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By the chemical cross-linking of rigid molecules, liquid crystal polymer (LCP) has been envisaged as a novel
heterogeneous material due to the fact that various optical and geometric states of the liquid crystalline (LC)
phases are projected onto the polymeric constituents. The phase behavior, which refers to the macroscopic shape
change of LCP under thermotropic phase change, is a compelling example of such optical-mechanical coupling.
In this study, the photomechanical behavior, which broadly refers to the thermal- or light-induced actuation
of smectic solids, is investigated using three-dimensional nonlinear finite element analysis (FEA). First, the
various phases of LC are considered as well as their relation to polymeric conformation defined by the strain
energy of the smectic polymer; a comprehensive constitutive equation that bridges the strong, optomechanical
coupling is then derived. Such photomechanical coupling is incorporated in the FEA considering geometric
nonlinearity, which is vital to understanding the large-scale light-induced bending behavior of the smectic solid.To
demonstrate the simulation capability of the present model, numerous examples of photomechanical deformations
are investigated parametrically, either by changing the operating conditions such as stimuli (postsynthesis) or
the intrinsic properties (presynthesis). When compared to nematic solids, distinguished behaviors due to smectic
substances are found herein and discussed through experiments. The quasisoftness that bidirectionally couples
microscopic variables to mechanical behavior is also explained, while considering the effect of nonlinearity. In
addition to providing a comprehensive measure that could deepen the knowledge of photomechanical coupling,
the use of the proposed finite element framework offers an insight into the design of light-responsive actuating
systems made of smectic solids.
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I. INTRODUCTION

During the past few decades, liquid crystal polymer
(LCP) has been vigorously investigated as a novel material
with anomalous phase behaviors [1–3] that stem from the
combination of polymeric elasticity and the self-organizing
traits of the liquid crystal (LC). In other words, the polymeric
conformation shows the mechanical and optical anisotropies
whenever the LC molecules possess certain types of sym-
metries. Recently, the phase behavior that broadly refers to
the change of such anisotropy that entails the mechanical
behavior is envisaged as a promising candidate for applications
requiring novel smart actuation, such as artificial muscles, self-
propulsion units, and microscaled actuators [4–7]. Predomi-
nantly, such coupled behavior has two distinguished traits. (1)
The actuation is basically integrated within the structure itself,
by which some hurdles for the future actuation system can be
circumvented. (2) Various exotic deformations are possibly
generated out of seemingly equivalent models; when LC
textures are tuned either via rubbing, photoalignment, or
doping functionalized inhomogeneity [1–3,8–10], they show
unevenly distributed principal directions of local deformation.

Some recent studies have further explored the possibility
of the photoactuator, which is a light-driven variant of the
coupled behavior. Provided that incorporated mesogens exhibit
photochromism, such as the azobenzene chromophore that
reversely changes its form to cis (boat shape) out of an
initially trans (chair shape) state upon exposure to photons with
adequate frequency, the polymeric conformation similarly
changes with light. Given that actinic light is bombarded
onto the surface of photoresponsive LCP, the energy of the
photon is continuously absorbed into the matrix while it

travels through the materials and isomerizes the photochromic
molecules. An increased number of kinked molecules reduce
the phase-transition temperatures as these molecules lose their
rigidity and cannot contribute to the order, thereby rendering
the state of the LC inhomogeneous in the depthwise direction.
As a result, differential photoinduced strain is generated in
out-of-plane directions; this strain simultaneously bends and
elongates the specimen. Moreover, reversibility of such mech-
anism has been proven to generate no plastic deformation,
thereby rendering the photobending mechanism an attractive
means for the remotely controlled smart actuation [11–14],
of which the behaviors are possibly alternated whenever we
change the backbone, domain, and even the type of liquid
crystallinity.

Most of these works, however, are limited to nematic-
isotropic transition, which is characterized by one transition
temperature TNI and an orientational order parameter S, as
the nematic phase only has rotational symmetry and is stable
in a wide temperature range [15] that eases the fabrication.
The nematic solids are also favored as they often yield large
strain up to a few hundred percent [1] of their initial length.
Meanwhile, the use of smectic solids has received far less
interest than the use of nematic solids, not only due to
their lower thermal stability than nematic solids upon cross-
linking, but also because they involve additional parameters
for the symmetry—smectic-nematic transition temperature
TNA � TNI and complex order parameters ψ = ρo exp(i �q · �x).
Recent works have demonstrated that the addition of such
symmetry yields unprecedented elasticity, as the layer undu-
lation becomes another mode of soft, unstable mechanical
responses: The opacity of the material changes when uniaxial
loading exceeds the threshold value [16–18]. Concerning
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phase behaviors, the projection of the translational symmetry
on the onset of nematic-to-smectic transition significantly
influences the conformation of the polymer; it flattens the
overall shape in the longitudinal direction and hence induces
a pretransitional effect [2,19,20]; thus the phase behavior
becomes nonmonotonic. To date, works on the smectic solids
and their characterizations are largely indebted to experimental
studies such as small-angle x-ray scattering (SAXS) based
observation, and supplemented only by a few physical and
numerical simulation results. For example, the mechanical
instability upon mechanical loading is investigated with
respect to mechanical property [17], and implemented to
the numerical model via quasiconvexation [18]. Nevertheless,
studies on phase behaviors and especially on light-driven
behaviors are largely unfound, thereby rendering both the
understanding and design of smectic-solid based systems
imperative. We therefore employ a finite-element-based ap-
proach for the phase behavior of the smectic solids with the
following considerations: (i) As in the studies on nematic
solids [21,22], a direct relation between stimuli and mechanical
responses must be established by multiphysical stimuli-order
constitutive coupling; (ii) bending is a dominant deformation
model upon irradiation; the method should be capable of
simulating large deformation along with rigid-body motion
to consider bending, twisting, etc.; and (iii) in addition to
stimuli responsiveness, the method should provide users with
sufficient space to design the material, both macroscopically
and microscopically (e.g., spatially distributed mesogen).

This paper is organized into two sections: (1) Background
and (2) Results and Discussions. In the first section, we present
a formulation of the finite-element-based framework, which
incorporates the multiphysical coupled constitutive equations
into the geometrically nonlinear finite element method. In
the first part, the Landau model of smectic-nematic-isotropic
phase transition based on the order parameter description
of the LC phases is briefly introduced, followed by the
formulation of the tensorial constitutive equation via the
variational principle, where the free energy of the smectic
solids and material incompressibility are considered. Next, the
constitutive equation is combined with the faceted shell finite
element, of which nonlinearity is reflected by corotational
formulation. In the Results and Discussions section, we first
describe a parametric study on the phase-induced mechanical
changes of the smectic solids by changing the presynthesis
and postsynthesis conditions. The quasisoftness provoked in
photomechanical behavior and director-dependent behavior is
also presented, demonstrating the need for the comprehensive
framework of the material. Lastly, the geometric nonlinearity
of the light-induced deflection is discussed by comparing with
the linear solution.

II. BACKGROUND

In this chapter, we describe the theoretical background of
the present work. Firstly, the order parameters that characterize
each LC state are briefly introduced. Their thermotropic phase
change is considered by means of the polynomial Landau
model, which is simple yet efficient for simulating phase
transitions. Being pivotal to understanding the mechanical
coupling between the LC state and the structure, the shape

parameter r that parametrizes polymeric conformation is also
described in terms of order parameters and experimental
findings [22,23] on smectic solids. Lastly, the constitutive
relationship that incorporates the shape parameter into the
stress strain is derived by the variational principle with the
strain energy of smectic-A solids. The combination of the
constitutive equation and nonlinear finite element formulation
is described hereafter, where a short review of the corotational
formulation is given with a description of the flat, faceted shell
element regarding photomechanics.

For smectic-A liquid crystals, their mesogenic order is
commonly described by two types of symmetries: rotational
and translational. A scalar orientational order s parametrizes
the degree of alignment of the chromophores with respect
to their average direction, provided that biaxiality is not
provoked; the tensorial format of orientational order Q

∼

=
diag(−s/2, − s/2,s) is also frequently used. On the other
hand, the translational symmetries, which require a periodic
function that accounts for the spacing between each layer and
the layer normal, are commonly described by the complex
scalar order parameter [24–26] in Eq. (1).

ψ = ρo exp(i �q · �x). (1)

An order parameter ψ of position �x is defined by an
amplitude of density modulation ρo, and a real density wave
phase �q. In smectic-A liquid crystal, there is no tilting between
layer normal and mesogenic alignment; we therefore reduce
�q · �x into qo�n · �x, in terms of the scalar layer spacing qo and
the director �n. Equation (2) describes the values of order
parameters for each given phase.

s = 0, ρo = 0, qo = 0 : isotropic(I ),

s �= 0, ρo = 0, qo = 0 : nematic(N ),

s �= 0, ρo �= 0, qo > 0 : smectic(Sm-A). (2)

In order to comprehend the first order phase transition
between each state, various models have been proposed since
the work of McMillan et al. [24], which utilizes the modified
Maier-Saupe nematic model (see Ref. [26] for a comprehen-
sive review on a theoretical model for the multiphase model).
In the present work, we employ the simple polynomial Landau
model; it is not only theoretically practical due to the energetic
convexity given that the parameters abide by the numerical
constraints, but it can also be extended to reflect the variants of
the LC composition such as molecular flexibility and external
field. An adapted form of the recent work on unified phase
transition [25] is presented in Eq. (3) as a Landau model; it
models the comprehensive transitions between smectic (Sm),
nematic (N ), and isotropic (I ), and even their tricritical points.

F [Q
∼

,ψ] =
∫

�

σLdG(Q
∼

) + σel,sm(∇ψ) + σsm(|ψ |)

+ σ (1)
n,sm(Q

∼

,|ψ |) + σ (2)
n,sm(Q,∇ψ)dv

= 2

9
{3as2 − bs3 + cs4} + {

b1ρ
2
oq

2
o + b2ρ

4
oq

4
o

}
+ {ãρ2

o + c̃ρ4
o

}+ 2

3

{−b̃ρ2
os

2 + eρ2
oq

2
o s
}
, (3)
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where σLdG, σel,sm, σsm, and σn,sm refer to the Landau-de
Gennes energy in the nematic state, elastic-smectic coupling,
smectic, and nematic-smectic coupling energy. These penalize
a nematic phase transition, a layer dilatation, an onset of
smectic phase, and a nematic-smectic transition, respectively.
Note that liquid crystal distortion energy (i.e., Frank elasticity)
is not considered and ρo, qo, and s are presented as the
variables of functional F in polynomial form because the phase
behavior, in which directional distortions of LC are assumed
to be negligible, is the primary consideration of the present
work; hence the director distortion within the layer [16,17]
and the self-organizing effect of the directors are not an
objective of the present work. However, it is worth noting that
such LC elasticity must be taken into account whenever the
alignment is distorted significantly, such as the inner coupling
between mechanical load and mesogen distribution [27–29]
or schlieren texture [2], because the present assumptions are
violated due to the nonzero ∇�n that affects ∇ψ . Moreover, by
ruling out the Sm-C consideration, the numerical nonconvexity
(e.g., chevron distribution) that stems from energy invariance
regardless of the tilting direction is not considered herein.
Considering the aforementioned assumptions and schematics,
the present phase transition free energy is easily computed
with either numerical optimization or analytic approaches.
Following Ref. [25], the constitutive parameters are assumed
to consider (1) the existence of solutions and (2) thermotropic
Sm-A-N -I transition upon critical temperatures, TNA (N -Sm-
A transition) and TNI (N -I transition).

b > 0, c > 0, b2 > 0, c̃ > 0, b̃ > 0, c > 0, e � 0,

ã = â(T − TNA) + 2
3 b̃s2

+, b1 = b̂(T − TNA) − 2
3es+,

a = ao(T − TNI )â > 0, b̂ > 0, ao > 0. (4)

Figure 1 exemplifies the evolution of the order parameters
during temperature change; a detailed description of the
parameters is given in Table I.

FIG. 1. Order parameter s∗,ρ∗
o ,q

∗
0 with increasing temperature;

first order phase transition is observed due to assumed Landau form
of free energy.

TABLE I. Constitutive parameters for Landau-formulation for
phase transition.

Parameter Value Parameter Value

ao 1 b2 100
b 100 c̃ 3000
c 400 T ∗ 370
â = b̂ 400 TNA 350

However, two aspects of the evaluation of the order param-
eter need to be improved. Firstly, even though the constitutive
parameters presented in Table I are carefully selected in order
to retain the order parameters within the acceptable range
found in the experiment [24], the parameters still need to be
evaluated by either fitting from the experiment or low-scale in
silico simulation in order to improve their physical accuracy.
Additionally, the transitions between Sm-A-N and N -I are
both first order, marked by the C0 continuity in the graphs,
which differ from the experimental results on polymerized
mesogens [30], where the formation of the symmetries is
attenuated by the presence of the vicinal polymeric chains.

Concerning the light-induced effect, we employ a classical
dilution model [Eq. (5)], by which the characteristic temper-
atures for phase transition (TNI and TNA) are assumed to
decrease in linear proportionality by the ratio of cis molecules
based on the reduction of the rigidity of the chromophores due
to trans-to-cis isomerization [2,23].

TNI (I ) = T 0
NI − βncis(I ), TNA(I ) = T 0

NA − βncis(I ). (5)

In addition, the evolution of the cis molecules for the
given light intensity and heat is modeled in population
dynamics shown in Eq. (6), wherein light-induced trans-to-cis
isomerization determined by the absorption rate � and light
intensity I competes with the constant-rate recovery explained
by cis lifetime τ−1. In this work, the steady-state value of the
cis population ratio is also obtained in terms of effective light
intensity Ieff .

ṅcis = (�I )ntrans + τ−1ncis, (6a)

n∞
cis = τ�I

1 + �τI
=̂ Ieff

1 + Ieff
. (6b)

It is worth noting that the present light-temperature-order
model is largely indebted to various fields such as polymer
physics (the freely jointed model), phase-transition theory,
light decay, etc. The basic formula, therefore, offers much
room for improvement because it is a field that undergoes
rapid improvement due to the advance of low-scale in
silico experiments [31] and multiscale description [32,33] as
demonstrated in the case of nematic solids.

In the present work, the normal layer of the liquid crystal’s
lamellar form and nematic director remains coaxial since the
smectic-A solid is considered; a uniaxial shape conformation
(i.e., shape parameter r) that is defined by the square of the ratio
between the principal radii of gyration is therefore similarly
used. Following the nematic description, the conformation
matrices are described by r [22] and nematic description
�n. However, determining the shape parameter found in the
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smectic solid is nontrivial. The statistically based shape
parameter, as in the nematic case, is not obtained due to
the translational symmetry; in the nematic case, mesogenic
distribution is parametrized by a unit sphere, whereas the
smectic case requires an additional two variables for amplitude
and wavelength. Therefore, in the present work, the shape
parameter of the nematic case, rn = 1 + 3s, is modified by
considering additional constraints found in the experiment [20]
and by definition of order parameters [25]. First, the sign
invariance of ρo is required, as a sign of the ρo is trivial as
shown in Eq. (1). Also, the pretransitional effect between
Sm-A and N , which flattens the uniaxial anisotropy, must
be reflected, although it should increase as the temperature
decreases in either the deep-smectic-A or the nematic regime.
Lastly, the right-handed limit of the orientational order pa-
rameter of s+ ≡ limT →T +

NI
s must be included in the model, in

order to build a shape parameter that comprehensively explains
both the Sm-A-N -I transition and the Sm-A-I transition. The
resulting shape parameter is described in Eq. (7),

r(s∗,ρ∗
o ,q∗

o ; α,β,γ )

= 1 + 3αs∗ − βs+
[

1

{1 + exp(−γ |ρ∗
o |q∗

o )} − 0.5

]
. (7)

Here, the asterisk indicates the minimizers of smectic phase
free energy, and the parameters with greek letters (α,β,γ ) are
tunable variables where α is 1 when a freely jointed chain
is assumed. It is worth noting that shape parameters can
be obtained either by experiment or full-atomistic multiscale
simulation. For the sake of brief simulation, we assume α =
β = γ = 1. Note that the pretransitional flattening effect is
considered to be caused by the shifting of the sigmoid function
by −0.5, which is zero in either the nematic or isotropic case
(i.e., ρ∗

o = q∗
o = 0) and rapidly settles to βs+. In contrast to the

Heaviside step function, the present term retains C1 continuity
for all real domains. This is not only beneficial to the continuity
of the shape function, but it also mitigates the abruptness of
the first order phase transition, thereby removing unphysical
“jumps” during the photomechanical analysis. It is also worth
noting that such a trait is also favored in analytic differentiation
in gradient based analysis such as optimization [34].

Concerning the constitutive equation, the elastic energy
of the smectic-A solid fel [17] is considered as well as
the incompressibility condition. The total potential energy

functional is constructed as in Eq. (8).

� = fel(λ
∼

,�no,ro,r) − p[det(λ
∼

) − 1]. (8)

λ
∼

is a deformation gradient and p is a Lagrange multiplier
for constraint det(λ

∼

) ≡ J = 1. By statistical modeling of the
cross-linking points of polymer strands lying on the LC
lamellar layer, a neoclassical form of the smectic-A free energy
is presented in Eq. (9).

fel = μ

2
tr( l

∼

−1λ
∼

l
∼o

λ
∼

T ) + B

2
(|λ

∼

−T · �no|−1 − 1)2, (9)

where μ and B are the shear and layer modulus, respectively;
| · | indicates an L2 norm. The first term corresponds to a
trace formula found in Verwey-Terentjev-Warner (VTW) en-
ergy, whereby anisotropic neo-Hookean material is analyzed.
Without biaxiality, the shape tensors l

∼

and l
∼o

are uniaxial

and serve as metric tensors [21] and thus are positive definite.
Equation (8) describes such a metric, comprised of a shape
parameter r and a layer normal �n, where subscript o indicates
that they are reference properties.

l
∼o

= g
∼o

= r−1/3
o [I

∼

+ (ro − 1)�no ⊗ �no], (10a)

l
∼

−1 = g
∼

−1 = r1/3[I
∼

+ (r−1 − 1)�n ⊗ �n]

= r1/3[I
∼

+ (r−1 − 1)|λ
∼

−T · �no|−2
λ−T (�no ⊗ �no)λ−1].

(10b)

Note that an affine transformation from the reference to the
deformed coordinate is assumed in the layer normal vector; the
rotated layer normal is �n = λ

∼

−T �no/|λ
∼

−T �no|, while 1/|λ
∼

−T �no|
is the layer-to-layer distance dilatation. It is worth to remark
that the present hypothesis is valid as long as the phase
behavior of the material is the regime of interest, where the
nonconvexity of the energy is not evoked due to mechanical
loading; otherwise, the layer rotation must be penalized by
LC distortion energy (i.e., Frank-Oseen elasticity), such as the
inner coupling that induces free soft modes of LC rotation.

A governing equation of mechanical equilibrium is derived
as in Eq. (11), where P

∼

and σ
∼

are the first Piola-Kirchhoff
(P-K) and Cauchy stresses, respectively (see Appendix A for
detailed derivation).

∂�

∂λ
∼

= P
∼

=
⎧⎨
⎩

μg
∼

−1λ
∼

g
∼o

+ μr1/3(r−1 − 1)[(�n · λ
∼

g
∼o

λT · �n)(�n ⊗ �n)λ
∼

−T − (�n ⊗ �n)(λ
∼

g
∼o

)]

+B(|λ
∼

−T �no|−2 − |λ
∼

−T �no|−1
)(�n ⊗ �n)λ

∼

−T

⎫⎬
⎭− pJλ

∼

−T

=
⎛
⎝μ

(
r
ro

)1/3
{

[λ
∼

+ (ro − 1)λ
∼

�no ⊗ �no] + ro(r−1−1)
|λ−T �no|4 (λ

∼

−T �no ⊗ �noλ
∼

−1λ
∼

−T )
}

+B(|λ
∼

−T �no|−4 − |λ
∼

−T �no|−3
)(λ

∼

−T (�no ⊗ �no)λ
∼

−1λ
∼

−T )

⎞
⎠− pJλ

∼

−T ,

σ
∼

= J−1P
∼

λ
∼

T = J−1

⎛
⎝μ

(
r
ro

)1/3{[
λ
∼

λ
∼

T + (ro − 1)λ
∼

�no ⊗ �noλ
∼

T
]+ ro(r−1−1)

|λ−T �no|4 (λ
∼

−T �no ⊗ �noλ
∼

−1)
}

+B(|λ
∼

−T �no|−4 − |λ
∼

−T �no|−3
)[λ

∼

−T (�no ⊗ �no)λ
∼

−1]

⎞
⎠− p. (11)

As can be seen, the derived constitutive equations incor-
porate initial and current shape parameters, an initial director,

and a deformation gradient, demonstrating the optomechanical
coupling considering that the shape parameter is a derivative
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of the optical order parameters. Note that symmetries are
found in the Cauchy-stress tensor, which is analogous to
the nematic case wherein a coaxiality between g

∼

and λ
∼

g
∼o

λ
∼

T

is given by a rotational equilibrium. In the present case,
the strong constraints on the affine deformation of the layer
normal generate such inexistence of inner coupling, thereby
concluding that the material is non-Cosserat. Objectivity is
then satisfied in both stress measures. It is worth noting that
the present findings on the inner coupling do not necessarily
indicate the uniqueness of the solution; the nonlinear model of
the stretching-induced buckling instability [16,17] that avoids
the layer undulation is equivalent to the zero-shear stress
condition of the first P-K stress in Eq. (11), although it is
not shown herein (see Appendix B for a comparison between
the equation in Ref. [17] and the present equation).

In recent works, the aforementioned nonuniqueness of the
solution was investigated in view of the evolution of the mi-
crostructure. Such complexity stems from the nonquasiconvex

governing potential; several methods have been proposed to
circumvent the issue, such as quasiconvexation [27,28] and
numerical relaxation [29]. The linearization scheme [22,32],
although ruling out the unconstrained microstructure evolution
(e.g., stress-free rotation of the mesogen), is proven to be
sufficient whenever phase behavior is of interest. In contrast
to the soft modes, for example, which consider mechanically
induced mesogenic rotation, light-induced bending or heat-
induced shrinkage does not provoke large-scale microscopic
changes [2], possibly because they are similar to stress-free
configuration for given eigenstress.

In this work, we therefore linearize the present nonlinear
constitutive equation by the given assumptions: (1) Due to a
substantially higher layer modulus than the shear one, the layer
dilatation remains near 1; (2) the elongation tensor λ

∼

− I
∼

= H
∼

is infinitesimal. The first and second assumptions are reflected
by the assumed equalities presented in Eqs. (12a) and (12b),
respectively.

λ
∼

λ
∼

T =̃ I
∼

+ H
∼

+ H
∼

T =̃1 + 2ε
∼

, λ
∼

−1=̃I
∼

− H
∼

,

λ
∼

(�no ⊗ �no)λ
∼

T ≡ (�no ⊗ �no) + H
∼

(�no ⊗ �no) + (�no ⊗ �no)H
∼

T ,

=̃ (�no ⊗ �no) + (ε
∼

+ ω
∼

)(�no ⊗ �no) + (�no ⊗ �no)(ε
∼

− ω
∼

), (12a)

C
∼

=̄ λ
∼

T λ
∼

, |λ
∼

−T �no| =
√

�no · λ
∼

−1λ
∼

−T �no,

1/
√

�no · C−1�no

4 = 1 + 4(�no · ε
∼

· �no),
√

�no · C−1�no

−4 −
√

�no · C−1�no

−3 = (�no · ε
∼

· �no). (12b)

By introducing scaled layer modulus b̂=̂B/μ(ro/r)1/3, the linearized constitutive equation is obtained as in Eq. (13).

σ = μ

(
r

ro

)1/3

⎡
⎢⎢⎢⎢⎣

I
∼

+ 2ε
∼

+ (�no · ε
∼

· �no)(�no ⊗ �no)
{
4
(

ro

r
− ro

)+ b̂
}

+{ε
∼

(�no ⊗ �no) + (�no ⊗ �no)ε
∼

}(2ro − ro

r
− 1

)
+{ω

∼

(�no ⊗ �no) − (�no ⊗ �no)ω
∼

}( ro

r
− 1

)
+(�no ⊗ �no)

(
ro

r
− 1

)

⎤
⎥⎥⎥⎥⎦− pI

∼

. (13)

In contrast to the conventional stress-strain equation, the present constitutive equation contains both infinitesimal strain ε
∼

and
rotation ω

∼

. A fourth term indicates an eigenstress induced by phase behavior, which is a function of the initial or current shape
parameters and initial director.

In order to maintain flexibility with comprehensive smart actuation, LCP is frequently fabricated in the form of a thin
strip [1,19,20]; a flat faceted shell is therefore formulated herein. We assume that the plane stress condition is applied in the z

direction by assuming that both the nematic director and the layer normal found in the smectic LC are located within the x-y
plane. The present assumed directions correspond to the alignment methods, by which the director remains in plane, as well
as the principal modes of actuation such as uniaxial elongation and bending, driven by a gradient generated in the transverse
(z) direction. Equation (14) shows the plane stress condition, whereby the Lagrange multiplier p is determined on the basis of
incompressibility [i.e., tr(ε

∼

) = 0].

σ33 = μ

(
r

ro

)1/3

[1 + 2ε33] − p

= μ

(
r

ro

)1/3

[1 − 2ε11 − 2ε22] − p = 0,

σ3α = 0. (14)
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In conclusion, the constitutive equation of plane stress is derived as Eq. (15). The elastic term (σ ε
αβ) and eigenstress term (σ ph

αβ )
are found, where the greek indices range between integer 1 and integer 2.

σαβ = σ ε
αβ(ε

∼

,ω
∼

,r,ro,�no) + σ
ph
αβ (r,ro,�no),

σ ε
αβ = μ

(
r

ro

)1/3
[

2(ε11 + ε22)δαβ + 2εαβ + (
no

γ εγηn
o
η

)
no

αno
β

{
4
(

ro

r
− ro

)+ b̂
}

+{εαγ no
γ no

β + no
αno

ηεηβ

}(
2ro − ro

r
− 1

)+ {
ωαγ no

γ no
β − no

γ no
αωγβ

}(
ro

r
− 1

)
]
,

σ
ph
αβ = μ

(
r

ro

)1/3(
no

αno
β

)( ro

r
− 1

)
. (15)

In contrast to the nematic cases, shear modulus does
not converge to 0 regardless of the ratio of the shape
parameters. Such effect arises due to the rigid constraint on
the layer normal, and indicates that shear-induced softness is
significantly alleviated in the smectic case.

We now consider the finite element implementation for
the given constitutive equation. The aforementioned thin strip
model of the LCP is discretized by a standard triangular
element. Each element contains internal variables such as
order parameters and �n, which may vary greatly depending
on the condition upon synthesis and actuation, even though it
is more natural to define such director by each node, as their
persistent length, which is up to a few microns [2], is often
not comparable to mesh size and thus they undergo spurious
discontinuity that crosses the element interface. In this regard,
we only consider the uniform director distribution by which
the discontinuity is not severe or is nonexistent.

A tensorial description obtained by linearization is directly
incorporated into the classical finite element formulation of the
plate, which is analogous to that of the functionally graded ma-
terial. We only briefly describe the formulation, as the detailed
formulation can be found in the literature [32]. At each ele-
ment, Eq. (16) must be evaluated prior to the matrix assembly.

δW = 0 =
∫

δ
(
ε̄o
αβ − zκ̄αβ + ω̄αβ

)(
σ̄ o

αβ + σ̄
ph
αβ

)
d�

= δd̄d · K̄e · d̄d − δd̄d · �̄
ph

, (16)

where Ke is the element stiffness matrix, d is the vector storing
nodal degree of freedom ūd (displacement) and θ̄d (rotation),
and �ph is the resultant vector. The overbar of the matrices
indicates that the specified tensors are defined by the elemen-
twise manner, while subscript d indicates they are related to
the pure deformation of the element; this notation is consistent
throughout the present paper. Strain-displacement tensors that
associate εo (in-plane strain), κ (curvature), and rotation (ω) to
the nodal degrees of freedom are unique to the linear element;
the optimal triangular element (OPT element) suggested by
Felippa et al. [35] and the discrete Kirchhoff element (DKT
element) by Batoz et al. [36] are used to consider the membrane
and bending behavior of the three-dimensional (3D) manifold,
respectively. A thickness integration is obtained by the follow-
ing Simpson’s rule, with the integration number higher than
that of the nematic solids [32], since the present case involves
greater complexity due to the definition of the shape parameter.

Such elementwise linear description is further investigated
in terms of geometric nonlinearity: The bending phenomenon,
a dominant feature of photoinduced deflection, is followed by

large element rotation that requires the nonlinear considera-
tion. In this work, element-independent corotational formu-
lation (EICR) that kinematically filters out local deformation
from total displacement and rotation is used for several rea-
sons. Firstly, the higher order element is easily implemented in
the finite element, which enhances the accuracy of the solutions
and the removal of the numerical treatment (e.g., reduced
integration to alleviate the locking phenomenon). Secondly,
the conventional polar decomposition approach can hinder
both computational efficiency and programing procedure due
to the complex gradient of higher order elements. In addition,
the EICR is also beneficial to stimulate future works in terms
of the mechanical design of actuators as analytic sensitivity
has been reported in terms of geometric nonlinearity [37]

The filter of rigid-body motion is given as

δd̄d =
{
δūd

δθ̄d

}
= H̄P̄T

{
δu
∂φ

}
= �

{
δu
δφ

}
, (17)

where u and φ indicate the displacement and pseudovector,
respectively, that account for the rotation that is defined in
the global coordinate. A tensor � acts as a filter that extracts
deformation δūd and pure deflection δθ̄d , consisting of auxil-
iary matrices that sequentially execute frame transformation
from the global to the element coordinate (T), extraction of
deforming portion (P̄), and the removal of the spurious gap
between two pseudovectors φ and θ (H̄). A detailed description
of these auxiliary matrices and kinematics is found in Ref. [38].
The aforementioned kinematics, consistent tangent stiffness
tensor K, and local residual force R are calculated as follows.

�f = fi − fe = TT P̄T H̄T f̄e − TT H̄T f̄ph

= TT P̄T H̄T (K̄ed̄d ) − TT H̄T f̄ph, (18)

K = Ki − Ke = (
Ki

GR + Ki
GP + Ki

GM + Ki
M

)
− (Ke

GR + Ke
GM

)
, (19a)

with

KM = TT P̄T H̄T K̄eH̄P̄T KGR = −TT F̄nmḠT,

KGM = TT P̄T L̄P̄T KGP = −TT ḠT F̄nP̄T,

Ke
GM = TT L̄eP̄T Ke

GR = −TT F̄e
nmḠT. (19b)

Note that projection matrix P̄ is removed for the following
force term (fext) because the rigid-body part of the load must
be retained.
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III. RESULTS AND DISCUSSIONS

In this section, we present various aspects of the phase
behaviors of smectic solids. Materials deform to accommodate
the internally generated stress owing to the change of the order
of the parameters (i.e., degree of symmetries and anisotropy of
the microscopic conformation). Equation (20) is a paraphrased
relation that computes deformation u (midplane displacement)
and θ (midplane rotation) for given shape parameter r

found in Eq. (15); being a stress-free configuration, the
solution of the equation is essentially equivalent to the eigen-
strain problem frequently found in numerous multiphysical
studies.

σαβ = σ el
αβ(u,θ ; r,ro) + σ

ph
αβ (r,ro) = 0. (20)

It is worth noting that the constitutive relationship does not
converge to the nematic case [22] when neither the reference
nor the current states are in the smectic-A phase, due to
the violations of the assumptions imposed on the smectic
layer: affine deformation of the normal vector, and nonzero
layer modulus. Therefore, the phase behavior analysis of the
non–smectic-A solid, of which the cross-linked and reference
traction-free states are nematic or isotropic is not carried
out herein. Accordingly, a deep-smectic phase is assumed
to be created upon cross-linking in all simulations (i.e.,
To = TNA − 30 K = 320 K), while the operating temperature
T ∈ [320,360] and effective intensity of incident light Ieff ∈
[0,2] vary. The temperature-induced effects other than phase
behavior are ignored herein, as the behavior of the LCP is
dominantly governed by polymeric conformation change when
compared to thermal expansion [2].

A. Homogeneous phase behavior

Without light, the temperature increment uniformly
changes the shape parameters, as in the order parameters
(s∗, ρ∗, q∗) found in all material points. The thin strip thereby
undergoes uniaxial shrinkage as shown in Fig. 2.

Upon heating, the length of the specimen shows a non-
monotonic decrease as found in the experiment [19], wherein
pretransitional anomalies are found between the smectic-A and

nematic phase; such behavior is already depicted in the shape
parameter, of which the relation to deformation is illustrated
in the inset of Fig. 2(b). The uniaxial change also agrees well
with the one-dimensional (1D) material behaviors (marked by
dots) based on the nonlinear equation directly originating from
∂f/∂λ = 0, combined with the uniaxial deformation gradient
λ
∼

= diag(λ−1/2,λ−1/2,λ), where λ is a scalar valued extension.
This demonstrated that the effect from assumptions made
during formulation and linearization are found to be virtually
negligible when layer modulus B is higher than 20, so that
dilatation does not significantly deviate from unity. It is also
worth noting that mechanically induced layer undulation (i.e.,
CMHH instability [16]), is not provoked as the phase behavior
is stress-free behavior, and the elongation mode thus does not
compete with the shear modes.

B. Light-induced bending of smectic solids

As a primary objective of the present work, light-induced
deformation is also investigated via numerical simulations.
A combination of multiphysical consideration and FEA is
shown in Fig. 3, which is similar to that in the previous
study on the steady-state light-responsive behavior of nematic
solids; modifications have been made in the phase-transition
computations, conformations, and constitutive equations.

Provided that two temperatures (cross-linking To and
operation T ) and the intensity of light irradiation Ieff are
specified, the spatial distribution of the order parameters can
be computed via a dilute model and light decay profile, which
in turn computes the shape of the polymer conformation.
Figure 4 shows the normalized light intensity and light-
affected change of the internal properties; the gradients in
the transverse direction, which originated from light decay,
are essential to compute the light-induced curvature of the
specimen.

Note that light decay follows the classical Beer’s law, which
is often substituted by the nonlinear Lambert-W function
that describes the photobleaching effect [39] as there is no
experimental evidence of such phenomena in smectic solids.
Nevertheless, the derivatives of light, such as ncis and r , possess

FIG. 2. Uniaxial shrinkage due to phase change of the smectic solids with different layer modulus D: (a) Length change vs changing shape
parameter r; (b) length change vs operating temperature. Nonmonotonic shrinkage is observed, as shown in the experiment [19,20].
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FIG. 3. Flowchart of the photomechanical analysis on smectic
solids, which is a combination of microscopic polymeric conforma-
tion and finite element analysis (marked by deformations).

nonlinear thickness-varying profiles. In addition, a sigmoid
term found in the shape parameter in the pretransitional regime
generates a nonmonotonic form. The Simpson’s numerical
integration thus requires more integration points than in the
nematic case, which is 150, in order to avoid smoothing
of its characteristic profile and to preserve the physical
quantities and gradients that are pivotal to determine the
bending profile and its curvature. In this work, the integration
point of more than 240 is proven to be sufficient to yield
nondependency to a number of the points. However, the
increase of the computational load is not significant since
the material integration is only taken for each increment,
which is at most 40 when we implement adaptive step length
control [32].

The dimensions of the smectic-A strip are 20 mm ×
1 mm × 500 um by length (L) × width (W ) × thickness (h),
respectively, in which the length-to-thickness ratio is higher
than 20 to retain the validity of the thin-plate assumption. We
use 1280 mesh, the size of which is assumed to be uniform.
We assume that the left boundary (x = 0) is clamped, while
the director vector is {1,0,0}T , which is in the longitudinal
direction. We also set μ = 1.5 Gpa, B/μ = 20, and d/h =
0.4; these material properties are fixed hereafter, unless
otherwise specified.

1. Temperature-alternating bending direction

Due to the gradients generated in the out-of-plane direction,
the thickness-varying modulus and the eigenstress are present,
which are analogous to the functionally graded material
(FGM). Consequently, an out-of-plane deflection in agreement
with the boundary conditions is generated. Figure 5 illustrates
the light-induced bending in terms of the curvature with
various temperatures and penetration depths. A deflection
curve evaluated at the middle of the width (y/W = 0.5) is well
fitted using the quadratic polynomial function (||goodness of
fit|| ∼ 0.99); Eq. (21) computes the principal curvature at the
center of the specimen.

uz = aix
i, 0 � i � 3; i ∈ Z,

κ(x = L/2) = u′′
z(x = L/2)/[1 + u′

z(x = L/2)2]
3/2

. (21)

As shown in Figs. 5(a) and 5(b), the profiles of bending
curvature with light increment exhibit salient nonlinearity and
nonmonotonicity. In terms of the operating temperature T

that ranges from TNA − 30 K to TNA + 10 K, three different
regimes are found as we increase the temperature: smectic
dominant, pretranslational, and nematic dominant. If the di-
luted transition temperature remains higher than the operating
temperature T (T < 330 K), the curvature is proportional to
the irradiation; an increase of the degree of symmetry is di-
rectly reflected in the shape parameter. Upon an increase of the
temperature below TNA, the curvature profile reverses: It first
bends away from the incident direction at low intensity, and
bends towards the light at a higher intensity. Such phenomenon
originates from the assumption of the shape parameter that
bears the sigmoid term which reflects the pretransitional
state. Finally, the photomechanical behavior of the smectic
solids operating above the TNA exhibits a consistent bending
direction. Such temperature-dependent bending phenomenon
agrees well with the experimental reports on smectic-A
liquid crystal polymer [19] that undergoes sequential phase
transition from smectic-A, to nematic, and then to isotropic.
The transition points of the slope also agree, whereby the
T at the material points partially becomes higher than TNI

(i.e., isotropic) due to the dilution of the TNI temperature.
The curvature slope obtained thereafter is analogous to that of
the nematic-isotropic photomechanical behaviors reported in
previous work [32].

The penetration depth of the light is also investigated
parametrically by fixing the operating temperature at 330 K,

FIG. 4. Profile of light-induced derivatives in out-of-plane direction. (a) Decay of the light intensity depending on Beer’s law; (b) steady-state
cis population ncis; (c) shape parameter r , wherein monotonicity is observed.
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FIG. 5. Temperature dependence of photoresponsive behavior with increasing light intensity in terms of curvature. (a) Temperature variation
with fixed penetration depth (d/h = 0.4) and (b) variation of penetration depth d with fixed temperature (T = 330 K).

which shows the aforementioned alternating bending direction
as it is within the intermediate regime. Upon an increase in
the penetration depth, by which light travels further into the
material, a stronger gradient of the conformation is developed,
as demonstrated by the large deviation between the two
bending curvatures at the maximal bending away from and
bending toward the light.

For each photomechanical computation, the local rotation
of the layer normal (φ) as an auxiliary parameter is also
investigated. It is not only an important observation in
optics (e.g., polarized microscopy), but also serves well in

demonstrating the quasisoftness of the material [22]. Obtained
from Eq. (22), the profile of φ with respect to the light intensity
and spatial locations (A, B, and C) are plotted in Fig. 6. Note
that the local rotation possibly changes the elasticity of the
LC layers and alignments, which is often considered in terms
of Frank elasticity, which is assumed to be negligible in the
present work due to the infinitesimal rotation induced by phase
transition and the nonconvex nature of the energy. If such
elasticity is included within the model, we presume that the
rotation is further restrained due to penalization. Hence the
rotation presented in the present study must be considered as

FIG. 6. (a) Deformed profile and the local rotation φ of the smectic solid with given stimuli (T = 360 K, I eff = 2), and (b) profile of the
rotation with increasing light intensity and greater nonlinearity.
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FIG. 7. Alternation of the bending curvature depending on the uniformly deviated angle θ between layer normal �n and the longitudinal
direction, with fixed temperature T = 330 K. The bending direction is found to be strongly dependent on intensity and θ .

the upper bound, given that only a phase behavior is provoked
by either thermal or optical stimuli.

�n = {cos φ, sin φ}T
= λ

∼

−T �no/|λ
∼

−T �no| =̃ (1 − ε
∼

)�no/|(1 − ε
∼

)�no|. (22)

As shown in Fig. 6(a), the rotation is found to be distributed
inhomogeneously in the bent solid, where larger rotations
(both positive and negative) are found near the clamped
boundary. Such distribution accords with the shear strain
distribution found in the bent plate that is subject to the
clamped boundary, since φ is strongly dependent on the
shear strain; such effects are therefore possibly analyzed only
by considering the boundary conditions and not by the 1D
beam model [22,31]. To further discuss the influence from
the boundary condition, the three different locations [A: at
the clamped base (x/L = 0.1); B: at the middle (x/L = 0.5);
C: at the tip (x/L = 1)] are investigated. Upon the increase
of light intensity, the rotation found at each position evolves.
However, the gradient and signs of the rotation profile with
respect to the y position (i.e., width direction) differ from
each other. Especially, the profile found in position A has an
inverse slope, and a magnitude that is one order higher than the
others; such behavior demonstrates the boundary effect, which
is analogous to the Saint-Venant boundary layer. It is worth
again noting that such distribution of the rotation is one of the
pivotal properties in optics, as it changes the amount of opacity
of the material. Even though no experimental proof has been
provided to date, the authors believe that (1) the opacity of the
specimen is not evenly distributed after bombardment of the
UV light, and (2) such distributions are strongly correlated with
the boundary conditions, both of which are easily validated
through a polarized microscope.

Conversely, the director change specified in the presynthesis
state also produces prominent changes in deflection. As an
anisotropic material, the longitudinal axis of the specimen may
not necessarily be coaxial to the layer normal; such deviation,
for example, is possibly created by cutting out the specimen
that is in a nonparallel direction to the rubbing direction
(i.e., monodomain direction). The change of principal bending

behavior is demonstrated in Fig. 7. where θ indicates the
prescribed angle difference between the layer normal �no and a
longitudinal axis (i.e., �no = {cos θ, sin θ}T ). The magnitude of
deflection is strongly alternated when θ changes from 0 to π/2,
whereby the principal bending direction is rotated and thus
bending-twisting coupling is generated. As discussed in Fig. 7,
a deflection generally increases proportional to d, while the
direction of deflection is determined by light intensity when the
operating temperature is selected within a range that provokes
the pretransitional effect. It is worth noting that such finding
is analogous to the experimental results [19] and steady-state
solution [32] of nematic solids, although the point where zero
deflection (i.e., purely twisting deformation) differs due to the
nonmonotonic profile of the shape parameter. The present find-
ings suggest that the direction of cutting is an efficient design
parameter to determine the mode of deflection, and the metic-
ulous selection of temperature and light intensity is critical.

2. Effect of geometric nonlinearity

Finally, the influence of geometric nonlinearity on the
solution is also demonstrated in Fig. 8, wherein the curvatures
computed from linear (dot) and nonlinear (line) finite element
solutions are presented.

Even though the curvature itself is within 0.1 mm−1 for
all explored ranges of light intensity and temperature, its
deviation in percentile is proven to be substantial, which
means we might severely underestimate the curvature of the
light-responsive smectic solid if a linear solution is employed.
As in nematic solids, nonlinearity is generally proven to
be substantial when the magnitude of curvature increases.
The use of a nonlinear finite element solution is therefore
recommended, regardless of the operating condition, as the
direction and the magnitude are strongly nonmonotonic, and
thus estimating their peak values is nontrivial. Otherwise, we
might produce an incorrect estimation to the point where the
sign of curvature changes. Moreover, such overestimation can
produce error in the internal parameters as shown in the inset
in Fig. 8, wherein the linear case shows a more dramatic
contrast of the rotation as shear strain near the tip is strongly
influenced by the rigid-body rotation. Considering that rotation
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FIG. 8. Effect of nonlinearity depending on the temperature and
intensity (inset) of the bent geometry of the smectic solid, where the
rotation φ is marked by the color on the surface. The overestimation
of the curvature and rotation is observed when nonlinearity is not
taken into account.

φ is pivotal in the optical characterization of solids, the linear
solution might cause severe degradation of the computation.
Although not shown herein, this finding is in the same line
with that of the curvature evaluated at the clamped end,
and the maximal deflections are overestimated in the linear
case. Moreover, these deviations are alleviated when simply
supported boundary conditions are imposed.

IV. CONCLUSION

By transferring the geometric symmetries of rigid rods
to the polymeric networks, liquid crystal polymers exhibit
alternating anisotropy as a response to external photothermal
stimuli. Such smart behaviors imply many attractive appli-
cations such as remote-controlled actuation, by which such
polymer has been investigated thoroughly in both experimental
and numerical analysis in the past decade. Concerning the
design of the behavior of the liquid crystal polymer, many
of these works have revealed a considerable relationship
between the trait of incorporated mesogens and mechanical
behavior; the change from nematic (rotational symmetry) to
smectic (rotational and translational symmetry) molecules
demonstrates dramatic changes to the heat-induced elongation
and light-induced bending, whereby the nonmonotonicity of
the behavior with imposed stimuli is observed.

In this work, we suggested a finite element framework de-
signed for a smectic solid, wherein a multiphysical constitutive
equation is combined with a geometric nonlinear solution.
For the constitutive relation, the thermomechanical modeling
that bridges the local degree of order (i.e., order parameters)
to the stress-strain constitutive equation is formulated by
the variational principle along with the shape parameter
postulation and Landau model of smectic-nematic-isotropic
phase transition. The issues related to the nonquasiconvexity
of the nonlinear material behavior are circumvented by
linearization; the present modeling becomes suitable for

macroscopic phase behavior that is equivalent to a stress-free
configuration of the given photomechanical eigenstress. The
geometric nonlinearity is also considered by means of EICR as
a wrapper of the constitutive tensorial equation; the significant
bending behavior induced by light is thereby attributed to
the composition of the rigid-body motion and deformation.
The comprehensive analysis is therefore facilitated, as the
large-scale macroscopic shape change is successfully related
to the macroscopic change determined by the increase or
decrease of the polymeric conformation r . Several interrelated
behaviors shown in the smectic solid are presented in this work
in order to demonstrate the simulation capability to consider
the presynthesis and postsynthesis conditions, and the response
of the material from optical and mechanical viewpoints.

We first investigated the phase behavior of a smectic-solid
model in general; the thermal-induced shrinkage and light-
induced bending are simulated as we change the strength
of stimuli and presynthesis material properties. This demon-
strates that the addition of translational symmetry changes the
behavior of the smectic solid completely and nontrivially as the
material undergoes nontrivial phase changes between smectic,
nematic, and isotropic, which accords with the experimental
observations [19,20]. Such findings imply that the smectic
solid under meticulously selected operating conditions can
produce nontrivial actuation such as an alternating direction,
which is in contrast to the photomechanical behavior of
nematic solid that only shows unidirectional actuation.

Next, a bidirectional relationship between the deflection and
mesogen director is also investigated. On the one hand, a global
change of the mesogen director, e.g., induced by the deviation
of the cutting direction and rubbing direction, is shown to
significantly change the deflection, where the deformation with
respect to angle deviation differs considerably when we change
the operating incident light. In addition, a local perturbation
of layer normal is simulated as actinic light is irradiated on
the surface. The boundary condition has been proven to play a
dominant role in the macroscopic deflection; the quasisoftness
of the director is found to depend significantly on the location
of the material with respect to the clamped region. Similarly,
the nonlinearity of the solution is discussed by elucidating
the gap between linear and nonlinear solutions. This finding
suggests that the geometric nonlinearity should be considered
in order to estimate not only the deflection and curvature, but
also the internal parameters of the light-responsive behavior
of liquid crystal polymer.

Based on both the suggested formulation and the simulation
results, it is concluded that the comprehensive finite element
model presented herein can be the basis of the photomechani-
cal behavior of smectic solids by meeting the following crite-
ria: (1) 3D full sheet with arbitrary shape, boundary condition,
and easily modeled operating condition; (2) geometric non-
linearity dominant in bending behavior is considered, which
is vital in correct estimation of deflection and internal param-
eters; (3) complex phase behavior ensuring the thermotropic
phase change of the smectic liquid crystal is modeled with
the aid of Landau modeling; (4) quasisoftness of the material
has been considered by constitutive modeling. In addition, our
proposed framework considers the photomechanical behavior
of smectic solids, which relates to the preceding works on
polymer physics, phase transition, and multiphysical FEA.
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The present study also has some limitations as follows.
First, the framework must depend on the assumption that the
material should be a thin strip, and its rigid chromophores
should be homogeneous to the free layer, in order to retain
the validity of the assumptions on the Kirchhoff plate and
plane stress. Otherwise, the stress conditions and resulting
formulations need to be reformulated from the beginning.
Moreover, the LC layer elasticity must be taken into account as
well, when the inner coupling between mesogen and external
loading is of interest other than the phase behavior of the
material, where the affine deformation mode of the director �n
is violated. In addition, the assumed deep-smectic phase upon
synthesis must also be preserved, as the layer modulus remains
nonzero throughout the present formulation and thus yields
fictitious constraints when the material is nematic, or isotropic
in the reference state. The decay of the modulus by power
law [40] during smectic-to-nematic transition, for example,
must be considered in order to build more comprehensive
formalism. Lastly, many material parameters are only assumed
due to the lack of experimental reports; for example, the
constitutive parameters of Landau modeling must be explained
by experimental phase-transition analysis. In this regard, the
outcomes of the present study should be further examined by
experiments such as the combination of polarized microscopy
and photomechanical observation, which is not possible at
present. However, the authors expect these experimental
reports will soon be of value, because of the growing interest
in smart, novel materials and rapid improvement in the
stabilization of the smectic phase within the polymer.
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APPENDIX A: CAUCHY-STRESS DERIVATION

The total potential energy functional is constructed by
combining Eqs. (8) and (9).

� = μ

2
tr( l

∼

−1λ
∼

l
∼o

λ
∼

T ) + B

2
(|λ

∼

−T · �no|−1 − 1)2

−p[det(λ
∼

) − 1], (A1)

where an elastic energy part [first term on the right-hand side
(RHS)] is described only by λ

∼

and �no, by employing affine

deformation condition from Eq. (10).

fel = μr1/3

2
tr[λ

∼

l
∼

o
λ
∼

T + (r−1 − 1)(�n ⊗ �n)λ
∼

l
∼o

λ
∼

T ]. (A2)

Differentiation by λ
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of elastic energy is therefore
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where several equalities are required as described below (�x
denotes λ

∼

−T �no).
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In short, the first order derivative of elastic energy becomes

∂fel

∂λ
∼

= μg
∼

−1λ
∼

g
∼o

+ μr1/3(r−1 − 1)

× [(�n · B
∼eff

· �n)(�n ⊗ �n)λ
∼

−T − (�n ⊗ �n) B
∼eff

λ
∼

−T ], (A5)

where B
∼

eff
indicates an effective strain measure λ

∼

l
∼o

λ
∼

T found

in the literature on nematics [21,29].
The second term of the RHS of Eq. (A1) is also derived by

employing the aforementioned equalities [Eq. (A4)].

∂

∂λpq

B

2

(
1

|�x| − 1

)2

= B

(
1

|�x|2 − 1

|�x|
)

(�n ⊗ �n)λ
∼

−T . (A6)

The Cauchy stress, σ
∼

= P
∼

λ
∼

T / det(λ
∼

), is therefore

σ
∼

=
⎡
⎣μl

∼

−1 B
∼eff

+ μr1/3(r−1 − 1){(�n · B
∼eff

· �n)(�n ⊗ �n) − (�n ⊗ �n) B
∼eff

}
+D(|λ

∼

−T �no|−2 − |λ
∼

−T �no|−1
)(�n ⊗ �n)

⎤
⎦− pI

∼

. (A7)

Note that Eq. (A7) is reduced to

σ
∼

= μ

(
r

ro

)1/3
⎡
⎣[λ

∼

λ
∼

T + (ro − 1)λ
∼

(�no ⊗ �no)λ
∼

T ] + (r−1 − 1)ro

|λ
∼

−T �no|4
[λ

∼

−T (�no ⊗ �no)λ
∼

−1]

⎤
⎦

+D(|λ
∼

−T �no|−4 − |λ
∼

−T �no|−3
)[λ

∼

−T (�no ⊗ �no)λ
∼

−1] − pI
∼

, (A8)

which is a function of initial parameters and deformation gradient.

Frame invariance is guaranteed as σ
∼

(R̂
∼

λ
∼

) = R̂
∼

σ
∼

R̂
∼

T
where R̂

∼

is the rotation matrix.

042707-12



NUMERICAL STUDY OF LIGHT-INDUCED PHASE . . . PHYSICAL REVIEW E 94, 042707 (2016)

APPENDIX B: UNDULATION CONDITION AND SHEAR-FREE EQUIVALENCE

Let layer normal be parallel to y, and in-plane condition is employed within the x-z plane. Following the undulation instability
condition found in Ref. [17], the layer spacing and the shape parameter are assumed to be maintained throughout deformation.

Assuming incompressibility, the deformation gradient becomes Eq. (B1) without losing generality.⎡
⎣λxx 0 0

0 1
λxxλzz

0
λzx 0 λzz

⎤
⎦. (B1)

Cauchy stress is therefore expressed as

σ11 = − Bλ3
xxλ

2
zxλzz(

λ2
xx + λ2

zx

)5/2
− Bλxxλ

4
zxλzz(

λ2
xx + λ2

zx

)5/2
+ λ2

xx

[
μ + (B + μ − rμ)λ2

zxλ
2
zz(

λ2
xx + λ2

zx

)2

]
− p,

σ22 = μ

λ2
xxλ

2
zz

− p,

σ33 = −Bλ3
xxλzz

(
λ2

xx + λ2
zx − λxx

√
λ2

xx + λ2
zxλzz

)
(
λ2

xx + λ2
zx

)5/2
+ μ

[
λ2

zx +
(
λ4

xx + 2rλ2
xxλ

2
zx + rλ4

zx

)
λ2

zz(
λ2

xx + λ2
zx

)2

]
− p,

σ13 = σ31 = μλxxλzx

[
μ + Bλxxλzz(

λ2
xx + λ2

zx

)3/2 − (B + μ − rμ)λ2
xxλ

2
zz(

λ2
xx + λ2

zx

)2

]
. (B2)

The plane stress condition is satisfied when p = μ/(λxxλzz)2.
Onset of the instability is computed by letting {λxx,λzx} = {√λc/λzz,0}.
The onset condition of the critical stretch (λzz = λc) is obtained through shear-free condition (σ31 = 0), which is reduced to

g(λc) = −B(−1 + λc)λ2
c + μ

[
1 + (−1 + r)λ3

c

]
√

λc

= 0. (B3)

An equivalent condition is also found in Ref. [17], where the analytic solution is evaluated.
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