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In the so-called quasiplanar texture of a nematic layer confined between parallel plates with homeotropic
anchoring conditions, the director field rotates by π between limit surfaces so that field lines have the shape
of a dowsing Y-shaped wooden tool. The orientation of the director field at midheight of the layer is arbitrary
for symmetry reasons and is thus very sensitive to perturbations. We point out that contrary to accepted ideas
the quasiplanar texture can be preserved infinitely in spite of its metastability with respect to the homogeneous
homeotropic texture. We propose to call such a long-lived version of the quasiplanar texture the dowser texture.
We demonstrate both experimentally and theoretically that in samples of variable thickness, the director field is
sensitive to the gradient of the sample thickness through a linear coupling term. As a result, it has a tendency to
follow the direction of the thickness gradient. Because of its sensitivity to perturbations we propose to call the
midplane director field the dowser field and its tendency to follow the thickness gradient cuneitropism. Under
effect of the gradient field, the dowser field obeys the sine-Gordon equation and exhibits domain walls that
correspond to the well-known solitonic solutions of the sine-Gordon model.
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I. INTRODUCTION

In many physical systems, including liquid crystals, lower-
dimensional models are helpful for understanding the un-
derlying phenomena but they usually also exhibit properties
that are radically different from the full three-dimensional
system. While these simplified models are theoretical exer-
cises, approximate physical realizations can be constructed by
geometrical restriction to a thin sample. Such experiments are
invaluable for verifying theoretical results in the laboratory
and are good hands-on educational tools.

In nematics, the two-dimensional model is especially
enticing for its point defect topology, which differs from
the three-dimensional counterpart [1]. The topological rules
are directly reflected in the iconic two-dimensional visual
pattern of the Schlieren texture [2] observed between crossed
polarizers, which is practically a defining characteristic of
nematic liquid crystals. Many specific quasi-two-dimensional
nematic systems with varying degree of approximation to
the true two-dimensional model have been studied—at free
interfaces [3,4], in the form of shells [5] and umbilical
systems [6], to name a few.

In this article, we present experiments on a long-
lived metastable quasi-two-dimensional structure, dubbed the
dowser state, represented by a two-dimensional vector field,
dubbed the dowser field, which is sensitive to magnetic fields
and is linearly coupled with sample thickness gradients.
Experiments in the presence of thickness gradients obey
the damped sine-Gordon equation, a well-known nonlinear
model with solitonic solutions that parallels many physical
systems [7,8]. We present preparation of the sample, discuss
experiments that reveal characteristic properties of the dowser
field, and discuss the parallel between the experiment and a
theoretical model.

II. THE DOWSER TEXTURE

A. Production of the dowser texture

During recent experiments with disclination loops on
Nylon fibers immersed in homogeneous homeotropic nematic
samples (5CB) [9], we have observed that the homeotropic
texture becomes unstable when the cell thickness is increased
above a certain critical value hcrit depending on the radius of
the sample.

This phenomenon has been studied in more details by
means of a new setup (see Figs. 1 and 2), in which the nematic
layer is contained between a glass plate and a plane-convex
lens. There are no spacers maintaining the distance h between
the lens and the glass slide, which have their own supports
so that the lateral surface of the nematic sample (meniscus)
is free. Minimization of the area of the free surface leads to
the circular shape of radius R of the nematic layer and to its
centering at the point O of the minimal thickness h0.

At the 5CB/air interface the anchoring is homeotropic, too
(see Fig. 2). As a result, the homeotropic texture of the sample
is surrounded by the so-called quasiplanar texture [10–12],
which matches the boundary conditions both at the meniscus
and at the glass surfaces. In this quasiplanar texture the
director rotates by π between the glass surfaces. Therefore,
for topological reasons, the homeotropic and quasiplanar
textures are separated by a disclination [13,14], which we call
peripheral because it is located in the vicinity of the meniscus
and encircles the sample.

Usually, in samples with a small aspect ratio h/R, this
peripheral disclination stays in the vicinity of the meniscus
so that the homeotropic texture is stable. However, when the
aspect ratio is increased above a certain critical value, the
peripheral disclination starts to shrink and finally collapses
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FIG. 1. Scheme of the setup.

into the residual hedgehog located in the center of the sample.
This remarkable instability, observed for the first time by
Gilli et al. [15], is illustrated by the series of six pictures in
Fig. 3.

As a result of this homeotropic ⇒ quasiplanar transition
occurring at the critical aspect ratio, the whole sample,
except for the radial hedgehog, acquires the quasiplanar
texture.

Experiments have shown that upon a subsequent reduction
of the aspect ratio below the critical value the quasiplanar
texture becomes metastable but the inverse quasiplanar ⇒
homeotropic transition does not take place unless the aspect
ratio becomes lower than another, very small critical value.

With the aim to emphasize the robustness of the state in
which the whole sample is filled with the quasiplanar texture
we propose to call it the dowser texture for two reasons.

(a)

1 mm

(b)

(c) (d)

(e) (f)

FIG. 3. Transition from the homeotropic into the dowser texture
observed in a thick enough sample of 5CB: (a–e) shrinking of the
peripheral disclination, (f) the dowser texture. It contains the residual
hedgehog resulting from the collapse of the disclination.

First of all, the shape of the director field lines in the
quasiplanar texture is similar to the dowser’s Y-shaped wooden
tool. In Fig. 2(e), the local direction of the dowser tool is
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FIG. 2. Generation of the dowser texture: (a, b) coexistence of the homeotropic and quasiplanar textures separated by the peripheral
disclination, (c, d) the dowser texture resulting from the collapse of the peripheral disclination. It contains the residual hyperbolic hedgehog,
(e) perspective view of the dowser texture; the shape of the director field is reminiscent of the dowsing Y-shaped tool.
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indicated by the vector d. When d varies in the xy plane, one
can speak about the dowser field d(x,y).

The second reason is that the dowser field d is extremely
sensitive to external fields. In particular, as we will point
out both experimentally and theoretically, in samples of
nonuniform thickness h(x,y), such as the one in Fig. 2, the
dowser field is sensitive to the thickness gradient g = ∇h. This
phenomenon occurring in wedge-shaped samples is similar
to the geometrical anchoring considered previously by de
Gennes [16,17], Lavrentovich [4,19], and Link et al. [18].
We propose to call it cuneitropism from cuneus (wedge) and
tropism (turning towards), referring to the tendency of the
director to turn into the wedge direction.

B. Instability criterium of the homeotropic texture

The peripheral disclination of radius Rd [see Figs. 2(a)
and 2(b)] is submitted to two competing forces: the centripetal
Laplace force due to the tension T(h) (see f.ex. in Sec. 4.2.2.
of Ref. [17]) of the peripheral disclination,

FL = T (h)

Rd

≈ Ec + K(π/4) ln(h/rc)

Rd

, (1)

where Ec is the energy of the disclination core and rc its radius,
and the opposing centrifuge force Fdow due to the difference
in energies per unit area (see f.ex. in Sec. 3.1.3. of Ref. [17])
between the homeotropic and the dowser textures given by

Fdow ≈ π2

2

K

h
. (2)

Usually, during preparation of a homeotropic sample,
Fdow(h) > FL(Rd,h), so that the peripheral disclination in-
creases its radius Rd and finally is pressed against the
meniscus where it is stabilized by the short-ranged repulsive
interaction with its virtual mirror image. In such a case the
homogeneous homeotropic texture is stable, as wished in most
of experiments.

However, when Fdow(h) < FL(Rd,h), the radius Rd will
decrease and the peripheral disclination will collapse in the
center of the sample into the residual hyperbolic hedgehog as
it has been shown in Fig. 3.

Quantitatively, the homogeneous homeotropic texture of
maximal radius Rd ≈ R is unstable with respect to the
homeotropic ⇒ dowser transition when

R < Rcrit = h
Ec/K + (π/4) ln(h/rc)

π2/2
. (3)

Figure 4 illustrates the instability criterium for a sample of
volume V ≈ πR2h = 10 mm3 and typical values of the core
energy Ec/K ≈ π/8 and of the core radius rc ≈ 500 Å [14].
Consider a sample of radius R = 3 mm, represented by the
point H in this diagram. When the thickness h of this sample
is increased, its radius evolves from H to D along the isochoric
trajectory, drawn with the plain gray line, preserving the
volume of the LC drop squeezed between the lens and the
glass plate. Let hu be the critical thickness corresponding
to the crossing of the isochoric trajectory with the the line
labeled “homeotropic → dowser transition” representing the
stability criterium (3). After crossing this line, i.e., for h > hu,
the peripheral disclination will collapse and the homeotropic
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FIG. 4. Diagram of stability of the homeotropic and dowser
textures. The dowser texture D is obtained from the homeotropic
texture H on the isochoric trajectory HD by an adequate increase
of the sample thickness. The dowser texture is preserved along the
inverse DD′ trajectory in spite of its metastability.

texture will be transformed into the dowser texture. Let us note
that in the interval 0 < R < 8 mm the variation of the critical
thickness hu with R is approximately linear: hu ≈ R/2.

Our experiments unraveled a remarkable robustness of the
dowser texture against the inverse dowser ⇒ homeotropic
transition. Indeed, upon a subsequent reduction of the sample
thickness below hu, for example along the dashed trajectory
DD′, the dowser texture is preserved in spite of its metastability
with respect to the homeotropic texture. This feature is
obviously due to a prohibitive height of the barrier of transition
from the hedgehog to a disclination loop state. In samples
free of dust particles and other imperfections, the necessary
disclination loop can still be generated from the residual
hedgehog by reducing the sample thickness below a critical
value calculated from Eq. (3), using the radius rh of the
hedgehog core. In practice, the dowser texture remains stable
when h is larger than 0.1 μm, that is to say, in most
experimental situations.

III. SENSITIVITY OF THE DOWSER
FIELD, EXPERIMENTS

A. Winding of the dowser texture by a magnetic field

Thanks to the robustness of the dowser texture, we have
tested its sensitivity to perturbations by magnetic fields.
Among others, we performed experiments on winding the
dowser field by means of a rotating magnetic field.

A typical experiment is illustrated here by Fig. 5, showing
the result of application of a magnetic field followed by its
rotation. This experiment is similar to the one made previously
by Gilli et al. [15].

At the beginning of the experiment, the dowser field d
has the radial structure shown in Fig. 5(a): it contains a +2π

disclination in its center (the hedgehog of the 3D director field
n) and is orthogonal to the meniscus as expected. If φ is the

042706-3
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FIG. 5. Winding of the dowser texture by a rotating magnetic
field: (a) initial radial dowser texture with a hedgehog in its center,
(b) generation of two π walls by application of the magnetic field B,
(b–g) winding of the dowser texture by rotation of the magnetic field;
the two π walls acquire spiral shapes, (h) the dowser texture after
suppression of the magnetic field. The insert in picture b is a zoom
on a small portion of the π wall; arrows represent the dowser field.

angle between d and the x axis then in polar coordinates (r,ψ)
one has φ = ψ .

After the application of the magnetic field B (by means of
two magnets shown in Fig. 1) the dowser field d is aligned
by it in parallel and antiparallel directions except for two
almost straight π walls in which it rotates by π as shown
in Fig. 5(b). The width ξmag of these π walls, resulting from
the balance between elastic and magnetic torques, corresponds

to the magnetic coherence length [16] given by expression

ξmag ≈
√

μoK

χa

1

B
, (4)

in which χa is the anisotropy of the magnetic susceptibility and
K is the elastic constant in the single constant approximation.

Upon subsequent slow rotation of the magnetic field in the
counterclockwise direction, the dowser texture is progressively
wound. The winding process is illustrated in Fig. 5 by the series
of five pictures (c–g) in which the two initially straight π walls
are wound into spiral shapes. The last image in Fig. 5 shows
the dowser texture after the removal of the magnetic field. In
terms of the phase φ this dowser texture can be represented in
polar coordinates as φ(r,ψ) = ψ + φof (r) with f (0) = 1 and
f (R) = 0. By counting the number of black isogyres between
r = 0 and r = R in Fig. 5(h) one can infer that here φo =
8 × 2π . Moreover, the isogyres being almost equally spaced
one can write f (r) ≈ 1 − r/R.

B. Discovery of the cuneitropism: occurrence of 2π walls
in a wound dowser field

In another experiment illustrated by the series of six pictures
in Fig. 6 the initially radial dowser texture (a) has been wound
by only four full turns of the magnetic field (b). Once the
magnetic field was removed, the dowser field started its elastic
relaxation and after 1.5 h [see Fig. 6(c)] the winding angle
in the center was reduced by 2π to φo = 3 × 2π . In the next
image taken after 7 h, the angle was φo = 2 × 2π . Then in
Figs. 6(e) and 6(f) one has φo = 2π and φo = 0.

When compared with results obtained in the experiment
made with nematic layers of uniform thickness [20], the
patterns of spiral-shaped isogyres in Figs. 6(c)–6(e) have a
special unexpected feature: the isogyres are unevenly spaced
along r . More precisely, they are assembled into groups of four
isogyres which means that there are concentric 2π walls in the
dowser field d(r,ψ).

We will show in Sec. IV that these concentric 2π walls are
generated by a linear coupling between the dowser field d and
the thickness gradient g = ∇h. The gap between the glass slide
and the spherical lens depends on the radius as

h(r) = hmin + Rl[1 −
√

1 − (r/Rl)2], (5)

and the gradient is

g = ∇h = r/Rl√
1 − (r/Rl)2

ρ̂ = γ ρ̂, (6)

where Rl is the radius of curvature of the spherical lens and
ρ̂ = r/|r|.

The four concentric 2π walls visible in Fig. 6 were
generated by four full revolutions of the magnetic field. Other
experiments have shown that the number, shapes, and topology
of 2π walls generated by magnetic field depend on the angle
φmag of its rotation. As an example we show in Figs. 7(a)–7(d),
2π walls corresponding to φmag = 125◦ (a), 180◦ (b), 225◦ (c),
and 360◦ (d).

In order to explain, for example, the triangular shapes
of the two closed 2π walls in Fig. 7(b), we have to
consider the detailed evolution of the dowser field represented
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FIG. 6. Occurrence of 2π walls during unwinding of the dowser
field. (a) Initial radial dowser field with a hedgehog in its center.
(b) The dowser field wound in its center by 4 × 2π by means
of a rotating magnetic field. This picture was taken shortly after
suppression of the magnetic field at the end of the winding process.
(c–f) Continuation of the relaxation at B = 0. The winding angle in
the center is, respectively, 3 × 2π in (c), 2 × 2π in (d), 2π in (e), and
0 in (f).

schematically in Figs. 7(e)–7(h). After the application of the
magnetic field, the initially radial dowser field d [see Fig. 7(e)]
rotates in clockwise or counterclockwise directions until it
becomes parallel or antiparallel to B. As a result, two π walls
orthogonal to the field are created [Fig. 7(f)]. Subsequently,
the dowser field d follows the rotation of the magnetic field B
by π in the counterclockwise direction. After the suppression
of the magnetic field, the linear coupling of the dowser field d
with the radial thickness gradient field g will exert torques on
the dowser field. In sectors NE and SW [defined in Fig. 7(f)]
the dowser field d will rotate back in clockwise direction until
it becomes parallel to g. In sectors NW and SE d will continue
its anticlockwise rotation until it becomes parallel to g. In
conclusion, after relaxation, the NO and SE sectors must be
separated, for topological reasons, by 2π walls from the rest
of the sample.

In the case φmag = 2π [Fig. 7(d)] one circular 2π wall
is generated. Observation of this wall during several hours

unveils its slow collapse illustrated by the series of four
pictures, Figs. 8(a)–8(d) and by the spatiotemporal cross-
section shown in Fig. 8(e). Let us stress that while the wall’s
radius Rw decreases to zero its width ξ decreases too. The
discussion of this behavior will be resumed in Sec. IV C.

C. Second evidence of cuneitropism: A straight radial 2π wall

The second evidence for the existence of the linear coupling
between the dowser field d and the thickness gradient g has
been provided by the pattern of isogyres modified by the
shift of the residual hedgehog toward the edge of the nematic
droplet.

In the case when the hedgehog is located in the center of the
sample [see Fig. 9(a)], the pattern of isogyres has the aspect
of the maltese cross, which means that the dowser field d has
the radial structure identical with the one in Fig. 6(a).

Let us note that in Figs. 9(a) and 9(b) which have
been obtained with monochromatic light, beside isogyres,
concentric black interference fringes are well visible too.
These are isochromes—lines of equal phase shift 	φ =
2π	nh/λ = N2π between the ordinary and extraordinary
rays. For 	n = const, these isochromes are also lines of
equal thickness h. The thickness gradient g has, therefore,
as expected from the sphere and plane geometry, the radial
structure and its center coincides with the center of the dowser
field. In conclusion, one has d||g.

In the sphere and plane geometry, the dowser texture
with the residual hedgehog in the center corresponds to the
minimum of energy. In practice, a long relaxation process
is necessary to reach this ground state. Most of the time,
after manipulations of the sample (winding by the magnetic
field followed by changes in the sample thickness) the dowser
texture contains many hedgehog whose total number is always
odd for topological reasons. During the subsequent evolution
toward the energy minimum, annihilation of hedgehogs by
pairs occurs. In general, at the end of the annihilation process
the position of the residual hedgehog in the sample is out of
the center. In Fig. 9(b), the hedgehog H is shifted toward the
edge of the sample. As a result, the pattern of the isogyres
connected to the hedgehog is modified by the interaction with
the gradient field: the isogyres are first bundled together into
the 2π wall going from the hedgehog to the sample center O

where they separate and take the radial directions forced by
the gradient field.

The detailed structure of this straight 2π wall is resolved in
the close-up shown in Fig. 9(c).

D. Third evidence of cuneitropism: relaxation

The third evidence of the g · d coupling comes from obser-
vations of its contribution to relaxation. A typical experiment
of this kind is illustrated by the series of six images in Fig. 10.
The first image (a) shows the equilibrium state of the dowser
field with the hedgehog in the center submitted to the action of
the horizontal magnetic field B. As already mentioned before,
the magnetic field B imposes orientations of the dowser field d
parallel and antiparallel to B and leads to formation of two π

walls. When the magnetic field is suppressed, the dowser field
relaxes into its initial equilibrium radial configuration shown
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FIG. 7. 2π walls generated by rotation of the magnetic field by the angle φmag = 125◦ (a), 180◦ (b), 225◦ (c), and 360◦ (d). (e–h) Explanation
of the generation of the two 2π walls by the φmag = 180◦ rotation of the magnetic field shown in (b): (e) initial radial dowser field with a
hedgehog in its center, (f) application of the magnetic field, (g) rotation of the magnetic field by 180◦, (h) formation of the two 2π walls after
suppression of the field.

in Fig. 10(f), in which d is parallel to g. Let us stress that the
characteristic relaxation time is of the order of six minutes.

As we will see later in Sec. IV, this relaxation is driven
by two torques: the elastic one [the first term in Eq. (13)],
which would exist in a sample of uniform thickness and the
cuneitropic one [the second term in Eq. (13)], resulting from
the coupling with the thickness gradient. If the elastic torque
was acting alone, in the sample having the size of a few
millimeters in diameter the relaxation time would be of the
order of few hours instead of 6 min. We can therefore conclude
that only the g · d coupling can drive such a rapid relaxation.

IV. CUNEITROPISM OF THE DOWSER FIELD,
THEORETICAL MODEL AND CALCULATIONS

A. Coupling between the dowser field
and the thickness gradient

To understand the coupling between the dowser field and
the thickness gradient, let us consider first the dowser texture
in a sample of uniform thickness, as shown in Fig. 11(a).
Here, director field rotates by α = π between the limit plates
separated by the distance h. The energy of distortion per
unit area in the approximation of the isotropic elasticity is

(a) t=0min t=312min

t=936mint=624min

(b)

(c) (d) (e) r (mm)
0

0

5

10

15

20

1 2 3 4

)h( e
mit

FIG. 8. Collapse of a circular 2π wall: (a–d) four pictures selected from a video, (e) spatiotemporal cross-section of the video taken along
the dotted line defined in (b).
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FIG. 9. Generation of a straight radial 2π wall: (a) pattern of
isogyres and isochromes of a sample with the residual hedgehog in
its center, (b) pattern of isogyres modified by the shift of the hedgehog
toward the sample edge, (c) close-up of the 2π wall connected to the
hedgehog.

given by

Fdow =
∫ h

0

K

2

(
α

h

)2

dz = α2 K

2h
. (7)

For symmetry reasons, this expression does not depend on
the azimuthal orientation φ of the dowser field d when the
thickness is uniform.

When the upper plate is tilted by an angle γ [Fig. 11(b)],
the director rotates by the angle α = π − γ cos φ, where we
recall γ cos φ = g · d. The energy of the dowser state becomes

Fdow = (π − γ cos φ)2 K

2h
≈ π2 K

2h
− πK

h
g · d. (8)

Thus, the dowser field d linearly couples with the thickness
gradient g and tends to align along the gradient.

B. 2π wall as a soliton

In a general case when the dowser field is not uniform
in the xy plane, the coupling term is in competition with
the elastic energy per unit area, which can be written as
1
2Keffh(∇φ)2 where Keff describes the joint contributions
of different elastic modes to the deformation free energy.
Therefore, in equilibrium, the dowser field has to minimize
the functional

Ftot =
∫ [

Keffh

2
(∇φ)2 − πK

h
g · d

]
dxdy. (9)
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FIG. 10. Relaxation of the dowser field: (a) two π walls in the
dowser field aligned by the magnetic field B, (b–f) relaxation toward
the radial configuration driven by the -g · d coupling.
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FIG. 11. Explanation of the coupling between the dowser field
d and the thickness gradient g: (a–c) between parallel plates, the
energy of the dowser field does not depend on its orientation, (b–d) in
a wedge, the energy depends on the angle φ between the dowser field
d and the thickness gradient g. For example, the distortion energy of
d1 is lower than that of d2.
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In the simplest case of flat glass plates forming a wedge
of angle γ [Fig. 11(b)], the gradient vector g is constant and
variation of the functional [Eq. (9)] yields the equation

∇2φ − 1

ξ 2
sin φ = 0, (10)

which in one dimension reduces to the pendulum equation.
The parameter

ξ = h0

√
Keff

K

1

πγ
(11)

is the characteristic width of the 2π wall. The solution,
compatible with the boundary conditions φ(±∞) of the 2π

wall correspond to the critical solution (also known as the
Abrarov solution) of the pendulum equation in the form

φ = 4 arctan e±x/ξ , (12)

which gives the theoretical prediction of the director profile of
the wall.

Equation (10) is the sine-Gordon equation, which is a
textbook model that exhibits solitonic solutions with the profile
described by Eq. (12) [7,8].

Out of this equilibrium state, there is viscous relaxation of
the director, and Eq. (10) generalizes to the damped version of
the sine-Gordon equation [21,22]:

∇2φ − 1

ξ 2
sin φ = 1

Ddow

∂φ

∂t
. (13)

Here, Ddow is the diffusivity of the dowser field. Due to very
slow relaxation, the effects of flow can be neglected. This
equation is a textbook model that exhibit solitonic solutions
with the profile given by Eq. (12) [7,8] and describe many other
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FIG. 13. Dependence of the 2π wall’s width on its radius.

2D physical systems that can be represented as a xy model in
external field [23,24].

C. The circular 2π wall in the dowser field

Figure 12(b) shows the intensity profile,

I ∝ sin2(2φ), (14)

corresponding to the director profile in the 1D case, fitted to
the experimental data in Fig. 12(a) extracted from Fig. 6(e).
Even though in the sphere and plane geometry of the cell the
thickness γ varies slightly across the wall, the fit is very good
and delivers the 2π -wall thickness parameter ξ ≈ 0.143 mm,
which can be compared to the theoretical prediction given by
Eq. (11).

For this purpose, the width ξ has been measured during the
slow collapse of the wall (such as the one in Fig. 8). Results
obtained with two samples of different thicknesses are plotted
using circular and square markers versus the wall’s radius Rw

in Fig. 13. The theoretical fits drawn with continuous lines
have been made using Eq. (11), in which the thickness h0 has
been replaced by the local thickness from Eq. (5) and the slope
γ is given by Eq. (6).

The fitting parameters were the ratio of elastic constants
Keff/K , the curvature radius of the lens Rl , and the minimal
distance hmin between the lens and the glass plate. Their values
corresponding to the best fits are indicated in Fig. 13.

Let us emphasize that the local width of the 2π wall given
by Eq. (11) decreases first during the collapse but when the
wall radius Rw tends to 0 it diverges because the slope γ

vanishes in the center of the plane and sphere gap.

D. Effects of the elastic anisotropy

A more detailed analysis of the structure of 2π walls should
take into account the elastic anisotropy of the dowser field
whose distortion energy density (per unit area), expressed
in terms of the two possible scalar invariants

−→∇ · d and
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FIG. 14. Effects of anisotropic elasticity in wound dowser field.
(a) Identification of the splay, bend, and saddle-splay deformations
of the dowser field. (b) interference pattern of a wound dowser field
observed in a polarizing microscope. (c) Line labeled “Intensity(x)”:
measured intensity; line labeled “a+bsin(cx+d)”: fit to this sin
function.

(d × (
−→∇ × d))2, can be written as

f = h

[
1

2
K̃1(

−→∇ · d)2 + 1

2
K̃3(d × (

−→∇ × d))2 + K̃4

h

−→∇ · d
]
.

(15)

The first two terms correspond, respectively, to splay and
bend distortions of the dowser field and the effective elastic
constants K̃1 and K̃3 depend on the detailed 3D structures
of the director field. Due to the vector character of the dowser
field d, this expression needs not to be invariant with respect to
the sign reversal d → −d so that the last term linear in

−→∇ · d
is allowed. It corresponds to the “saddle-splay” distortion of
the director field involving second order derivatives of the
director field such as ∂z∂x and ∂z∂y . In Eq. (15), the derivative
with respect to z is implicit and results in the 1/h dependence
of its elastic coefficient.

Let us suppose that the orientation φ of a wound dowser
field varies only with x as shown in Fig. 14(a). In such a case
one obtains

f = h

{
1

2
[K̃1sin2(φ) + K̃3cos2(φ)]

(
dφ

dx

)2

− K̃4

h
sin(φ)

dφ

dx

}
.

(16)

In the approximation used in Sec. III C with K̃1 = K̃3 and
K̃4 = 0, minimization of the functional

∫
f dx would lead to

a linear solution φ(x) = ax; in experiments, isogyres in the
interference patterns would be equally spaced.

If, on the other hand, K̃3 was much larger than K̃1 and K̃4

was still zero, the function φ(x) would be more complex: in

bands with the bend distorsion variation of φ with x would be
slower then in bands with the splay distortion. As a result, the
width of isogyres would vary periodically with x: large and
narrow fringes would alternate. Finally, if the saddle-splay
term was important, each fourth fringe would have a different
width than the three other.

Let us compare now these theoretical predictions with
a typical interference pattern obtained in an experiment
made with a thick sample and shown in Fig. 14(b). The
corresponding variation of the intensity I (x) is plotted with
the line labeled “Intensity(x)” in Fig. 14(c). The second plot
labeled “a+bsin(cx+d)” in the same diagram is a fit to the
linear variation of φ with x obtained in the isotropic case. We
can conclude that the isotropic approximation used in Sec. III C
is justified in practice a posteriori.

V. CONCLUSIONS

The breakthrough of the present work consists in showing
that contrary to the accepted ideas the quasiplanar texture can
be infinitely preserved in spite of its metastability with respect
to the homogeneous homeotropic state.

Such a long-lived quasiplanar texture that we call the
dowser state is a broken symmetry state that is characterized by
the 2D dowser field describing the local xy orientation of the
midplane director. In the sample of a uniform thickness, all the
directions are degenerate, which makes the dowser field very
sensitive to perturbations, such as external fields and sample
inhomogeneities.

Experiments with the dowser state described here have
unraveled the cuneitropism of the dowser field, or, in other
words, its tendency to align in the direction of the thickness
gradient, similar to the mechanism of geometric anchoring
discovered by Lavrentovich [4]. This phenomenon parallels
with many other two-dimensional systems with linear coupling
to an external field which obey the sine-Gordon equation,
such as the classical xy spin systems, ferroelectrics, and
charge-density waves [7,8]. As such, the dowser state is a
table-top realization of the damped sine-Gordon model, where
the solitonic solutions appear as 2π walls and can be easily
observed under the microscope. In addition, the dowser field
couples both to the thickness gradient field and to the external
magnetic field, which allows for many interesting experiments
with the sine-Gordon model which would be more difficult to
perform on the scale of solid state systems.
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