60), the increase of the
polar energy of coupling wp causes a significant decrease of
the saturation field HS , but almost does not change the value of
the Fréedericksz field HF . It allows us to choose such values of
wa and wp at which HF < HS , or HF > HS . In the latter case,

as marked above, the cholesteric-nematic transition becomes
a first order transition.

For large thicknesses (D → ∞), as already marked, the
field HF → √

k3, and HS is determined by Eq. (72),; therefore,
the relationship at which HF ≈ HS can be written as follows:(

k2
3 − k2

2

) ≈ (wa − wp)2. (75)

Hence, at (k2
3 − k2

2) < (wa − wp)2 the cholesteric-nematic
transition is a second order transition (HF < HS), and
at (k2

3 − k2
2) > (wa − wp)2 it is a first order transition

(HF > HS).

IV. INFLUENCE OF DEGENERATION OF THE EASY
ORIENTATION AXIS ON THE CHOLESTERIC-NEMATIC

TRANSITION

Let us consider the features of phase transition between
the cholesteric and homeotropic nematic states in a layer
with twofold degeneration of an easy orientation axis on the
boundaries. The homogeneous magnetic field H = (0,0,H) is
directed along the z axis, and the anisotropy of diamagnetic
susceptibility is χa > 0. For the description of anchoring
interaction, instead of Eq. (4) we use the following potential
[47]:

z = 0 : FS = W

2
[1 − (n · es1)2][1 − (n · ez)

2], (76)

z = d : FS = W

2
[1 − (n · es2)2][1 − (n · ez)

2], (77)

which has a minimum at n ‖ es1(2), or at n ‖ ez, i.e., it describes
the twofold degeneration of the easy axis of orientation;
W > 0 is the surface density of the coupling energy of CLC
molecules with the boundaries of a cell. The director field n(r)
is searched as in Eq. (1). The designations used in the present
section coincide with the designations made in Sec. II A [see
Eqs. (4)–(15)].

Operating just as in Sec. II A, one can obtain the equilibrium
distribution of the director field. For the dependencies θ (z)
and ϕ(z), and the angles θm and ϕS , the obtained equations
coincide with Eqs. (32), (33), and (35) from Sec. II A, in which
the function A(θ ) is determined by expression (34), and the
integration constant

C2 = w

2
cos4 θS sin 2(β − ϕS). (78)

The equation for the determination of the angle θS looks like

− f (θS)√
A(θS)

= w

2
sin 2θS[1 − 2 cos2 θS cos2(β − ϕS)]. (79)

The angle ϕm accepts the discrete series of values determined
by Eq. (22).

The equations of equilibrium have three types of solutions
corresponding to different kinds of structures: the planar CLC,
the confocal CLC, and the homeotropic nematic structure.

In the planar state [θ (z) = 0] the values of the angles ϕS

and ϕm are determined by the equations which coincide with
Eqs. (25), (22), and (43). The expression for the total energy
in the planar state F0 ≡ F/(K11q0S) looks like

F0 = D

8k2
w2 sin2 2(β − ϕS) + w sin2(β − ϕS). (80)
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The total energy (80) does not depend explicitly on the
magnetic field H and achieves the lowest value F0 = 0 only
in the case when the thickness of a layer satisfies relation (40).
For the infinite cholesteric layer (D → ∞) the total energy
F0 → 0, since in this case the pitch of the spiral p → p0.

The total energy of the homeotropic stateFπ/2 [θ (z) = π/2]
is determined by the equation which coincides with Eq. (27).
For the case of the confocal ordering [0 < θ (z) < π/2] the
total energy Fθ is expressed by Eq. (38), in which the last item
(the contribution of the anchoring interaction) can be written
as w cos2 θS[1 − cos2 θS cos2(β − ϕS)].

For the determination of the threshold values for the
thickness D and the magnetic field strength H (see Secs. II C
and II D) one can consider the above-described equations of
the CLC equilibrium state at θm → 0 (the Fréedericksz field)
and at θm → π/2 (the saturation field).

In the limit θm → 0 the equations of equilibrium become

D = 4k2(ϕm + ϕS)

w sin 2(β − ϕS) + 2k2
, (81)

√
γ (ϕS)

2wk2 cos 2(β − ϕS)
= cot

{ √
γ (ϕS)(ϕm + ϕS)

w sin 2(β − ϕS) + 2k2

}
. (82)

Here the function γ (ϕS) is defined by Eq. (52), and the values
of ϕm are determined by Eqs. (22) and (43). Equations (81)
and (82) determine the threshold values of the CLC material
parameters, the thickness D, and the magnetic field strength
H beginning with which there is confocal ordering in a layer.
For example, at the increase of the thickness D up to the value
determined by Eqs. (81) and (82), the planar structure exists,
and above this value, the confocal solution appears. If the
thickness D is fixed, Eqs. (81) and (82) determine the value
of the so-called Fréedericksz field HF (see Sec. II C) such that
at H < HF there is a planar CLC structure, and at H � HF

there is a confocal CLC state.
In order to determine the threshold values of the thickness

D and magnetic field H at which a homeotropic state could
exist in a layer, we consider the equations of state in the limit
θm → π/2. As a result, we obtain the equation

D = 2k3√
k2

2 − H 2
S k3

arctan

⎛
⎝ w√

k2
2 − H 2

S k3

⎞
⎠. (83)

For the given thickness D, expression (83) determines the
so-called saturation field HS , such that at H > HS there is a
homeotropic nematic state in a layer, and at H � HS there is
a confocal cholesteric state.

In Fig. 14 the Fréedericksz field HF (continuous lines) and
the saturation field HS (dashed curve) are shown as functions
of the layer thickness D (see also Figs. 4 and 5). The integer
indices in Fig. 14 correspond to the values of n in Eq. (43).
The area of existence of the confocal solution is limited by the
curves HF (D) and HS(D), and, as seen from Fig. 14, for any
thickness D the inequality HS < HF always takes place (the
similar case is considered in Secs. II C and II E). Numerical
calculations based on the comparison of the total energies
of the planar state F0 [Eqs. (80)], the confocal state Fθ and
the homeotropic state Fπ/2 in the area of a confocal solution
existence, show that the solution describing the conical spiral

FIG. 14. Dependence of the Fréedericksz field HF and saturation
field HS (dashed line) on the thickness D of the layer for w = 5,
k2 = 0.8, k3 = 2.0, and β = π/4. The integer indices are the values
of n.

ordering in a layer is absolutely unstable for any chosen values
of the CLC material parameters. Thus, the total energy of the
confocal stateFθ appears to be always higher than the energies
of the planar and homeotropic states. Hence, the orientational
phase transition from the planar cholesteric state into the
homeotropic nematic state takes place without the appearance
of an intermediate confocal ordering; i.e., this phase transition
is of first order. At the transition point the energies of the
planar and homeotropic states are equal to each other; i.e.,
two states with θ (z) = 0 and θ (z) = π/2 are not divided by
the potential barrier. The values of the critical parameters at
which the phase transition takes place are determined from the
equality F0 = Fπ/2. In particular, if the variable parameter is
the magnetic field H , then the expression

H ∗
t =

[
k2 − 2w

D
sin2(β − ϕS) − w2

4k2
sin2 2(β − ϕS)

]1/2

(84)

determines the critical magnetic field strength H ∗
t , such that at

H < H ∗
t there is a planar state in a layer, and at H � H ∗

t the
phase transition of first order into a homeotropic nematic state
occurs. The value of ϕS in Eq. (84) is determined by expression
(25) in which the angle ϕm can be found from Eq. (43).

Thus, the presence of twofold degeneration of the easy axis
of orientation on the boundaries of a layer [see Eqs. (76) and
(77)] excludes the appearance of confocal cholesteric ordering
in a layer at any possible values of material parameters. The
orientational phase transition in this case is the transition of
first order at which the planar cholesteric state discontinuously
changes with homeotropic nematic state. If this phase transi-
tion is caused by the variation of a magnetic field, Eq. (84)
determines the critical field of such a transition. Recall that in
the case of a planar anchoring of the director at the boundaries
of the layer [see Eqs. (4) and (5)] the first order transition
is possible only in that case, when the energy of coupling
w < w∗, where w∗ is determined by Eq. (62), i.e., at relatively
small values of the azimuthal coupling energy.
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V. CONCLUSIONS

In the present work within the framework of continuum
theory magnetic-field-induced cholesteric-nematic transition
in a layer with soft planar coupling between the director
and the boundaries of a layer has been investigated. It
has been supposed that the helical axis of a CLC and a
magnetic field are directed along a normal to the layer, and
diamagnetic anisotropy is positive. It is shown that, depending
on the thickness of a layer or magnetic field strength,
the homogeneous homeotropic nematic state or cholesteric
state of a planar or confocal type can exist in the layer.
In the latter case the director of the CLC is oriented under
some angle to the spiral axis and forms the conical helicoidal
structure.

It has been established that the increase in the thickness of a
layer in the planar cholesteric state leads to a stepwise increase
in the number of half turns of the spiral in the cell that causes
the jumps of average over a cell transverse components of a
magnetic susceptibility tensor 〈χij 〉 of the CLC. Experimental
measuring of such jumps allows one, using Eqs. (48) and (49),
to estimate the azimuthal energy of coupling Wa .

It is shown that at a given thickness of a layer the increase
in magnetic field causes the orientational phase transition
from the planar cholesteric state to a homeotropic nematic
state; thus, depending on the value of the coupling energy
the intermediate confocal cholesteric structure can either be
observed or not observed, i.e., the phase transition can be a
transition of both second and first order. For the case of large
thickness the threshold value of azimuthal energy of coupling
W ∗

a = q0

√
K2

33 − K2
22 is determined, such that at Wa > W ∗

a

the planar cholesteric-homeotropic nematic phase transition
is accompanied by the appearance of the intermediate state
with confocal ordering, i.e., is a transition of second order,
and at Wa � W ∗

a the planar state changes by homeotropic
nematic state without appearance of a conical spiral structure,
i.e., as a first order transition. It is shown that in the case of
second order transition the transition in the homeotropic state
is accompanied by unwinding of the CLC spiral structure; i.e.,
the increase in the magnetic field directed along the axis of
a CLC spiral causes a decrease of the number of half turns
of a conical spiral structure. It is shown that the total turn of
the director around the axis of a spiral in the layer is not the
external parameter but is determined by the relation between
the thickness of the layer and the value of the intrinsic CLC
pitch.

The threshold characteristics are determined, at which there
are the transitions from the planar cholesteric state into the

confocal state (the Fréedericksz field) and from the confocal
state into the homeotropic nematic state (the saturation field)
for anchoring potential (65). It is shown that in the case of
planar coupling (Wa > Wp) the increase in the polar energy
of coupling Wp insignificantly changes the dependence of the
Fréedericksz field HF on the layer thickness, but considerably
reduces the saturation field HS at which there is a transition
into the homeotropic nematic state (see Fig. 13). It allows
one to choose such values of Wa and Wp at which the phase
transition becomes the transition either of first or second
order. In particular, for the case of large thickness of the
layer at q2

0 (K2
33 − K2

22) > (Wa − Wp)2 the cholesteric-nematic
transition will be a first order transition.

In the present paper we have considered the anchoring
potential, Eqs. (76) and (77), which corresponds to twofold
degeneration of the axis of easy orientation. The presence of
two axes of easy orientation, one lying in the plane of the layer
and the second oriented along the normal to the layer, leads to
the fact that the cholesteric-nematic phase transition is always
a transition of first order, i.e., the planar cholesteric structure
transforms in a stepwise fashion into the homeotropic nematic
state, and the confocal state is absolutely unstable. From the
comparison of the total energies of the planar and homeotropic
states the critical value of a magnetic field H∗

t is determined,
at which the phase transition takes place: at H < H∗

t there is a
planar state in a layer, and at H � H∗

t the first order transition
in a homeotropic nematic state takes place.

We have studied the cholesteric-nematic phase transition
and the stepwise behavior of a cholesteric pitch using the
Rapini potential [3] of soft anchoring. As it is known, the
Rapini potential is rather good in the case of small deviations
of the nematic director from the easy direction. For a large di-
rector deviation from the easy direction the so-called Belyakov
potential [48–50] is more suitable. Note that a stepwise change
of the helical structure corresponds to substantial deviations
of the director and, therefore, the Belyakov potential more
adequately can describe this phenomenon. In recent work [48]
an experimental investigation of the cholesteric structure in a
wedge-shaped cell with soft surface anchoring was performed.
Such a cell allows one to restore the shape of the surface
anchoring potential. From Ref. [48] it follows that apparently
a more accurate description of the stepwise behavior can be
obtained using the Belyakov potential.
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